workshop 1

Dependencies:   PM2_Libary Eigen

Fork of PM2_Example_Summer_School by Kate Huelskamp

Committer:
huels035
Date:
Thu May 19 04:51:50 2022 -0500
Revision:
48:72bba06c3680
Parent:
47:31726ce58a6d
speed control basic

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 36:8c75783c1eca 1 #include <mbed.h>
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
pmic 36:8c75783c1eca 3 #include "Eigen/Dense.h"
pmic 36:8c75783c1eca 4
pmic 36:8c75783c1eca 5 # define M_PI 3.14159265358979323846 // number pi
pmic 6:e1fa1a2d7483 6
huels035 46:e5fb4dd7b531 7
huels035 45:42adc921bc66 8 //Workshop 1
huels035 46:e5fb4dd7b531 9 float ir_distance_mV2cm (float ir_distance_mV);
pmic 24:86f1a63e35a0 10 // logical variable main task
pmic 24:86f1a63e35a0 11 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 12
pmic 24:86f1a63e35a0 13 // user button on nucleo board
pmic 24:86f1a63e35a0 14 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 15 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 16 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 17 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 18
pmic 1:93d997d6b232 19 int main()
pmic 23:26b3a25fc637 20 {
pmic 36:8c75783c1eca 21 // while loop gets executed every main_task_period_ms milliseconds
pmic 41:8a63b01edd7e 22 const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
pmic 36:8c75783c1eca 23 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
huels035 46:e5fb4dd7b531 24 //printf("here1");
pmic 40:7e6b7aec3947 25 // a coutner
pmic 40:7e6b7aec3947 26 uint32_t main_task_cntr = 0;
pmic 40:7e6b7aec3947 27
pmic 36:8c75783c1eca 28 // led on nucleo board
pmic 36:8c75783c1eca 29 DigitalOut user_led(LED1); // create DigitalOut object to command user led
pmic 36:8c75783c1eca 30
huels035 46:e5fb4dd7b531 31 DigitalOut enable_motors(PB_15);
huels035 46:e5fb4dd7b531 32 FastPWM pwm_M1(PB_13);
huels035 46:e5fb4dd7b531 33 FastPWM pwm_M2(PA_9);
huels035 47:31726ce58a6d 34 EncoderCounter encoder_M1(PA_6, PC_7); //M1 to M-, M2 to M+
huels035 47:31726ce58a6d 35 EncoderCounter encoder_M2(PB_6, PB_7);
huels035 46:e5fb4dd7b531 36
huels035 47:31726ce58a6d 37 //Open loop motor control
huels035 47:31726ce58a6d 38 //const float pwm_period_s = .00005f;
huels035 47:31726ce58a6d 39 //pwm_M1.period(pwm_period_s);
huels035 47:31726ce58a6d 40 //pwm_M2.period(pwm_period_s);
huels035 47:31726ce58a6d 41
huels035 47:31726ce58a6d 42 //Speed controller
huels035 47:31726ce58a6d 43 const float max_voltage = 12.0f;
huels035 47:31726ce58a6d 44 const float counts_per_turn = 20.0f * 78.125; //encoder counts * gear ratio
huels035 47:31726ce58a6d 45 const float kn = 180.0f/12.0f; // motor constant on pololu website
huels035 47:31726ce58a6d 46
huels035 47:31726ce58a6d 47 SpeedController speedControllerM1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1);
huels035 47:31726ce58a6d 48 SpeedController speedControllerM2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2);
huels035 47:31726ce58a6d 49
huels035 47:31726ce58a6d 50 speedControllerM1.setSpeedCntrlGain(0.1f/3);
huels035 47:31726ce58a6d 51 speedControllerM2.setSpeedCntrlGain(0.1f/3);
huels035 47:31726ce58a6d 52
huels035 48:72bba06c3680 53 speedControllerM1.setMaxAccelerationRPS(10.0f);
huels035 48:72bba06c3680 54 speedControllerM2.setMaxAccelerationRPS(10.0f);
huels035 47:31726ce58a6d 55
huels035 46:e5fb4dd7b531 56
huels035 46:e5fb4dd7b531 57 enable_motors = 1;
huels035 46:e5fb4dd7b531 58
huels035 46:e5fb4dd7b531 59 AnalogIn ir_analog_in(PC_2);
huels035 46:e5fb4dd7b531 60 float ir_distance_mV = 0.0f;
huels035 46:e5fb4dd7b531 61 float ir_distance_cm = 0.0f;
huels035 46:e5fb4dd7b531 62 float distAxisToSensor = 0.12f;
huels035 46:e5fb4dd7b531 63
huels035 48:72bba06c3680 64 const float r_wheel = 0.0358f/ 2.0f;
huels035 48:72bba06c3680 65 const float L_wheel = 0.143f;
huels035 48:72bba06c3680 66 Eigen::Matrix2f Cwheel2robot;
huels035 48:72bba06c3680 67
huels035 48:72bba06c3680 68 Cwheel2robot << r_wheel/2.0f , r_wheel/2.0f ,
huels035 48:72bba06c3680 69 r_wheel/L_wheel, -r_wheel/L_wheel;
huels035 48:72bba06c3680 70
huels035 48:72bba06c3680 71 Eigen::Vector2f robot_coord;
huels035 48:72bba06c3680 72 Eigen::Vector2f wheel_speed;
huels035 48:72bba06c3680 73 Eigen::Vector2f actual_wheel_speed;
huels035 48:72bba06c3680 74 Eigen::Vector2f actual_robot_coord;
huels035 48:72bba06c3680 75 Eigen::Vector2f wheel_speed_error;
huels035 48:72bba06c3680 76
huels035 48:72bba06c3680 77 robot_coord.setZero();
huels035 48:72bba06c3680 78 wheel_speed.setZero();
huels035 48:72bba06c3680 79 wheel_speed_error.setZero();
huels035 48:72bba06c3680 80
huels035 48:72bba06c3680 81
huels035 46:e5fb4dd7b531 82 //I2C i2c(PB_9, PB_8);
huels035 46:e5fb4dd7b531 83
huels035 46:e5fb4dd7b531 84 //SensorBar light_sensor(i2c, distAxisToSensor);
huels035 46:e5fb4dd7b531 85
pmic 24:86f1a63e35a0 86 // attach button fall and rise functions to user button object
pmic 24:86f1a63e35a0 87 user_button.fall(&user_button_pressed_fcn);
pmic 24:86f1a63e35a0 88 user_button.rise(&user_button_released_fcn);
pmic 17:c19b471f05cb 89
pmic 29:d6f1ccf42a31 90 // start timer
pmic 24:86f1a63e35a0 91 main_task_timer.start();
pmic 6:e1fa1a2d7483 92
pmic 24:86f1a63e35a0 93 while (true) { // this loop will run forever
pmic 6:e1fa1a2d7483 94
pmic 24:86f1a63e35a0 95 main_task_timer.reset();
huels035 46:e5fb4dd7b531 96 //ir_distance_mV = ir_analog_in.read()* 3.3f * 1.0e3f;
huels035 46:e5fb4dd7b531 97
huels035 46:e5fb4dd7b531 98 //ir_distance_cm = ir_distance_mV2cm(ir_distance_mV);
pmic 40:7e6b7aec3947 99
pmic 17:c19b471f05cb 100
huels035 46:e5fb4dd7b531 101 //pwm_M1.write(.75f);
huels035 46:e5fb4dd7b531 102 if (do_execute_main_task) {
huels035 47:31726ce58a6d 103 //pwm_M1.write(.75f);
huels035 47:31726ce58a6d 104 //pwm_M2.write(.75f);
huels035 48:72bba06c3680 105 //speedControllerM1.setDesiredSpeedRPS(3.0f*0.75f); // max 3
huels035 48:72bba06c3680 106 // speedControllerM2.setDesiredSpeedRPS(3.0f*0.75f);
huels035 48:72bba06c3680 107 robot_coord << 0.2f, 0.0f;
huels035 48:72bba06c3680 108
pmic 1:93d997d6b232 109 } else {
huels035 48:72bba06c3680 110 robot_coord << 0.0f, 0.0f;
huels035 47:31726ce58a6d 111 //pwm_M1.write(.5f);
huels035 47:31726ce58a6d 112 //pwm_M2.write(.5f);
huels035 48:72bba06c3680 113 //speedControllerM1.setDesiredSpeedRPS(0.0f);
huels035 48:72bba06c3680 114 //speedControllerM2.setDesiredSpeedRPS(0.0f);
huels035 46:e5fb4dd7b531 115 }
huels035 48:72bba06c3680 116
huels035 48:72bba06c3680 117 //robot_coord(0) = 0.2f;
huels035 46:e5fb4dd7b531 118
huels035 48:72bba06c3680 119 wheel_speed = Cwheel2robot.inverse()*robot_coord;
huels035 48:72bba06c3680 120
huels035 48:72bba06c3680 121 speedControllerM1.setDesiredSpeedRPS((wheel_speed(0) + wheel_speed_error(0))/(2*M_PI)); // max 3
huels035 48:72bba06c3680 122 speedControllerM2.setDesiredSpeedRPS((wheel_speed(1) + wheel_speed_error(1))/(2*M_PI));
huels035 48:72bba06c3680 123
huels035 48:72bba06c3680 124 actual_wheel_speed[0] = 2*M_PI*speedControllerM1.getSpeedRPS();
huels035 48:72bba06c3680 125 actual_wheel_speed[1] = 2*M_PI*speedControllerM2.getSpeedRPS();
huels035 48:72bba06c3680 126
huels035 48:72bba06c3680 127 wheel_speed_error = wheel_speed - actual_wheel_speed;
huels035 48:72bba06c3680 128 //printf("Desired: %f, %f \r\n", wheel_speed(0)/(2*M_PI), wheel_speed(1)/(2*M_PI));
huels035 48:72bba06c3680 129 //printf("Actual: %f, %f \r\n", speedControllerM1.getSpeedRPS(), speedControllerM2.getSpeedRPS());
huels035 48:72bba06c3680 130 printf("%f %f \r\n", wheel_speed_error[0], wheel_speed_error[1]);
huels035 48:72bba06c3680 131 actual_robot_coord = Cwheel2robot*actual_wheel_speed;
pmic 6:e1fa1a2d7483 132
pmic 41:8a63b01edd7e 133 // user_led is switching its state every second
pmic 41:8a63b01edd7e 134 if ( (main_task_cntr%(1000 / main_task_period_ms) == 0) && (main_task_cntr!=0) ) {
pmic 40:7e6b7aec3947 135 user_led = !user_led;
pmic 40:7e6b7aec3947 136 }
pmic 40:7e6b7aec3947 137 main_task_cntr++;
huels035 46:e5fb4dd7b531 138 //printf("%f \r\n", light_sensor.getAngleRad());
huels035 46:e5fb4dd7b531 139 //printf("IR sensor (mV): %f \r\n", ir_distance_mV);
huels035 46:e5fb4dd7b531 140 //printf("IR sensor (cm): %f \r\n", ir_distance_cm);
huels035 46:e5fb4dd7b531 141
huels035 47:31726ce58a6d 142
huels035 48:72bba06c3680 143 //printf("%f \r\n", speedControllerM2.getSpeedRPS());
huels035 46:e5fb4dd7b531 144
pmic 40:7e6b7aec3947 145
pmic 24:86f1a63e35a0 146 // do only output via serial what's really necessary (this makes your code slow)
pmic 41:8a63b01edd7e 147 /*
pmic 41:8a63b01edd7e 148 printf("IR sensor (mV): %3.3f, IR sensor (cm): %3.3f, SensorBar angle (rad): %3.3f, Speed M1 (rps) %3.3f, Position M2 (rot): %3.3f\r\n",
pmic 24:86f1a63e35a0 149 ir_distance_mV,
pmic 41:8a63b01edd7e 150 ir_distance_cm,
pmic 40:7e6b7aec3947 151 sensor_bar_avgAngleRad,
pmic 40:7e6b7aec3947 152 speedController_M1.getSpeedRPS(),
pmic 40:7e6b7aec3947 153 positionController_M2.getRotation());
pmic 41:8a63b01edd7e 154 */
pmic 17:c19b471f05cb 155
pmic 24:86f1a63e35a0 156 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 157 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 158 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
pmic 1:93d997d6b232 159 }
pmic 1:93d997d6b232 160 }
pmic 6:e1fa1a2d7483 161
pmic 24:86f1a63e35a0 162 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 163 {
pmic 26:28693b369945 164 user_button_timer.start();
pmic 6:e1fa1a2d7483 165 user_button_timer.reset();
pmic 6:e1fa1a2d7483 166 }
pmic 6:e1fa1a2d7483 167
pmic 24:86f1a63e35a0 168 void user_button_released_fcn()
pmic 6:e1fa1a2d7483 169 {
pmic 24:86f1a63e35a0 170 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 171 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 172 user_button_timer.stop();
pmic 24:86f1a63e35a0 173 if (user_button_elapsed_time_ms > 200) {
pmic 24:86f1a63e35a0 174 do_execute_main_task = !do_execute_main_task;
pmic 8:9bb806a7f585 175 }
huels035 46:e5fb4dd7b531 176 }
huels035 46:e5fb4dd7b531 177
huels035 46:e5fb4dd7b531 178 float ir_distance_mV2cm (float ir_distance_mV)
huels035 46:e5fb4dd7b531 179 {
huels035 46:e5fb4dd7b531 180
huels035 46:e5fb4dd7b531 181 // Coefficients (with 95% confidence bounds):
huels035 46:e5fb4dd7b531 182 static float a = 0.8255; //(-4.031, 5.682)
huels035 46:e5fb4dd7b531 183 static float c = 1.463e+04; //(1.224e+04, 1.702e+04)
huels035 46:e5fb4dd7b531 184 float f1 = c/(ir_distance_mV + 1) + a;
huels035 46:e5fb4dd7b531 185 return f1;
pmic 6:e1fa1a2d7483 186 }