Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: mbed-TFT-example-NCS36510 mbed-Accelerometer-example-NCS36510 mbed-Accelerometer-example-NCS36510
targets/TARGET_ublox/TARGET_HI2110/us_ticker.c@0:098463de4c5d, 2017-01-25 (annotated)
- Committer:
- group-onsemi
- Date:
- Wed Jan 25 20:34:15 2017 +0000
- Revision:
- 0:098463de4c5d
Initial commit
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
group-onsemi | 0:098463de4c5d | 1 | /* mbed Microcontroller Library |
group-onsemi | 0:098463de4c5d | 2 | * Copyright (c) 2016 u-blox |
group-onsemi | 0:098463de4c5d | 3 | * |
group-onsemi | 0:098463de4c5d | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
group-onsemi | 0:098463de4c5d | 5 | * you may not use this file except in compliance with the License. |
group-onsemi | 0:098463de4c5d | 6 | * You may obtain a copy of the License at |
group-onsemi | 0:098463de4c5d | 7 | * |
group-onsemi | 0:098463de4c5d | 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
group-onsemi | 0:098463de4c5d | 9 | * |
group-onsemi | 0:098463de4c5d | 10 | * Unless required by applicable law or agreed to in writing, software |
group-onsemi | 0:098463de4c5d | 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
group-onsemi | 0:098463de4c5d | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
group-onsemi | 0:098463de4c5d | 13 | * See the License for the specific language governing permissions and |
group-onsemi | 0:098463de4c5d | 14 | * limitations under the License. |
group-onsemi | 0:098463de4c5d | 15 | */ |
group-onsemi | 0:098463de4c5d | 16 | |
group-onsemi | 0:098463de4c5d | 17 | /* The usecond ticker is mapped to TIMER0. A few issues must be dealt |
group-onsemi | 0:098463de4c5d | 18 | * with in this driver: |
group-onsemi | 0:098463de4c5d | 19 | * |
group-onsemi | 0:098463de4c5d | 20 | * 1. The us_ticker API must count upwards, not down. |
group-onsemi | 0:098463de4c5d | 21 | * 2. The expected range/resolution is 32 bits each of 1 usecond, |
group-onsemi | 0:098463de4c5d | 22 | * whereas TIMER0 runs at 48 MHz (not 1 MHz) and so actually |
group-onsemi | 0:098463de4c5d | 23 | * has a range/resolution of 26 bits at 0.02 useconds. Software |
group-onsemi | 0:098463de4c5d | 24 | * has to compensate for this. |
group-onsemi | 0:098463de4c5d | 25 | */ |
group-onsemi | 0:098463de4c5d | 26 | |
group-onsemi | 0:098463de4c5d | 27 | #include "us_ticker_api.h" |
group-onsemi | 0:098463de4c5d | 28 | #include "critical.h" |
group-onsemi | 0:098463de4c5d | 29 | |
group-onsemi | 0:098463de4c5d | 30 | /* ---------------------------------------------------------------- |
group-onsemi | 0:098463de4c5d | 31 | * MACROS |
group-onsemi | 0:098463de4c5d | 32 | * ----------------------------------------------------------------*/ |
group-onsemi | 0:098463de4c5d | 33 | |
group-onsemi | 0:098463de4c5d | 34 | /* TIMER0 clock is 48 MHz */ |
group-onsemi | 0:098463de4c5d | 35 | #define CLOCK_TICKS_PER_US 48 |
group-onsemi | 0:098463de4c5d | 36 | |
group-onsemi | 0:098463de4c5d | 37 | /* The number of clock ticks in a full-run of |
group-onsemi | 0:098463de4c5d | 38 | * TIMER0, scaled to represent useconds */ |
group-onsemi | 0:098463de4c5d | 39 | #define USECONDS_PER_FULL_TIMER0_RUN 89478485 |
group-onsemi | 0:098463de4c5d | 40 | |
group-onsemi | 0:098463de4c5d | 41 | /* ---------------------------------------------------------------- |
group-onsemi | 0:098463de4c5d | 42 | * TYPES |
group-onsemi | 0:098463de4c5d | 43 | * ----------------------------------------------------------------*/ |
group-onsemi | 0:098463de4c5d | 44 | |
group-onsemi | 0:098463de4c5d | 45 | /* ---------------------------------------------------------------- |
group-onsemi | 0:098463de4c5d | 46 | * GLOBAL VARIABLES |
group-onsemi | 0:098463de4c5d | 47 | * ----------------------------------------------------------------*/ |
group-onsemi | 0:098463de4c5d | 48 | |
group-onsemi | 0:098463de4c5d | 49 | /* Are we ready? */ |
group-onsemi | 0:098463de4c5d | 50 | static bool g_initialised = false; |
group-onsemi | 0:098463de4c5d | 51 | |
group-onsemi | 0:098463de4c5d | 52 | /* Keep track of the number of useconds elapsed. */ |
group-onsemi | 0:098463de4c5d | 53 | static uint32_t g_us_overflow = 0; |
group-onsemi | 0:098463de4c5d | 54 | |
group-onsemi | 0:098463de4c5d | 55 | /* The number of useconds to increment the by at each interrupt */ |
group-onsemi | 0:098463de4c5d | 56 | static uint32_t g_us_overflow_increment = USECONDS_PER_FULL_TIMER0_RUN; |
group-onsemi | 0:098463de4c5d | 57 | |
group-onsemi | 0:098463de4c5d | 58 | /* Keep track of extra loops required to represent a particular time |
group-onsemi | 0:098463de4c5d | 59 | * as the HW timer runs faster than 1 MHz */ |
group-onsemi | 0:098463de4c5d | 60 | static uint32_t g_timer_extra_loops_required = 0; |
group-onsemi | 0:098463de4c5d | 61 | static uint32_t g_timer_extra_loops_done = 0; |
group-onsemi | 0:098463de4c5d | 62 | |
group-onsemi | 0:098463de4c5d | 63 | /* Keep track of any adjustment due to user interrupts . */ |
group-onsemi | 0:098463de4c5d | 64 | static uint32_t g_user_interrupt_offset = 0; |
group-onsemi | 0:098463de4c5d | 65 | |
group-onsemi | 0:098463de4c5d | 66 | /* Flag that a user timer is running */ |
group-onsemi | 0:098463de4c5d | 67 | static bool g_user_interrupt = false; |
group-onsemi | 0:098463de4c5d | 68 | |
group-onsemi | 0:098463de4c5d | 69 | /* ---------------------------------------------------------------- |
group-onsemi | 0:098463de4c5d | 70 | * FUNCTION PROTOTYPES |
group-onsemi | 0:098463de4c5d | 71 | * ----------------------------------------------------------------*/ |
group-onsemi | 0:098463de4c5d | 72 | |
group-onsemi | 0:098463de4c5d | 73 | static inline uint32_t divide_by_48(uint32_t x); |
group-onsemi | 0:098463de4c5d | 74 | |
group-onsemi | 0:098463de4c5d | 75 | /* ---------------------------------------------------------------- |
group-onsemi | 0:098463de4c5d | 76 | * NON-API FUNCTIONS |
group-onsemi | 0:098463de4c5d | 77 | * ----------------------------------------------------------------*/ |
group-onsemi | 0:098463de4c5d | 78 | |
group-onsemi | 0:098463de4c5d | 79 | /* Perform a divide-by-48 operation. |
group-onsemi | 0:098463de4c5d | 80 | * This is done as a multiply-shift operation to take advantage of |
group-onsemi | 0:098463de4c5d | 81 | * the ARM 32 bit single-cycle multiply and avoid using division; |
group-onsemi | 0:098463de4c5d | 82 | * 1/48 is equivalent to 1365/2^16. It is also done in two halves |
group-onsemi | 0:098463de4c5d | 83 | * to make sure that the multiplies fit into 32 bits. |
group-onsemi | 0:098463de4c5d | 84 | * |
group-onsemi | 0:098463de4c5d | 85 | * The principle is: |
group-onsemi | 0:098463de4c5d | 86 | * - divide the top 16 bits by 48 using multiply-shift (=> x1), |
group-onsemi | 0:098463de4c5d | 87 | * - work out the remainder of that operation and divide that by 48 (=> x1r), |
group-onsemi | 0:098463de4c5d | 88 | * - divide the bottom 16 bits by 48 using multiply-shift (=> x2), |
group-onsemi | 0:098463de4c5d | 89 | * - add the lot together to get the result. |
group-onsemi | 0:098463de4c5d | 90 | * |
group-onsemi | 0:098463de4c5d | 91 | * The cost is 29 instructions. |
group-onsemi | 0:098463de4c5d | 92 | */ |
group-onsemi | 0:098463de4c5d | 93 | static inline uint32_t divide_by_48(uint32_t x) |
group-onsemi | 0:098463de4c5d | 94 | { |
group-onsemi | 0:098463de4c5d | 95 | uint32_t x1 = ((x >> 16) * 1365) >> 16; |
group-onsemi | 0:098463de4c5d | 96 | uint32_t x1r = ((x & 0xFFFF0000) - ((x1 * 48) << 16)); |
group-onsemi | 0:098463de4c5d | 97 | x1r = (x1r * 1365) >> 16; |
group-onsemi | 0:098463de4c5d | 98 | uint32_t x2 = ((x & 0xFFFF) * 1365) >> 16; |
group-onsemi | 0:098463de4c5d | 99 | |
group-onsemi | 0:098463de4c5d | 100 | return (x1 << 16) + x1r + x2; |
group-onsemi | 0:098463de4c5d | 101 | } |
group-onsemi | 0:098463de4c5d | 102 | |
group-onsemi | 0:098463de4c5d | 103 | /* Timer0 handler */ |
group-onsemi | 0:098463de4c5d | 104 | void IRQ1_TMR0_Handler(void) |
group-onsemi | 0:098463de4c5d | 105 | { |
group-onsemi | 0:098463de4c5d | 106 | if (g_initialised) { |
group-onsemi | 0:098463de4c5d | 107 | /* Increment the overflow count and set the increment |
group-onsemi | 0:098463de4c5d | 108 | * value for next time */ |
group-onsemi | 0:098463de4c5d | 109 | g_us_overflow += g_us_overflow_increment; |
group-onsemi | 0:098463de4c5d | 110 | g_us_overflow_increment = USECONDS_PER_FULL_TIMER0_RUN; |
group-onsemi | 0:098463de4c5d | 111 | |
group-onsemi | 0:098463de4c5d | 112 | /* Now handle the user interrupt case */ |
group-onsemi | 0:098463de4c5d | 113 | if (g_user_interrupt) { |
group-onsemi | 0:098463de4c5d | 114 | if (g_timer_extra_loops_done < g_timer_extra_loops_required) { |
group-onsemi | 0:098463de4c5d | 115 | /* Let the timer go round again */ |
group-onsemi | 0:098463de4c5d | 116 | g_timer_extra_loops_done++; |
group-onsemi | 0:098463de4c5d | 117 | } else { |
group-onsemi | 0:098463de4c5d | 118 | /* We've done with looping around for a user interrupt */ |
group-onsemi | 0:098463de4c5d | 119 | g_user_interrupt = false; |
group-onsemi | 0:098463de4c5d | 120 | |
group-onsemi | 0:098463de4c5d | 121 | /* Call the mbed API */ |
group-onsemi | 0:098463de4c5d | 122 | us_ticker_irq_handler(); |
group-onsemi | 0:098463de4c5d | 123 | } |
group-onsemi | 0:098463de4c5d | 124 | } |
group-onsemi | 0:098463de4c5d | 125 | } |
group-onsemi | 0:098463de4c5d | 126 | |
group-onsemi | 0:098463de4c5d | 127 | NVIC_ClearPendingIRQ(Timer_IRQn); |
group-onsemi | 0:098463de4c5d | 128 | } |
group-onsemi | 0:098463de4c5d | 129 | |
group-onsemi | 0:098463de4c5d | 130 | /* ---------------------------------------------------------------- |
group-onsemi | 0:098463de4c5d | 131 | * MBED API CALLS |
group-onsemi | 0:098463de4c5d | 132 | * ----------------------------------------------------------------*/ |
group-onsemi | 0:098463de4c5d | 133 | |
group-onsemi | 0:098463de4c5d | 134 | void us_ticker_init(void) |
group-onsemi | 0:098463de4c5d | 135 | { |
group-onsemi | 0:098463de4c5d | 136 | if (!g_initialised) { |
group-onsemi | 0:098463de4c5d | 137 | /* Reset the globals */ |
group-onsemi | 0:098463de4c5d | 138 | g_timer_extra_loops_done = 0; |
group-onsemi | 0:098463de4c5d | 139 | g_timer_extra_loops_required = 0; |
group-onsemi | 0:098463de4c5d | 140 | g_us_overflow = 0; |
group-onsemi | 0:098463de4c5d | 141 | g_us_overflow_increment = USECONDS_PER_FULL_TIMER0_RUN; |
group-onsemi | 0:098463de4c5d | 142 | g_user_interrupt_offset = 0; |
group-onsemi | 0:098463de4c5d | 143 | g_user_interrupt = false; |
group-onsemi | 0:098463de4c5d | 144 | |
group-onsemi | 0:098463de4c5d | 145 | /* Get the timer running (starting at what is zero, |
group-onsemi | 0:098463de4c5d | 146 | * once inverted), with repeat */ |
group-onsemi | 0:098463de4c5d | 147 | NVIC_ClearPendingIRQ(Timer_IRQn); |
group-onsemi | 0:098463de4c5d | 148 | TIMER0_LOAD = 0xFFFFFFFF; |
group-onsemi | 0:098463de4c5d | 149 | TIMER0_CTRL = 0x03; |
group-onsemi | 0:098463de4c5d | 150 | NVIC_EnableIRQ(Timer_IRQn); |
group-onsemi | 0:098463de4c5d | 151 | |
group-onsemi | 0:098463de4c5d | 152 | g_initialised = true; |
group-onsemi | 0:098463de4c5d | 153 | } |
group-onsemi | 0:098463de4c5d | 154 | } |
group-onsemi | 0:098463de4c5d | 155 | |
group-onsemi | 0:098463de4c5d | 156 | uint32_t us_ticker_read() |
group-onsemi | 0:098463de4c5d | 157 | { |
group-onsemi | 0:098463de4c5d | 158 | uint32_t timeValue; |
group-onsemi | 0:098463de4c5d | 159 | |
group-onsemi | 0:098463de4c5d | 160 | /* This can be called before initialisation has been performed */ |
group-onsemi | 0:098463de4c5d | 161 | if (!g_initialised) { |
group-onsemi | 0:098463de4c5d | 162 | us_ticker_init(); |
group-onsemi | 0:098463de4c5d | 163 | } |
group-onsemi | 0:098463de4c5d | 164 | |
group-onsemi | 0:098463de4c5d | 165 | /* Disable interrupts to avoid collisions */ |
group-onsemi | 0:098463de4c5d | 166 | core_util_critical_section_enter(); |
group-onsemi | 0:098463de4c5d | 167 | |
group-onsemi | 0:098463de4c5d | 168 | /* Get the timer value, adding the offset in case we've been moved |
group-onsemi | 0:098463de4c5d | 169 | * around by user activity, inverting it (as a count-up timer is |
group-onsemi | 0:098463de4c5d | 170 | * expected), then scaling it to useconds and finally adding the |
group-onsemi | 0:098463de4c5d | 171 | * usecond overflow value to make up the 32-bit usecond total */ |
group-onsemi | 0:098463de4c5d | 172 | timeValue = divide_by_48(~(TIMER0_TIME + g_user_interrupt_offset)) + g_us_overflow; |
group-onsemi | 0:098463de4c5d | 173 | |
group-onsemi | 0:098463de4c5d | 174 | /* Put interrupts back */ |
group-onsemi | 0:098463de4c5d | 175 | core_util_critical_section_exit(); |
group-onsemi | 0:098463de4c5d | 176 | |
group-onsemi | 0:098463de4c5d | 177 | return timeValue; |
group-onsemi | 0:098463de4c5d | 178 | } |
group-onsemi | 0:098463de4c5d | 179 | |
group-onsemi | 0:098463de4c5d | 180 | /* NOTE: it seems to be an accepted fact that users |
group-onsemi | 0:098463de4c5d | 181 | * will never ask for a timeout of more than 2^31 useconds |
group-onsemi | 0:098463de4c5d | 182 | * and hence it's possible to do signed arithmetic |
group-onsemi | 0:098463de4c5d | 183 | */ |
group-onsemi | 0:098463de4c5d | 184 | void us_ticker_set_interrupt(timestamp_t timestamp) |
group-onsemi | 0:098463de4c5d | 185 | { |
group-onsemi | 0:098463de4c5d | 186 | g_timer_extra_loops_required = 0; |
group-onsemi | 0:098463de4c5d | 187 | g_timer_extra_loops_done = 0; |
group-onsemi | 0:098463de4c5d | 188 | int32_t timeDelta; |
group-onsemi | 0:098463de4c5d | 189 | |
group-onsemi | 0:098463de4c5d | 190 | /* Disable interrupts to avoid collisions */ |
group-onsemi | 0:098463de4c5d | 191 | core_util_critical_section_enter(); |
group-onsemi | 0:098463de4c5d | 192 | |
group-onsemi | 0:098463de4c5d | 193 | /* Establish how far we're being asked to move */ |
group-onsemi | 0:098463de4c5d | 194 | timeDelta = (int32_t) ((uint32_t) timestamp - us_ticker_read()); |
group-onsemi | 0:098463de4c5d | 195 | |
group-onsemi | 0:098463de4c5d | 196 | if (timeDelta <= 0) { |
group-onsemi | 0:098463de4c5d | 197 | /* Make delta positive if it's not, it will expire pretty quickly */ |
group-onsemi | 0:098463de4c5d | 198 | /* Note: can't just call us_ticker_irq_handler() directly as we |
group-onsemi | 0:098463de4c5d | 199 | * may already be in it and will overflow the stack */ |
group-onsemi | 0:098463de4c5d | 200 | timeDelta = 1; |
group-onsemi | 0:098463de4c5d | 201 | } |
group-onsemi | 0:098463de4c5d | 202 | |
group-onsemi | 0:098463de4c5d | 203 | /* The TIMER0 clock source is greater than 1 MHz, so |
group-onsemi | 0:098463de4c5d | 204 | * work out how many times we have to go around |
group-onsemi | 0:098463de4c5d | 205 | * and what the remainder is */ |
group-onsemi | 0:098463de4c5d | 206 | g_timer_extra_loops_required = (uint32_t) timeDelta / USECONDS_PER_FULL_TIMER0_RUN; |
group-onsemi | 0:098463de4c5d | 207 | timeDelta -= g_timer_extra_loops_required * USECONDS_PER_FULL_TIMER0_RUN; |
group-onsemi | 0:098463de4c5d | 208 | |
group-onsemi | 0:098463de4c5d | 209 | /* Next time we hit the interrupt the increment will be smaller */ |
group-onsemi | 0:098463de4c5d | 210 | g_us_overflow_increment = (uint32_t) timeDelta; |
group-onsemi | 0:098463de4c5d | 211 | |
group-onsemi | 0:098463de4c5d | 212 | /* We're about to modify the timer value; work out the |
group-onsemi | 0:098463de4c5d | 213 | * difference so that we can compensate for it when |
group-onsemi | 0:098463de4c5d | 214 | * the time is read */ |
group-onsemi | 0:098463de4c5d | 215 | timeDelta = timeDelta * CLOCK_TICKS_PER_US; |
group-onsemi | 0:098463de4c5d | 216 | g_user_interrupt_offset += TIMER0_TIME - timeDelta; |
group-onsemi | 0:098463de4c5d | 217 | |
group-onsemi | 0:098463de4c5d | 218 | /* Run for the remainder first, then we can loop for the full |
group-onsemi | 0:098463de4c5d | 219 | * USECONDS_PER_FULL_TIMER0_RUN afterwards */ |
group-onsemi | 0:098463de4c5d | 220 | TIMER0_LOAD = timeDelta; |
group-onsemi | 0:098463de4c5d | 221 | |
group-onsemi | 0:098463de4c5d | 222 | /* A user interrupt is now running */ |
group-onsemi | 0:098463de4c5d | 223 | g_user_interrupt = true; |
group-onsemi | 0:098463de4c5d | 224 | |
group-onsemi | 0:098463de4c5d | 225 | /* Put interrupts back */ |
group-onsemi | 0:098463de4c5d | 226 | core_util_critical_section_exit(); |
group-onsemi | 0:098463de4c5d | 227 | } |
group-onsemi | 0:098463de4c5d | 228 | |
group-onsemi | 0:098463de4c5d | 229 | void us_ticker_disable_interrupt(void) |
group-onsemi | 0:098463de4c5d | 230 | { |
group-onsemi | 0:098463de4c5d | 231 | /* Can't actually disable the interrupt here |
group-onsemi | 0:098463de4c5d | 232 | * as we need it to manage the timer overflow, |
group-onsemi | 0:098463de4c5d | 233 | * instead switch off the user interrupt part */ |
group-onsemi | 0:098463de4c5d | 234 | g_user_interrupt = false; |
group-onsemi | 0:098463de4c5d | 235 | g_timer_extra_loops_required = 0; |
group-onsemi | 0:098463de4c5d | 236 | g_us_overflow_increment = 0; |
group-onsemi | 0:098463de4c5d | 237 | } |
group-onsemi | 0:098463de4c5d | 238 | |
group-onsemi | 0:098463de4c5d | 239 | void us_ticker_clear_interrupt(void) |
group-onsemi | 0:098463de4c5d | 240 | { |
group-onsemi | 0:098463de4c5d | 241 | /* As above, can't clear the interrupt as it |
group-onsemi | 0:098463de4c5d | 242 | * may just be an overflow interrupt, instead |
group-onsemi | 0:098463de4c5d | 243 | * clear the variables */ |
group-onsemi | 0:098463de4c5d | 244 | g_user_interrupt = false; |
group-onsemi | 0:098463de4c5d | 245 | g_timer_extra_loops_required = 0; |
group-onsemi | 0:098463de4c5d | 246 | g_us_overflow_increment = 0; |
group-onsemi | 0:098463de4c5d | 247 | } |