Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of DecaWave by
DW1000/DW1000.cpp
- Committer:
- manumaet
- Date:
- 2015-02-27
- Revision:
- 40:5ce51b7e3118
- Parent:
- 39:bb57aa77b015
- Child:
- 42:83931678c4de
File content as of revision 40:5ce51b7e3118:
#include "DW1000.h" DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS) { setCallbacks(NULL, NULL); deselect(); // Chip must be deselected first spi.format(8,0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000) spi.frequency(1000000); // with a 1MHz clock rate (worked up to 49MHz in our Test) resetAll(); // we do a soft reset of the DW1000 everytime the driver starts loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned of or there's receiving malfunction see User Manual LDELOAD on p22 & p158 // Configuration TODO: make method for that writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error //writeRegister16(DW1000_TX_FCTRL, 1, 0x2800 | 0x0100 | 0x0080); // use 2048 symbols preable (0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual //writeRegister8(DW1000_SYS_CFG, 2, 0x40); // enable special receiving option for 110kbps!! (0x40) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...] irq.rise(this, &DW1000::ISR); // attach interrupt handler to rising edge of interrupt pin from DW1000 } void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) { bool RX = false; bool TX = false; if (callbackRX) { DW1000::callbackRX.attach(callbackRX); RX = true; } if (callbackTX) { DW1000::callbackTX.attach(callbackTX); TX = true; } setInterrupt(RX,TX); } uint32_t DW1000::getDeviceID() { uint32_t result; readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4); return result; } uint64_t DW1000::getEUI() { uint64_t result; readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8); return result; } void DW1000::setEUI(uint64_t EUI) { writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8); } float DW1000::getVoltage() { uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57 writeRegister(DW1000_RF_CONF, 0x11, buffer, 2); writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1); writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1); writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1); readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature float Voltage = buffer[5] * 0.0057 + 2.3; //float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration see instance_common.c row 391 return Voltage; } uint64_t DW1000::getStatus() { return readRegister40(DW1000_SYS_STATUS, 0); } uint64_t DW1000::getRXTimestamp() { return readRegister40(DW1000_RX_TIME, 0); } uint64_t DW1000::getTXTimestamp() { return readRegister40(DW1000_TX_TIME, 0); } void DW1000::sendString(char* message) { sendFrame((uint8_t*)message, strlen(message)+1); } void DW1000::receiveString(char* message) { readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer } void DW1000::sendFrame(uint8_t* message, uint16_t length) { //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame length += 2; // including 2 CRC Bytes length = ((backup & 0xFC) << 8) | (length & 0x03FF); writeRegister16(DW1000_TX_FCTRL, 0, length); stopTRX(); // stop receiving writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit startRX(); // enable receiver again } void DW1000::startRX() { writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit } void DW1000::stopTRX() { writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode } // PRIVATE Methods ------------------------------------------------------------------------------------ void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22 writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP wait_us(150); writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock } void DW1000::resetRX() { writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset } void DW1000::resetAll() { writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset wait_us(10); // wait for PLL to lock writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset } void DW1000::setInterrupt(bool RX, bool TX) { writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080 } void DW1000::ISR() { uint64_t status = getStatus(); if (status & 0x4000) { // a frame was received callbackRX.call(); writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits } if (status & 0x80) { // sending complete callbackTX.call(); writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits } } uint16_t DW1000::getFramelength() { uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes return framelength; } // SPI Interface ------------------------------------------------------------------------------------ uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) { uint8_t result; readRegister(reg, subaddress, &result, 1); return result; } uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) { uint16_t result; readRegister(reg, subaddress, (uint8_t*)&result, 2); return result; } uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) { uint64_t result; readRegister(reg, subaddress, (uint8_t*)&result, 5); result &= 0xFFFFFFFFFF; // only 40-Bit return result; } void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) { writeRegister(reg, subaddress, &buffer, 1); } void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) { writeRegister(reg, subaddress, (uint8_t*)&buffer, 2); } void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { setupTransaction(reg, subaddress, false); for(int i=0; i<length; i++) // get data buffer[i] = spi.write(0x00); deselect(); } void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { setupTransaction(reg, subaddress, true); for(int i=0; i<length; i++) // put data spi.write(buffer[i]); deselect(); } void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) { reg |= (write * DW1000_WRITE_FLAG); // set read/write flag select(); if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte spi.write(reg | DW1000_SUBADDRESS_FLAG); if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and spi.write((uint8_t)(subaddress >> 7)); } else { spi.write((uint8_t)subaddress); } } else { spi.write(reg); // say which register address we want to access } } void DW1000::select() { // always called to start an SPI transmission irq.disable_irq(); // disable interrupts from DW1000 during SPI becaus this leads to crashes! TODO: if you have other interrupt handlers attached on the micro controller, they could also interfere. cs = 0; // set Cable Select pin low to start transmission } void DW1000::deselect() { // always called to end an SPI transmission cs = 1; // set Cable Select pin high to stop transmission irq.enable_irq(); // reenable the interrupt handler }