workshop 1

Dependencies:   PM2_Libary Eigen

Fork of PM2_Example_Summer_School by Kate Huelskamp

main.cpp

Committer:
huels035
Date:
2022-05-19
Revision:
48:72bba06c3680
Parent:
47:31726ce58a6d

File content as of revision 48:72bba06c3680:

#include <mbed.h>
#include "PM2_Libary.h"
#include "Eigen/Dense.h"

# define M_PI 3.14159265358979323846  // number pi


//Workshop 1
float ir_distance_mV2cm (float ir_distance_mV);
// logical variable main task
bool do_execute_main_task = false;  // this variable will be toggled via the user button (blue button) to or not to execute the main task

// user button on nucleo board
Timer user_button_timer;            // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
InterruptIn user_button(PC_13);     // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
void user_button_pressed_fcn();     // custom functions which gets executed when user button gets pressed and released, definition below
void user_button_released_fcn();

int main()
{
    // while loop gets executed every main_task_period_ms milliseconds
    const int main_task_period_ms = 10;   // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
    Timer main_task_timer;                // create Timer object which we use to run the main task every main task period time in ms
    //printf("here1");
    // a coutner
    uint32_t main_task_cntr = 0;

    // led on nucleo board
    DigitalOut user_led(LED1);      // create DigitalOut object to command user led

    DigitalOut enable_motors(PB_15);
    FastPWM pwm_M1(PB_13);
    FastPWM pwm_M2(PA_9);
    EncoderCounter  encoder_M1(PA_6, PC_7);  //M1 to M-, M2 to M+
    EncoderCounter  encoder_M2(PB_6, PB_7); 
    
    //Open loop motor control
    //const float pwm_period_s = .00005f;
    //pwm_M1.period(pwm_period_s);
    //pwm_M2.period(pwm_period_s);

    //Speed controller
    const float max_voltage = 12.0f;
    const float counts_per_turn = 20.0f * 78.125; //encoder counts * gear ratio
    const float kn = 180.0f/12.0f; // motor constant on pololu website

    SpeedController speedControllerM1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1);
    SpeedController speedControllerM2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2);

    speedControllerM1.setSpeedCntrlGain(0.1f/3);
    speedControllerM2.setSpeedCntrlGain(0.1f/3);

    speedControllerM1.setMaxAccelerationRPS(10.0f);
    speedControllerM2.setMaxAccelerationRPS(10.0f);


    enable_motors = 1;

    AnalogIn ir_analog_in(PC_2);
    float ir_distance_mV = 0.0f;
    float ir_distance_cm = 0.0f;
    float distAxisToSensor = 0.12f;

    const float r_wheel = 0.0358f/ 2.0f;
    const float L_wheel = 0.143f;
    Eigen::Matrix2f Cwheel2robot;

    Cwheel2robot << r_wheel/2.0f , r_wheel/2.0f ,
                    r_wheel/L_wheel, -r_wheel/L_wheel;

    Eigen::Vector2f robot_coord;
    Eigen::Vector2f wheel_speed;
    Eigen::Vector2f actual_wheel_speed;
    Eigen::Vector2f actual_robot_coord;
    Eigen::Vector2f wheel_speed_error;

    robot_coord.setZero();
    wheel_speed.setZero();
    wheel_speed_error.setZero();

    
    //I2C i2c(PB_9, PB_8);

    //SensorBar light_sensor(i2c, distAxisToSensor);

    // attach button fall and rise functions to user button object
    user_button.fall(&user_button_pressed_fcn);
    user_button.rise(&user_button_released_fcn);

    // start timer
    main_task_timer.start();

    while (true) { // this loop will run forever

        main_task_timer.reset();
        //ir_distance_mV = ir_analog_in.read()* 3.3f * 1.0e3f;

        //ir_distance_cm = ir_distance_mV2cm(ir_distance_mV);
        

        //pwm_M1.write(.75f);
        if (do_execute_main_task) {
            //pwm_M1.write(.75f);
            //pwm_M2.write(.75f);
            //speedControllerM1.setDesiredSpeedRPS(3.0f*0.75f); // max 3
           // speedControllerM2.setDesiredSpeedRPS(3.0f*0.75f);
           robot_coord << 0.2f, 0.0f;

        } else {
            robot_coord << 0.0f, 0.0f;
            //pwm_M1.write(.5f);
            //pwm_M2.write(.5f);
            //speedControllerM1.setDesiredSpeedRPS(0.0f);
            //speedControllerM2.setDesiredSpeedRPS(0.0f);
        } 

        //robot_coord(0) = 0.2f;
        
        wheel_speed = Cwheel2robot.inverse()*robot_coord;
        
        speedControllerM1.setDesiredSpeedRPS((wheel_speed(0) + wheel_speed_error(0))/(2*M_PI)); // max 3
        speedControllerM2.setDesiredSpeedRPS((wheel_speed(1) + wheel_speed_error(1))/(2*M_PI));

        actual_wheel_speed[0] = 2*M_PI*speedControllerM1.getSpeedRPS();
        actual_wheel_speed[1] = 2*M_PI*speedControllerM2.getSpeedRPS();
 
        wheel_speed_error = wheel_speed - actual_wheel_speed;
        //printf("Desired: %f, %f \r\n", wheel_speed(0)/(2*M_PI), wheel_speed(1)/(2*M_PI));
        //printf("Actual: %f, %f \r\n", speedControllerM1.getSpeedRPS(), speedControllerM2.getSpeedRPS());    
        printf("%f %f \r\n", wheel_speed_error[0], wheel_speed_error[1]);
        actual_robot_coord = Cwheel2robot*actual_wheel_speed;

        // user_led is switching its state every second
        if ( (main_task_cntr%(1000 / main_task_period_ms) == 0) && (main_task_cntr!=0) ) {
            user_led = !user_led;
        }
        main_task_cntr++;
        //printf("%f \r\n", light_sensor.getAngleRad());
        //printf("IR sensor (mV): %f \r\n", ir_distance_mV);
        //printf("IR sensor (cm): %f \r\n", ir_distance_cm);


        //printf("%f \r\n", speedControllerM2.getSpeedRPS());   
        
        
        // do only output via serial what's really necessary (this makes your code slow)
        /*
        printf("IR sensor (mV): %3.3f, IR sensor (cm): %3.3f, SensorBar angle (rad): %3.3f, Speed M1 (rps) %3.3f, Position M2 (rot): %3.3f\r\n",
               ir_distance_mV,
               ir_distance_cm,
               sensor_bar_avgAngleRad,
               speedController_M1.getSpeedRPS(),
               positionController_M2.getRotation());
        */

        // read timer and make the main thread sleep for the remaining time span (non blocking)
        int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
        thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
    }
}

void user_button_pressed_fcn()
{
    user_button_timer.start();
    user_button_timer.reset();
}

void user_button_released_fcn()
{
    // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
    int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
    user_button_timer.stop();
    if (user_button_elapsed_time_ms > 200) {
        do_execute_main_task = !do_execute_main_task;
    }
}

float ir_distance_mV2cm (float ir_distance_mV)
{
    
     // Coefficients (with 95% confidence bounds):
       static float a =      0.8255;  //(-4.031, 5.682)
       static float c =   1.463e+04;  //(1.224e+04, 1.702e+04)
       float f1 = c/(ir_distance_mV + 1) + a;
       return f1;
}