MFRC522 example project for FRDM

Dependencies:   MFRC522 mbed

MFRC522.h

Committer:
AtomX
Date:
2013-12-14
Revision:
0:1d9c7c0b5015

File content as of revision 0:1d9c7c0b5015:

/**
 * MFRC522.h - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
 * Based on code Dr.Leong   ( WWW.B2CQSHOP.COM )
 * Created by Miguel Balboa (circuitito.com), Jan, 2012.
 * Rewritten by S�ren Thing Andersen (access.thing.dk), fall of 2013 (Translation to English, refactored, comments, anti collision, cascade levels.)
 * Ported by Martin Olejar to mbed, Dec, 2013
 *
 * Please read this file for an overview and then MFRC522.cpp for comments on the specific functions.
 * Search for "mf-rc522" on ebay.com to purchase the MF-RC522 board.
 *
 * There are three hardware components involved:
 * 1) The micro controller: An Arduino
 * 2) The PCD (short for Proximity Coupling Device): NXP MFRC522 Contactless Reader IC
 * 3) The PICC (short for Proximity Integrated Circuit Card): A card or tag using the ISO 14443A interface, eg Mifare or NTAG203.
 *
 * The microcontroller and card reader uses SPI for communication.
 * The protocol is described in the MFRC522 datasheet: http://www.nxp.com/documents/data_sheet/MFRC522.pdf
 *
 * The card reader and the tags communicate using a 13.56MHz electromagnetic field.
 * The protocol is defined in ISO/IEC 14443-3 Identification cards -- Contactless integrated circuit cards -- Proximity cards -- Part 3: Initialization and anticollision".
 * A free version of the final draft can be found at http://wg8.de/wg8n1496_17n3613_Ballot_FCD14443-3.pdf
 * Details are found in chapter 6, Type A � Initialization and anticollision.
 *
 * If only the PICC UID is wanted, the above documents has all the needed information.
 * To read and write from MIFARE PICCs, the MIFARE protocol is used after the PICC has been selected.
 * The MIFARE Classic chips and protocol is described in the datasheets:
 *    1K:   http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
 *    4K:   http://www.nxp.com/documents/data_sheet/MF1S703x.pdf
 *    Mini: http://www.idcardmarket.com/download/mifare_S20_datasheet.pdf
 * The MIFARE Ultralight chip and protocol is described in the datasheets:
 *    Ultralight:   http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
 *    Ultralight C: http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
 *
 * MIFARE Classic 1K (MF1S503x):
 *    Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes.
 *    The blocks are numbered 0-63.
 *    Block 3 in each sector is the Sector Trailer. See http://www.nxp.com/documents/data_sheet/MF1S503x.pdf sections 8.6 and 8.7:
 *        Bytes 0-5:   Key A
 *        Bytes 6-8:   Access Bits
 *        Bytes 9:     User data
 *        Bytes 10-15: Key B (or user data)
 *    Block 0 is read only manufacturer data.
 *    To access a block, an authentication using a key from the block's sector must be performed first.
 *    Example: To read from block 10, first authenticate using a key from sector 3 (blocks 8-11).
 *    All keys are set to FFFFFFFFFFFFh at chip delivery.
 *    Warning: Please read section 8.7 "Memory Access". It includes this text: if the PICC detects a format violation the whole sector is irreversibly blocked.
 *    To use a block in "value block" mode (for Increment/Decrement operations) you need to change the sector trailer. Use PICC_SetAccessBits() to calculate the bit patterns.
 * MIFARE Classic 4K (MF1S703x):
 *    Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes.
 *    The blocks are numbered 0-255.
 *    The last block in each sector is the Sector Trailer like above.
 * MIFARE Classic Mini (MF1 IC S20):
 *    Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes.
 *    The blocks are numbered 0-19.
 *    The last block in each sector is the Sector Trailer like above.
 *
 * MIFARE Ultralight (MF0ICU1):
 *    Has 16 pages of 4 bytes = 64 bytes.
 *    Pages 0 + 1 is used for the 7-byte UID.
 *    Page 2 contains the last chech digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2)
 *    Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0.
 *    Pages 4-15 are read/write unless blocked by the lock bytes in page 2.
 * MIFARE Ultralight C (MF0ICU2):
 *    Has 48 pages of 4 bytes = 64 bytes.
 *    Pages 0 + 1 is used for the 7-byte UID.
 *    Page 2 contains the last chech digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2)
 *    Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0.
 *    Pages 4-39 are read/write unless blocked by the lock bytes in page 2.
 *    Page 40 Lock bytes
 *    Page 41 16 bit one way counter
 *    Pages 42-43 Authentication configuration
 *    Pages 44-47 Authentication key
 */
#ifndef MFRC522_h
#define MFRC522_h

#include <string>
#include "mbed.h"

class MFRC522 {
public:

  // MFRC522 registers. Described in chapter 9 of the datasheet.
  // When using SPI all addresses are shifted one bit left in the "SPI address byte" (section 8.1.2.3)
  enum PCD_Register {
    // Page 0: Command and status
    //                0x00        // reserved for future use
    CommandReg      = 0x01 << 1,  // starts and stops command execution
    ComIEnReg       = 0x02 << 1,  // enable and disable interrupt request control bits
    DivIEnReg       = 0x03 << 1,  // enable and disable interrupt request control bits
    ComIrqReg       = 0x04 << 1,  // interrupt request bits
    DivIrqReg       = 0x05 << 1,  // interrupt request bits
    ErrorReg        = 0x06 << 1,  // error bits showing the error status of the last command executed
    Status1Reg      = 0x07 << 1,  // communication status bits
    Status2Reg      = 0x08 << 1,  // receiver and transmitter status bits
    FIFODataReg     = 0x09 << 1,  // input and output of 64 byte FIFO buffer
    FIFOLevelReg    = 0x0A << 1,  // number of bytes stored in the FIFO buffer
    WaterLevelReg   = 0x0B << 1,  // level for FIFO underflow and overflow warning
    ControlReg      = 0x0C << 1,  // miscellaneous control registers
    BitFramingReg   = 0x0D << 1,  // adjustments for bit-oriented frames
    CollReg         = 0x0E << 1,  // bit position of the first bit-collision detected on the RF interface
    //                0x0F        // reserved for future use

    // Page 1:Command
    //                0x10        // reserved for future use
    ModeReg         = 0x11 << 1,  // defines general modes for transmitting and receiving
    TxModeReg       = 0x12 << 1,  // defines transmission data rate and framing
    RxModeReg       = 0x13 << 1,  // defines reception data rate and framing
    TxControlReg    = 0x14 << 1,  // controls the logical behavior of the antenna driver pins TX1 and TX2
    TxASKReg        = 0x15 << 1,  // controls the setting of the transmission modulation
    TxSelReg        = 0x16 << 1,  // selects the internal sources for the antenna driver
    RxSelReg        = 0x17 << 1,  // selects internal receiver settings
    RxThresholdReg  = 0x18 << 1,  // selects thresholds for the bit decoder
    DemodReg        = 0x19 << 1,  // defines demodulator settings
    //                0x1A        // reserved for future use
    //                0x1B        // reserved for future use
    MfTxReg         = 0x1C << 1,  // controls some MIFARE communication transmit parameters
    MfRxReg         = 0x1D << 1,  // controls some MIFARE communication receive parameters
    //                0x1E        // reserved for future use
    SerialSpeedReg  = 0x1F << 1,  // selects the speed of the serial UART interface

    // Page 2: Configuration
    //                0x20        // reserved for future use
    CRCResultRegH   = 0x21 << 1,  // shows the MSB and LSB values of the CRC calculation
    CRCResultRegL   = 0x22 << 1,
    //                0x23        // reserved for future use
    ModWidthReg     = 0x24 << 1,  // controls the ModWidth setting?
    //                0x25        // reserved for future use
    RFCfgReg        = 0x26 << 1,  // configures the receiver gain
    GsNReg          = 0x27 << 1,  // selects the conductance of the antenna driver pins TX1 and TX2 for modulation
    CWGsPReg        = 0x28 << 1,  // defines the conductance of the p-driver output during periods of no modulation
    ModGsPReg       = 0x29 << 1,  // defines the conductance of the p-driver output during periods of modulation
    TModeReg        = 0x2A << 1,  // defines settings for the internal timer
    TPrescalerReg   = 0x2B << 1,  // the lower 8 bits of the TPrescaler value. The 4 high bits are in TModeReg.
    TReloadRegH     = 0x2C << 1,  // defines the 16-bit timer reload value
    TReloadRegL     = 0x2D << 1,
    TCntValueRegH   = 0x2E << 1,  // shows the 16-bit timer value
    TCntValueRegL   = 0x2F << 1,

    // Page 3:Test Registers
    //                0x30        // reserved for future use
    TestSel1Reg     = 0x31 << 1,  // general test signal configuration
    TestSel2Reg     = 0x32 << 1,  // general test signal configuration
    TestPinEnReg    = 0x33 << 1,  // enables pin output driver on pins D1 to D7
    TestPinValueReg = 0x34 << 1,  // defines the values for D1 to D7 when it is used as an I/O bus
    TestBusReg      = 0x35 << 1,  // shows the status of the internal test bus
    AutoTestReg     = 0x36 << 1,  // controls the digital self test
    VersionReg      = 0x37 << 1,  // shows the software version
    AnalogTestReg   = 0x38 << 1,  // controls the pins AUX1 and AUX2
    TestDAC1Reg     = 0x39 << 1,  // defines the test value for TestDAC1
    TestDAC2Reg     = 0x3A << 1,  // defines the test value for TestDAC2
    TestADCReg      = 0x3B << 1   // shows the value of ADC I and Q channels
    //                0x3C        // reserved for production tests
    //                0x3D        // reserved for production tests
    //                0x3E        // reserved for production tests
    //                0x3F        // reserved for production tests
  };

  // MFRC522 commands Described in chapter 10 of the datasheet.
  enum PCD_Command {
    PCD_Idle               = 0x00,   // no action, cancels current command execution
    PCD_Mem                = 0x01,   // stores 25 bytes into the internal buffer
    PCD_GenerateRandomID   = 0x02,   // generates a 10-byte random ID number
    PCD_CalcCRC            = 0x03,   // activates the CRC coprocessor or performs a self test
    PCD_Transmit           = 0x04,   // transmits data from the FIFO buffer
    PCD_NoCmdChange        = 0x07,   // no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit
    PCD_Receive            = 0x08,   // activates the receiver circuits
    PCD_Transceive         = 0x0C,   // transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission
    PCD_MFAuthent          = 0x0E,   // performs the MIFARE standard authentication as a reader
    PCD_SoftReset          = 0x0F    // resets the MFRC522
  };

  // Commands sent to the PICC.
  enum PICC_Command {
    // The commands used by the PCD to manage communication with several PICCs (ISO 14443-3, Type A, section 6.4)
    PICC_CMD_REQA          = 0x26,   // REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
    PICC_CMD_WUPA          = 0x52,   // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
    PICC_CMD_CT            = 0x88,   // Cascade Tag. Not really a command, but used during anti collision.
    PICC_CMD_SEL_CL1       = 0x93,   // Anti collision/Select, Cascade Level 1
    PICC_CMD_SEL_CL2       = 0x95,   // Anti collision/Select, Cascade Level 1
    PICC_CMD_SEL_CL3       = 0x97,   // Anti collision/Select, Cascade Level 1
    PICC_CMD_HLTA          = 0x50,   // HaLT command, Type A. Instructs an ACTIVE PICC to go to state HALT.
    // The commands used for MIFARE Classic (from http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9)
    // Use PCD_MFAuthent to authenticate access to a sector, then use these commands to read/write/modify the blocks on the sector.
    // The read/write commands can also be used for MIFARE Ultralight.
    PICC_CMD_MF_AUTH_KEY_A = 0x60,   // Perform authentication with Key A
    PICC_CMD_MF_AUTH_KEY_B = 0x61,   // Perform authentication with Key B
    PICC_CMD_MF_READ       = 0x30,   // Reads one 16 byte block from the authenticated sector of the PICC. Also used for MIFARE Ultralight.
    PICC_CMD_MF_WRITE      = 0xA0,   // Writes one 16 byte block to the authenticated sector of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight.
    PICC_CMD_MF_DECREMENT  = 0xC0,   // Decrements the contents of a block and stores the result in the internal data register.
    PICC_CMD_MF_INCREMENT  = 0xC1,   // Increments the contents of a block and stores the result in the internal data register.
    PICC_CMD_MF_RESTORE    = 0xC2,   // Reads the contents of a block into the internal data register.
    PICC_CMD_MF_TRANSFER   = 0xB0,   // Writes the contents of the internal data register to a block.
    // The commands used for MIFARE Ultralight (from http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6)
    // The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight.
    PICC_CMD_UL_WRITE      = 0xA2    // Writes one 4 byte page to the PICC.
  };

  // MIFARE constants that does not fit anywhere else
  enum MIFARE_Misc {
    MF_ACK                 = 0xA,    // The MIFARE Classic uses a 4 bit ACK/NAK. Any other value than 0xA is NAK.
    MF_KEY_SIZE            = 6       // A Mifare Crypto1 key is 6 bytes.
  };

  // PICC types we can detect. Remember to update PICC_GetTypeName() if you add more.
  enum PICC_Type {
    PICC_TYPE_UNKNOWN      = 0,
    PICC_TYPE_ISO_14443_4  = 1,  // PICC compliant with ISO/IEC 14443-4
    PICC_TYPE_ISO_18092    = 2,  // PICC compliant with ISO/IEC 18092 (NFC)
    PICC_TYPE_MIFARE_MINI  = 3,  // MIFARE Classic protocol, 320 bytes
    PICC_TYPE_MIFARE_1K    = 4,  // MIFARE Classic protocol, 1KB
    PICC_TYPE_MIFARE_4K    = 5,  // MIFARE Classic protocol, 4KB
    PICC_TYPE_MIFARE_UL    = 6,  // MIFARE Ultralight or Ultralight C
    PICC_TYPE_MIFARE_PLUS  = 7,  // MIFARE Plus
    PICC_TYPE_TNP3XXX      = 8,  // Only mentioned in NXP AN 10833 MIFARE Type Identification Procedure
    PICC_TYPE_NOT_COMPLETE = 255 // SAK indicates UID is not complete.
  };

  // Return codes from the functions in this class. Remember to update GetStatusCodeName() if you add more.
  enum StatusCode {
    STATUS_OK              = 1,  // Success
    STATUS_ERROR           = 2,  // Error in communication
    STATUS_COLLISION       = 3,  // Collision detected
    STATUS_TIMEOUT         = 4,  // Timeout in communication.
    STATUS_NO_ROOM         = 5,  // A buffer is not big enough.
    STATUS_INTERNAL_ERROR  = 6,  // Internal error in the code. Should not happen ;-)
    STATUS_INVALID         = 7,  // Invalid argument.
    STATUS_CRC_WRONG       = 8,  // The CRC_A does not match
    STATUS_MIFARE_NACK     = 9   // A MIFARE PICC responded with NAK.
  };

  // A struct used for passing the UID of a PICC.
  typedef struct {
    uint8_t    size;     // Number of bytes in the UID. 4, 7 or 10.
    uint8_t    uidByte[10];
    uint8_t    sak;      // The SAK (Select acknowledge) byte returned from the PICC after successful selection.
  } Uid;

  // A struct used for passing a MIFARE Crypto1 key
  typedef struct {
    uint8_t    keyByte[MF_KEY_SIZE];
  } MIFARE_Key;

  // Member variables
  Uid uid;                // Used by PICC_ReadCardSerial().

  // Size of the MFRC522 FIFO
  static const uint8_t FIFO_SIZE = 64;   // The FIFO is 64 bytes.

  /////////////////////////////////////////////////////////////////////////////////////
  // Functions for setting up the driver
  /////////////////////////////////////////////////////////////////////////////////////
  MFRC522(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset);

  /////////////////////////////////////////////////////////////////////////////////////
  // Functions for manipulating the MFRC522
  /////////////////////////////////////////////////////////////////////////////////////
  void PCD_Init();
  void PCD_Reset();
  void PCD_AntennaOn();

  /////////////////////////////////////////////////////////////////////////////////////
  // Basic interface functions for communicating with the MFRC522
  /////////////////////////////////////////////////////////////////////////////////////
  void    PCD_WriteRegister(uint8_t reg, uint8_t value);
  void    PCD_WriteRegister(uint8_t reg, uint8_t count, uint8_t *values);
  uint8_t PCD_ReadRegister(uint8_t reg);
  void    PCD_ReadRegister(uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign = 0);
  void    PCD_SetRegisterBitMask(uint8_t reg, uint8_t mask);
  void    PCD_ClearRegisterBitMask(uint8_t reg, uint8_t mask);
  uint8_t PCD_CalculateCRC(uint8_t *data, uint8_t length, uint8_t *result);

  /////////////////////////////////////////////////////////////////////////////////////
  // Functions for communicating with PICCs
  /////////////////////////////////////////////////////////////////////////////////////
  uint8_t PCD_TransceiveData(uint8_t *sendData, uint8_t sendLen, uint8_t *backData, uint8_t *backLen, uint8_t *validBits = NULL, uint8_t rxAlign = 0, bool checkCRC = false);
  uint8_t PCD_CommunicateWithPICC(uint8_t command, uint8_t waitIRq, uint8_t *sendData, uint8_t sendLen, uint8_t *backData = NULL, uint8_t *backLen = NULL, uint8_t *validBits = NULL, uint8_t rxAlign = 0, bool checkCRC = false);

  uint8_t PICC_RequestA(uint8_t *bufferATQA, uint8_t *bufferSize);
  uint8_t PICC_WakeupA(uint8_t *bufferATQA, uint8_t *bufferSize);
  uint8_t PICC_REQA_or_WUPA(uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize);
  uint8_t PICC_Select(Uid *uid, uint8_t validBits = 0);
  uint8_t PICC_HaltA();

  /////////////////////////////////////////////////////////////////////////////////////
  // Functions for communicating with MIFARE PICCs
  /////////////////////////////////////////////////////////////////////////////////////
  uint8_t PCD_Authenticate(uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid);
  void    PCD_StopCrypto1();
  uint8_t MIFARE_Read(uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize);
  uint8_t MIFARE_Write(uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize);
  uint8_t MIFARE_Decrement(uint8_t blockAddr, uint32_t delta);
  uint8_t MIFARE_Increment(uint8_t blockAddr, uint32_t delta);
  uint8_t MIFARE_Restore(uint8_t blockAddr);
  uint8_t MIFARE_Transfer(uint8_t blockAddr);
  uint8_t MIFARE_Ultralight_Write(uint8_t page, uint8_t *buffer, uint8_t bufferSize);

  /////////////////////////////////////////////////////////////////////////////////////
  // Support functions
  /////////////////////////////////////////////////////////////////////////////////////
  uint8_t PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout = false);
  uint8_t PICC_GetType(uint8_t sak);
  std::string PICC_GetTypeName(uint8_t type);
  std::string GetStatusCodeName(uint8_t code);
  void MIFARE_SetAccessBits(uint8_t *accessBitBuffer, uint8_t g0, uint8_t g1, uint8_t g2, uint8_t g3);

  /////////////////////////////////////////////////////////////////////////////////////
  // Convenience functions - does not add extra functionality
  /////////////////////////////////////////////////////////////////////////////////////
  bool PICC_IsNewCardPresent();
  bool PICC_ReadCardSerial();

private:
  SPI              m_SPI;
  DigitalOut       m_CS;
  DigitalOut       m_RESET;

  uint8_t MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data);
};

#endif