workshop 1

Dependencies:   PM2_Libary Eigen

Fork of PM2_Example_Summer_School by Kate Huelskamp

Committer:
huels035
Date:
Thu May 19 02:23:27 2022 -0500
Revision:
47:31726ce58a6d
Parent:
46:e5fb4dd7b531
Child:
48:72bba06c3680
motors with speed control

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 36:8c75783c1eca 1 #include <mbed.h>
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
pmic 36:8c75783c1eca 3 #include "Eigen/Dense.h"
pmic 36:8c75783c1eca 4
pmic 36:8c75783c1eca 5 # define M_PI 3.14159265358979323846 // number pi
pmic 6:e1fa1a2d7483 6
huels035 46:e5fb4dd7b531 7
huels035 45:42adc921bc66 8 //Workshop 1
huels035 46:e5fb4dd7b531 9 float ir_distance_mV2cm (float ir_distance_mV);
pmic 24:86f1a63e35a0 10 // logical variable main task
pmic 24:86f1a63e35a0 11 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 12
pmic 24:86f1a63e35a0 13 // user button on nucleo board
pmic 24:86f1a63e35a0 14 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 15 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 16 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 17 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 18
pmic 1:93d997d6b232 19 int main()
pmic 23:26b3a25fc637 20 {
pmic 36:8c75783c1eca 21 // while loop gets executed every main_task_period_ms milliseconds
pmic 41:8a63b01edd7e 22 const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
pmic 36:8c75783c1eca 23 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
huels035 46:e5fb4dd7b531 24 //printf("here1");
pmic 40:7e6b7aec3947 25 // a coutner
pmic 40:7e6b7aec3947 26 uint32_t main_task_cntr = 0;
pmic 40:7e6b7aec3947 27
pmic 36:8c75783c1eca 28 // led on nucleo board
pmic 36:8c75783c1eca 29 DigitalOut user_led(LED1); // create DigitalOut object to command user led
pmic 36:8c75783c1eca 30
huels035 46:e5fb4dd7b531 31 DigitalOut enable_motors(PB_15);
huels035 46:e5fb4dd7b531 32 FastPWM pwm_M1(PB_13);
huels035 46:e5fb4dd7b531 33 FastPWM pwm_M2(PA_9);
huels035 47:31726ce58a6d 34 EncoderCounter encoder_M1(PA_6, PC_7); //M1 to M-, M2 to M+
huels035 47:31726ce58a6d 35 EncoderCounter encoder_M2(PB_6, PB_7);
huels035 46:e5fb4dd7b531 36
huels035 47:31726ce58a6d 37 //Open loop motor control
huels035 47:31726ce58a6d 38 //const float pwm_period_s = .00005f;
huels035 47:31726ce58a6d 39 //pwm_M1.period(pwm_period_s);
huels035 47:31726ce58a6d 40 //pwm_M2.period(pwm_period_s);
huels035 47:31726ce58a6d 41
huels035 47:31726ce58a6d 42 //Speed controller
huels035 47:31726ce58a6d 43 const float max_voltage = 12.0f;
huels035 47:31726ce58a6d 44 const float counts_per_turn = 20.0f * 78.125; //encoder counts * gear ratio
huels035 47:31726ce58a6d 45 const float kn = 180.0f/12.0f; // motor constant on pololu website
huels035 47:31726ce58a6d 46
huels035 47:31726ce58a6d 47 SpeedController speedControllerM1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1);
huels035 47:31726ce58a6d 48 SpeedController speedControllerM2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2);
huels035 47:31726ce58a6d 49
huels035 47:31726ce58a6d 50 speedControllerM1.setSpeedCntrlGain(0.1f/3);
huels035 47:31726ce58a6d 51 speedControllerM2.setSpeedCntrlGain(0.1f/3);
huels035 47:31726ce58a6d 52
huels035 47:31726ce58a6d 53 speedControllerM1.setMaxAccelerationRPM(999999.0f);
huels035 47:31726ce58a6d 54 speedControllerM2.setMaxAccelerationRPM(999999.0f);
huels035 47:31726ce58a6d 55
huels035 46:e5fb4dd7b531 56
huels035 46:e5fb4dd7b531 57 enable_motors = 1;
huels035 46:e5fb4dd7b531 58
huels035 46:e5fb4dd7b531 59 AnalogIn ir_analog_in(PC_2);
huels035 46:e5fb4dd7b531 60 float ir_distance_mV = 0.0f;
huels035 46:e5fb4dd7b531 61 float ir_distance_cm = 0.0f;
huels035 46:e5fb4dd7b531 62 float distAxisToSensor = 0.12f;
huels035 46:e5fb4dd7b531 63
huels035 46:e5fb4dd7b531 64 //I2C i2c(PB_9, PB_8);
huels035 46:e5fb4dd7b531 65
huels035 46:e5fb4dd7b531 66 //SensorBar light_sensor(i2c, distAxisToSensor);
huels035 46:e5fb4dd7b531 67
pmic 24:86f1a63e35a0 68 // attach button fall and rise functions to user button object
pmic 24:86f1a63e35a0 69 user_button.fall(&user_button_pressed_fcn);
pmic 24:86f1a63e35a0 70 user_button.rise(&user_button_released_fcn);
pmic 17:c19b471f05cb 71
pmic 29:d6f1ccf42a31 72 // start timer
pmic 24:86f1a63e35a0 73 main_task_timer.start();
pmic 6:e1fa1a2d7483 74
pmic 24:86f1a63e35a0 75 while (true) { // this loop will run forever
pmic 6:e1fa1a2d7483 76
pmic 24:86f1a63e35a0 77 main_task_timer.reset();
huels035 46:e5fb4dd7b531 78 //ir_distance_mV = ir_analog_in.read()* 3.3f * 1.0e3f;
huels035 46:e5fb4dd7b531 79
huels035 46:e5fb4dd7b531 80 //ir_distance_cm = ir_distance_mV2cm(ir_distance_mV);
pmic 40:7e6b7aec3947 81
pmic 17:c19b471f05cb 82
huels035 46:e5fb4dd7b531 83 //pwm_M1.write(.75f);
huels035 46:e5fb4dd7b531 84 if (do_execute_main_task) {
huels035 47:31726ce58a6d 85 //pwm_M1.write(.75f);
huels035 47:31726ce58a6d 86 //pwm_M2.write(.75f);
huels035 47:31726ce58a6d 87 speedControllerM1.setDesiredSpeedRPS(1.5f); // max 3
huels035 47:31726ce58a6d 88 speedControllerM2.setDesiredSpeedRPS(1.5f);
pmic 1:93d997d6b232 89 } else {
huels035 47:31726ce58a6d 90 //pwm_M1.write(.5f);
huels035 47:31726ce58a6d 91 //pwm_M2.write(.5f);
huels035 47:31726ce58a6d 92 speedControllerM1.setDesiredSpeedRPS(0.0f);
huels035 47:31726ce58a6d 93 speedControllerM2.setDesiredSpeedRPS(0.0f);
huels035 46:e5fb4dd7b531 94 }
huels035 46:e5fb4dd7b531 95
pmic 6:e1fa1a2d7483 96
pmic 41:8a63b01edd7e 97 // user_led is switching its state every second
pmic 41:8a63b01edd7e 98 if ( (main_task_cntr%(1000 / main_task_period_ms) == 0) && (main_task_cntr!=0) ) {
pmic 40:7e6b7aec3947 99 user_led = !user_led;
pmic 40:7e6b7aec3947 100 }
pmic 40:7e6b7aec3947 101 main_task_cntr++;
huels035 46:e5fb4dd7b531 102 //printf("%f \r\n", light_sensor.getAngleRad());
huels035 46:e5fb4dd7b531 103 //printf("IR sensor (mV): %f \r\n", ir_distance_mV);
huels035 46:e5fb4dd7b531 104 //printf("IR sensor (cm): %f \r\n", ir_distance_cm);
huels035 46:e5fb4dd7b531 105
huels035 47:31726ce58a6d 106
huels035 47:31726ce58a6d 107 printf("%f \r\n", speedControllerM2.getSpeedRPS());
huels035 46:e5fb4dd7b531 108
pmic 40:7e6b7aec3947 109
pmic 24:86f1a63e35a0 110 // do only output via serial what's really necessary (this makes your code slow)
pmic 41:8a63b01edd7e 111 /*
pmic 41:8a63b01edd7e 112 printf("IR sensor (mV): %3.3f, IR sensor (cm): %3.3f, SensorBar angle (rad): %3.3f, Speed M1 (rps) %3.3f, Position M2 (rot): %3.3f\r\n",
pmic 24:86f1a63e35a0 113 ir_distance_mV,
pmic 41:8a63b01edd7e 114 ir_distance_cm,
pmic 40:7e6b7aec3947 115 sensor_bar_avgAngleRad,
pmic 40:7e6b7aec3947 116 speedController_M1.getSpeedRPS(),
pmic 40:7e6b7aec3947 117 positionController_M2.getRotation());
pmic 41:8a63b01edd7e 118 */
pmic 17:c19b471f05cb 119
pmic 24:86f1a63e35a0 120 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 121 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 122 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
pmic 1:93d997d6b232 123 }
pmic 1:93d997d6b232 124 }
pmic 6:e1fa1a2d7483 125
pmic 24:86f1a63e35a0 126 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 127 {
pmic 26:28693b369945 128 user_button_timer.start();
pmic 6:e1fa1a2d7483 129 user_button_timer.reset();
pmic 6:e1fa1a2d7483 130 }
pmic 6:e1fa1a2d7483 131
pmic 24:86f1a63e35a0 132 void user_button_released_fcn()
pmic 6:e1fa1a2d7483 133 {
pmic 24:86f1a63e35a0 134 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 135 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 136 user_button_timer.stop();
pmic 24:86f1a63e35a0 137 if (user_button_elapsed_time_ms > 200) {
pmic 24:86f1a63e35a0 138 do_execute_main_task = !do_execute_main_task;
pmic 8:9bb806a7f585 139 }
huels035 46:e5fb4dd7b531 140 }
huels035 46:e5fb4dd7b531 141
huels035 46:e5fb4dd7b531 142 float ir_distance_mV2cm (float ir_distance_mV)
huels035 46:e5fb4dd7b531 143 {
huels035 46:e5fb4dd7b531 144
huels035 46:e5fb4dd7b531 145 // Coefficients (with 95% confidence bounds):
huels035 46:e5fb4dd7b531 146 static float a = 0.8255; //(-4.031, 5.682)
huels035 46:e5fb4dd7b531 147 static float c = 1.463e+04; //(1.224e+04, 1.702e+04)
huels035 46:e5fb4dd7b531 148 float f1 = c/(ir_distance_mV + 1) + a;
huels035 46:e5fb4dd7b531 149 return f1;
pmic 6:e1fa1a2d7483 150 }