With added boundaries, without errors, not yet tested
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of prog_forwardkin_feedback_copy by
main.cpp
- Committer:
- GerhardBerman
- Date:
- 2016-10-19
- Revision:
- 9:e4c34f5665a0
- Parent:
- 8:935abf8ecc27
- Child:
- 10:45473f650198
File content as of revision 9:e4c34f5665a0:
#include "mbed.h" #include <math.h> #include "MODSERIAL.h" #include "QEI.h" #include "HIDScope.h" #include "BiQuad.h" //set pins DigitalIn encoder1A (D13); //Channel A van Encoder 1 DigitalIn encoder1B (D12); //Channel B van Encoder 1 DigitalIn encoder2A (D14); DigitalIn encoder2B (D15); DigitalOut led1 (D11); DigitalOut led2 (D10); AnalogIn potMeter1(A2); AnalogIn potMeter2(A1); DigitalOut motor1DirectionPin(D7); PwmOut motor1MagnitudePin(D6); DigitalOut motor2DirectionPin(D4); PwmOut motor2MagnitudePin(D5); DigitalIn button1(D3); DigitalIn button2(D9); //library settings Serial pc(USBTX,USBRX); Ticker MeasureTicker, BiQuadTicker; //, TimeTracker; // sampleT; HIDScope scope(3); //set initial conditions float error1_prev = 0; float error2_prev = 0; float IntError1 = 0; float IntError2 = 0; float q1 = 0; float q2 = 0; //set initial conditions for function references float q1_dot = 0.0; float q2_dot = 0.0; float motorValue1 = 0.0; float motorValue2 = 0.0; //set constant or variable values int counts1 = 0; int counts2 = 0; int counts1Prev = 0; int counts2Prev = 0; double DerivativeCounts; float x0 = 1.0; float L0 = 1.0; float L1 = 1.0; float dx; float dy; float dy_stampdown = 0.05; //5 cm movement downward to stamp float t_sample = 0.01; //seconds float referenceVelocity = 0; float bqcDerivativeCounts = 0; const float PI = 3.141592653589793; const int cw = 0; //values for cw and ccw are inverted!! cw=0 and ccw=1 const int ccw = 1; //set BiQuad BiQuadChain bqc; BiQuad bq1(0.0186, 0.0743, 0.1114, 0.0743, 0.0186); //get numbers from butter filter MATLAB BiQuad bq2(1.0000, -1.5704, 1.2756, -0.4844, 0.0762); //set go-Ticker settings volatile bool MeasureTicker_go=false, BiQuadTicker_go=false, FeedbackTicker_go=false, TimeTracker_go=false; // sampleT_go=false; void MeasureTicker_act(){MeasureTicker_go=true;}; // Activates go-flags void BiQuadTicker_act(){BiQuadTicker_go=true;}; void FeedbackTicker_act(){FeedbackTicker_go=true;}; void TimeTracker_act(){TimeTracker_go=true;}; //void sampleT_act(){sampleT_go=true;}; //define encoder counts and degrees QEI Encoder1(D12, D13, NC, 32); // turns on encoder QEI Encoder2(D14, D15, NC, 32); // turns on encoder const int counts_per_revolution = 4200; //counts per motor axis revolution const int inverse_gear_ratio = 131; //const float motor_axial_resolution = counts_per_revolution/(2*PI); const float resolution = counts_per_revolution/(2*PI/inverse_gear_ratio); //87567.0496892 counts per radian, encoder axis void GetReferenceKinematics1(float &q1_dotOut, float &q2_dotOut){ //get joint positions q from encoder float Encoder1Position = counts1/resolution; //position in radians, encoder axis float Encoder2Position = counts2/resolution; float q1 = Encoder1Position*inverse_gear_ratio; //position in radians, motor axis float q2 = Encoder2Position*inverse_gear_ratio; //get velocity vector v = (Pe*- Pe) = [0; dx; dy] from EMG float biceps1 = button1.read(); float biceps2 = button2.read(); if (biceps1 > 0 && biceps2 > 0){ //both arms activated: stamp moves down //led1 = 1; //led2 = 1; dx = 0; dy = dy_stampdown; //into stamping vertical position?? ~the stamp down action wait(1); dy = -(dy_stampdown); //reset vertical position } else if (biceps1 > 0 && biceps2 <= 0){ //arm 1 activated, move left //led1 = 1; //led2 = 0; dx = -biceps1; dy = 0; } else if (biceps1 <= 0 && biceps2 > 0){ //arm 1 activated, move left //led1 = 0; //led2 = 1; dx = biceps2; dy = 0; } else{ //led1 = 0; //led2 = 0; dx=0; dy=0; } //get joint angles change q_dot = Jpseudo * TwistEndEff (Matlab) q1_dotOut = dy*(((x0 + L1*cos(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (x0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))) - dx*(((L0 + L1*sin(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (L0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))); q2_dotOut = dy*((x0*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(L1*L1*pow(cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - ((x0 + L1*cos(q1))*(pow(L0,2) + pow(x0,2) + 1))/(pow(L1*cos(q1),2)) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - dx*((L0*(L0*L0+L1*sin(q1)*L0+x0*x0+L1*cos(q1)*x0+1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))-((L0 + L1*sin(q1))*(L0*L0 + x0*x0 + 1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))); //update joint angles q1 = q1 + q1_dotOut; q2 = q2 + q2_dotOut; } void FeedForwardControl1(float q1_dot, float q2_dot, float &motorValue1Out, float &motorValue2Out){ //float Encoder1Position = counts1/resolution; //position in radians, encoder axis //float Position1 = Encoder1Position*inverse_gear_ratio; //position in radians, motor axis // linear feedback control float error1 = q1_dot; //referencePosition1 - Position1; // proportional error in radians float error2 = q2_dot; //referencePosition1 - Position1; // proportional error in radians float Kp = 1; //potMeter2.read(); float IntError1 = IntError1 + error1*t_sample; // integrated error in radians float IntError2 = IntError2 + error2*t_sample; // integrated error in radians //float maxKi = 0.2; float Ki = 0.1; //potMeter2.read(); float DerivativeError1 = (error1_prev + error1)/t_sample; // derivative of error in radians float DerivativeError2 = (error2_prev + error2)/t_sample; // derivative of error in radians //float maxKd = 0.2; float Kd = 0.0; //potMeter2.read(); //scope.set(0,referencePosition1); //scope.set(1,Position1); //scope.set(2,Ki); //scope.send(); motorValue1Out = error1 * Kp + IntError1 * Ki + DerivativeError1 * Kd; //total controller output = motor input motorValue2Out = error2 * Kp + IntError2 * Ki + DerivativeError2 * Kd; //total controller output = motor input //pc.printf("Motor Axis Position: %f rad \r\n", Position1); //pc.printf("Counts encoder1: %i rad \r\n", counts1); //pc.printf("Kp: %f \r\n", Kp); //pc.printf("MotorValue: %f \r\n", motorValue1); error1_prev = error1; error2_prev = error1; } void SetMotor1(float motorValue1, float motorValue2) { // Given -1<=motorValue<=1, this sets the PWM and direction // bits for motor 1. Positive value makes motor rotating // clockwise. motorValues outside range are truncated to // within range //control motor 1 if (motorValue1 >=0) {motor1DirectionPin=cw; //led1=1; //led2=0; } else {motor1DirectionPin=ccw; //led1=0; //led2=1; } if (fabs(motorValue1)>1) motor1MagnitudePin = 1; else motor1MagnitudePin = fabs(motorValue1); //control motor 2 if (motorValue2 >=0) {motor2DirectionPin=cw; led1=1; led2=0; } else {motor2DirectionPin=ccw; led1=0; led2=1; } if (fabs(motorValue2)>1) motor2MagnitudePin = 1; else motor2MagnitudePin = fabs(motorValue2); } void MeasureAndControl() { // This function measures the EMG of both arms, calculates via IK what // the joint speeds should be, and controls the motor with // a Feedforward controller. This is called from a Ticker. GetReferenceKinematics1(q1_dot, q2_dot); FeedForwardControl1( q1_dot, q2_dot, motorValue1, motorValue2); SetMotor1(motorValue1, motorValue2); } void TimeTrackerF(){ //wait(1); //float Potmeter1 = potMeter1.read(); //float referencePosition1 = GetReferencePosition(); //pc.printf("TTReference Position: %d rad \r\n", referencePosition1); //pc.printf("TTPotmeter1, for refpos: %f \r\n", Potmeter1); //pc.printf("TTPotmeter2, Kp: %f \r\n", Potmeter2); //pc.printf("TTCounts: %i \r\n", counts1); } /* void BiQuadFilter(){ //this function creates a BiQuad filter for the DerivativeCounts //double in=DerivativeCounts(); bqcDerivativeCounts=bqc.step(DerivativeCounts); //return(bqcDerivativeCounts); } */ int main() { //Initialize pc.baud(115200); pc.printf("Test putty"); led1=1; led1 = 0; led2 = 0; wait(2.0); led1 = 1; led2 = 1; wait(2.0); MeasureTicker.attach(&MeasureTicker_act, 1.0f); //bqc.add(&bq1).add(&bq2); //QEI Encoder1(D12, D13, NC, 32); // turns on encoder /* while(1) { if (MeasureTicker_go){ MeasureTicker_go=false; MeasureAndControl(); counts1 = Encoder1.getPulses(); // gives position of encoder counts2 = Encoder2.getPulses(); // gives position of encoder pc.printf("Resolution: %f pulses/rad \r\n",resolution); } if (BiQuadTicker_go){ BiQuadTicker_go=false; BiQuadFilter(); } } */ }