Library implementing Madgwick's IMU and AHRS algorithms
Dependents: Hexi_GPSIMU_Hotshoe
Diff: MadgwickAHRS.cpp
- Revision:
- 0:9b434b5e28d4
- Child:
- 1:d7c70d593694
diff -r 000000000000 -r 9b434b5e28d4 MadgwickAHRS.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MadgwickAHRS.cpp Sun Dec 18 21:50:15 2016 +0000 @@ -0,0 +1,257 @@ +//============================================================================================= +// MadgwickAHRS.c +//============================================================================================= +// +// Implementation of Madgwick's IMU and AHRS algorithms. +// See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/ +// +// From the x-io website "Open-source resources available on this website are +// provided under the GNU General Public Licence unless an alternative licence +// is provided in source." +// +// Date Author Notes +// 29/09/2011 SOH Madgwick Initial release +// 02/10/2011 SOH Madgwick Optimised for reduced CPU load +// 19/02/2012 SOH Madgwick Magnetometer measurement is normalised +// 18/12/2016 Added better fast inverse square root +// +//============================================================================================= + +//------------------------------------------------------------------------------------------- +// Header files + +#include "MadgwickAHRS.h" +#include <math.h> + +//------------------------------------------------------------------------------------------- +// Definitions + +#define sampleFreqDef 500.0f // sample frequency in Hz +#define betaDef 0.75f // 2 * proportional gain 0.1 - 0.5 - 5 + + +//============================================================================================ +// Functions + +//------------------------------------------------------------------------------------------- +// AHRS algorithm update + +Madgwick::Madgwick() { + beta = betaDef; + q0 = 1.0f; + q1 = 0.0f; + q2 = 0.0f; + q3 = 0.0f; + invSampleFreq = 1.0f / sampleFreqDef; + anglesComputed = 0; +} + +void Madgwick::update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) { + float recipNorm; + float s0, s1, s2, s3; + float qDot1, qDot2, qDot3, qDot4; + float hx, hy; + float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3; + + // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation) + if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) { + updateIMU(gx, gy, gz, ax, ay, az); + return; + } + + // Convert gyroscope degrees/sec to radians/sec + gx *= 0.0174533f; + gy *= 0.0174533f; + gz *= 0.0174533f; + + // Rate of change of quaternion from gyroscope + qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz); + qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy); + qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx); + qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx); + + // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) + if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { + + // Normalise accelerometer measurement + recipNorm = invSqrt(ax * ax + ay * ay + az * az); + ax *= recipNorm; + ay *= recipNorm; + az *= recipNorm; + + // Normalise magnetometer measurement + recipNorm = invSqrt(mx * mx + my * my + mz * mz); + mx *= recipNorm; + my *= recipNorm; + mz *= recipNorm; + + // Auxiliary variables to avoid repeated arithmetic + _2q0mx = 2.0f * q0 * mx; + _2q0my = 2.0f * q0 * my; + _2q0mz = 2.0f * q0 * mz; + _2q1mx = 2.0f * q1 * mx; + _2q0 = 2.0f * q0; + _2q1 = 2.0f * q1; + _2q2 = 2.0f * q2; + _2q3 = 2.0f * q3; + _2q0q2 = 2.0f * q0 * q2; + _2q2q3 = 2.0f * q2 * q3; + q0q0 = q0 * q0; + q0q1 = q0 * q1; + q0q2 = q0 * q2; + q0q3 = q0 * q3; + q1q1 = q1 * q1; + q1q2 = q1 * q2; + q1q3 = q1 * q3; + q2q2 = q2 * q2; + q2q3 = q2 * q3; + q3q3 = q3 * q3; + + // Reference direction of Earth's magnetic field + hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3; + hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3; + _2bx = sqrtf(hx * hx + hy * hy); + _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3; + _4bx = 2.0f * _2bx; + _4bz = 2.0f * _2bz; + + // Gradient decent algorithm corrective step + s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); + s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); + s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); + s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); + recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude + s0 *= recipNorm; + s1 *= recipNorm; + s2 *= recipNorm; + s3 *= recipNorm; + + // Apply feedback step + qDot1 -= beta * s0; + qDot2 -= beta * s1; + qDot3 -= beta * s2; + qDot4 -= beta * s3; + } + + // Integrate rate of change of quaternion to yield quaternion + q0 += qDot1 * invSampleFreq; + q1 += qDot2 * invSampleFreq; + q2 += qDot3 * invSampleFreq; + q3 += qDot4 * invSampleFreq; + + // Normalise quaternion + recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); + q0 *= recipNorm; + q1 *= recipNorm; + q2 *= recipNorm; + q3 *= recipNorm; + anglesComputed = 0; +} + +//------------------------------------------------------------------------------------------- +// IMU algorithm update + +void Madgwick::updateIMU(float gx, float gy, float gz, float ax, float ay, float az) { + float recipNorm; + float s0, s1, s2, s3; + float qDot1, qDot2, qDot3, qDot4; + float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3; + + // Convert gyroscope degrees/sec to radians/sec + gx *= 0.0174533f; + gy *= 0.0174533f; + gz *= 0.0174533f; + + // Rate of change of quaternion from gyroscope + qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz); + qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy); + qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx); + qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx); + + // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) + if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { + + // Normalise accelerometer measurement + recipNorm = invSqrt(ax * ax + ay * ay + az * az); + ax *= recipNorm; + ay *= recipNorm; + az *= recipNorm; + + // Auxiliary variables to avoid repeated arithmetic + _2q0 = 2.0f * q0; + _2q1 = 2.0f * q1; + _2q2 = 2.0f * q2; + _2q3 = 2.0f * q3; + _4q0 = 4.0f * q0; + _4q1 = 4.0f * q1; + _4q2 = 4.0f * q2; + _8q1 = 8.0f * q1; + _8q2 = 8.0f * q2; + q0q0 = q0 * q0; + q1q1 = q1 * q1; + q2q2 = q2 * q2; + q3q3 = q3 * q3; + + // Gradient decent algorithm corrective step + s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay; + s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az; + s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az; + s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay; + recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude + s0 *= recipNorm; + s1 *= recipNorm; + s2 *= recipNorm; + s3 *= recipNorm; + + // Apply feedback step + qDot1 -= beta * s0; + qDot2 -= beta * s1; + qDot3 -= beta * s2; + qDot4 -= beta * s3; + } + + // Integrate rate of change of quaternion to yield quaternion + q0 += qDot1 * invSampleFreq; + q1 += qDot2 * invSampleFreq; + q2 += qDot3 * invSampleFreq; + q3 += qDot4 * invSampleFreq; + + // Normalise quaternion + recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); + q0 *= recipNorm; + q1 *= recipNorm; + q2 *= recipNorm; + q3 *= recipNorm; + anglesComputed = 0; +} + +//------------------------------------------------------------------------------------------- +// Fast inverse square-root +// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root + +/*float Madgwick::invSqrt(float x) { + float halfx = 0.5f * x; + float y = x; + long i = *(long*)&y; + i = 0x5f3759df - (i>>1); + y = *(float*)&i; + y = y * (1.5f - (halfx * y * y)); + y = y * (1.5f - (halfx * y * y)); + return y; +} */ + +float Madgwick::invSqrt(float x){ + unsigned int i = 0x5F1F1412 - (*(unsigned int*)&x >> 1); + float tmp = *(float*)&i; + return tmp * (1.69000231f - 0.714158168f * x * tmp * tmp); +} + +//------------------------------------------------------------------------------------------- + +void Madgwick::computeAngles() +{ + roll = atan2f(q0*q1 + q2*q3, 0.5f - q1*q1 - q2*q2); + pitch = asinf(-2.0f * (q1*q3 - q0*q2)); + yaw = atan2f(q1*q2 + q0*q3, 0.5f - q2*q2 - q3*q3); + anglesComputed = 1; +} \ No newline at end of file