Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed QEI HIDScope BiQuad4th_order biquadFilter MODSERIAL FastPWM
main.cpp@14:059fd8f6cbfd, 2018-11-01 (annotated)
- Committer:
- arnouddomhof
- Date:
- Thu Nov 01 20:44:47 2018 +0000
- Revision:
- 14:059fd8f6cbfd
- Parent:
- 13:a2e281d5de89
- Child:
- 15:40dd74bd48d1
Aansturing met knopjes erin gebouwd. Verder nog niet getest op de robot.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
Mirjam | 0:46dbc9b620d8 | 1 | #include "mbed.h" |
arnouddomhof | 3:dca57056e5cb | 2 | #include "MODSERIAL.h" |
AppelSab | 6:a02ad75f0333 | 3 | #include "QEI.h" |
AppelSab | 6:a02ad75f0333 | 4 | #include "FastPWM.h" |
AppelSab | 6:a02ad75f0333 | 5 | #include "math.h" |
Mirjam | 7:d4090f334ce2 | 6 | #include "BiQuad.h" |
Mirjam | 7:d4090f334ce2 | 7 | #include "BiQuad4.h" |
Mirjam | 7:d4090f334ce2 | 8 | #include "FilterDesign.h" |
Mirjam | 7:d4090f334ce2 | 9 | #include "FilterDesign2.h" |
Mirjam | 7:d4090f334ce2 | 10 | |
AppelSab | 6:a02ad75f0333 | 11 | // LED's |
arnouddomhof | 3:dca57056e5cb | 12 | DigitalOut led_red(LED_RED); |
arnouddomhof | 3:dca57056e5cb | 13 | DigitalOut led_green(LED_GREEN); |
arnouddomhof | 3:dca57056e5cb | 14 | DigitalOut led_blue(LED_BLUE); |
AppelSab | 6:a02ad75f0333 | 15 | // Buttons |
arnouddomhof | 9:8b2d6ec577e3 | 16 | DigitalIn button_clbrt_home(SW2); |
AppelSab | 12:3e084e1a699e | 17 | DigitalIn button_Demo(D2); |
AppelSab | 12:3e084e1a699e | 18 | DigitalIn button_Emg(D3); |
arnouddomhof | 14:059fd8f6cbfd | 19 | DigitalIn buttonx(D2); //x EMG replacement |
arnouddomhof | 14:059fd8f6cbfd | 20 | DigitalIn buttony(D3); //y EMG replacement |
AppelSab | 6:a02ad75f0333 | 21 | DigitalIn Fail_button(SW3); |
AppelSab | 6:a02ad75f0333 | 22 | // Modserial |
arnouddomhof | 3:dca57056e5cb | 23 | MODSERIAL pc(USBTX, USBRX); |
AppelSab | 6:a02ad75f0333 | 24 | // Encoders |
AppelSab | 6:a02ad75f0333 | 25 | QEI Encoder1(D11, D10, NC, 4200) ; // Encoder motor 1, (pin 1A, pin 1B, index pin(not used), counts/rev) |
AppelSab | 6:a02ad75f0333 | 26 | QEI Encoder2(D9, D8, NC, 4200) ; // Encoder motor 2, (pin 2A, pin 2B, index pin (not used), counts/rev) |
AppelSab | 6:a02ad75f0333 | 27 | // Motors (direction and PWM) |
AppelSab | 6:a02ad75f0333 | 28 | DigitalOut directionM1(D4); |
AppelSab | 6:a02ad75f0333 | 29 | DigitalOut directionM2(D7); |
AppelSab | 6:a02ad75f0333 | 30 | FastPWM motor1_pwm(D5); |
AppelSab | 6:a02ad75f0333 | 31 | FastPWM motor2_pwm(D6); |
Mirjam | 7:d4090f334ce2 | 32 | // EMG input en start value of filtered EMG |
Mirjam | 7:d4090f334ce2 | 33 | AnalogIn emg1_raw( A0 ); |
Mirjam | 7:d4090f334ce2 | 34 | AnalogIn emg2_raw( A1 ); |
arnouddomhof | 14:059fd8f6cbfd | 35 | AnalogIn potmeter1(PTC11); |
arnouddomhof | 14:059fd8f6cbfd | 36 | AnalogIn potmeter2(PTC10); |
Mirjam | 7:d4090f334ce2 | 37 | |
AppelSab | 6:a02ad75f0333 | 38 | // Declare timers and Tickers |
Mirjam | 7:d4090f334ce2 | 39 | Timer timer; // Timer for counting time in this state |
Mirjam | 7:d4090f334ce2 | 40 | Ticker WriteValues; // Ticker to show values of velocity to screen |
Mirjam | 7:d4090f334ce2 | 41 | Ticker StateMachine; |
arnouddomhof | 8:2afb66572fc4 | 42 | //Ticker sample_EMGtoHIDscope; // Ticker to send the EMG signals to screen |
arnouddomhof | 8:2afb66572fc4 | 43 | //HIDScope scope(4); //Number of channels which needs to be send to the HIDScope |
AppelSab | 12:3e084e1a699e | 44 | Ticker sample; // Ticker for reading out EMG |
arnouddomhof | 3:dca57056e5cb | 45 | |
AppelSab | 6:a02ad75f0333 | 46 | // Set up ProcessStateMachine |
arnouddomhof | 14:059fd8f6cbfd | 47 | enum states {WAITING, MOTOR_ANGLE_CLBRT, EMG_CLBRT, HOMING, WAITING4SIGNAL, MOVE_W_EMG, MOVE_W_KNOPJES, MOVE_W_DEMO, FAILURE_MODE}; |
arnouddomhof | 3:dca57056e5cb | 48 | states currentState = WAITING; |
AppelSab | 6:a02ad75f0333 | 49 | bool stateChanged = true; |
AppelSab | 6:a02ad75f0333 | 50 | |
arnouddomhof | 14:059fd8f6cbfd | 51 | float threshold_EMG = 0.25; // Threshold on 25 percent of the maximum EMG |
arnouddomhof | 14:059fd8f6cbfd | 52 | |
AppelSab | 6:a02ad75f0333 | 53 | // Global variables |
arnouddomhof | 3:dca57056e5cb | 54 | char c; |
AppelSab | 12:3e084e1a699e | 55 | const float fs = 1/1024; |
AppelSab | 6:a02ad75f0333 | 56 | int counts1; |
AppelSab | 6:a02ad75f0333 | 57 | int counts2; |
AppelSab | 6:a02ad75f0333 | 58 | float theta1; |
AppelSab | 6:a02ad75f0333 | 59 | float theta2; |
AppelSab | 6:a02ad75f0333 | 60 | float vel_1; |
AppelSab | 6:a02ad75f0333 | 61 | float vel_2; |
AppelSab | 6:a02ad75f0333 | 62 | float theta1_prev = 0.0; |
AppelSab | 6:a02ad75f0333 | 63 | float theta2_prev = 0.0; |
AppelSab | 6:a02ad75f0333 | 64 | const float pi = 3.14159265359; |
arnouddomhof | 13:a2e281d5de89 | 65 | volatile double error1; |
arnouddomhof | 13:a2e281d5de89 | 66 | volatile double error2; |
AppelSab | 6:a02ad75f0333 | 67 | float tijd = 0.005; |
AppelSab | 6:a02ad75f0333 | 68 | float time_in_state; |
Mirjam | 7:d4090f334ce2 | 69 | int need_to_move_1; // Does the robot needs to move in the first direction? |
Mirjam | 7:d4090f334ce2 | 70 | int need_to_move_2; // Does the robot needs to move in the second direction? |
AppelSab | 12:3e084e1a699e | 71 | volatile double EMG_calibrated_max_1 = 0.00000; // Maximum value of the first EMG signal found in the calibration state. |
AppelSab | 12:3e084e1a699e | 72 | volatile double EMG_calibrated_max_2 = 0.00000; // Maximum value of the second EMG signal found in the calibration state. |
AppelSab | 12:3e084e1a699e | 73 | volatile double emg1_cal; //measured value of the first emg |
AppelSab | 12:3e084e1a699e | 74 | volatile double emg2_cal; //measured value of the second emg |
AppelSab | 12:3e084e1a699e | 75 | const double x0 = 80.0; //zero x position after homing |
AppelSab | 12:3e084e1a699e | 76 | const double y0 = 141.0; //zero y position after homing |
AppelSab | 12:3e084e1a699e | 77 | volatile double setpointx = x0; |
AppelSab | 12:3e084e1a699e | 78 | volatile double setpointy = y0; |
AppelSab | 12:3e084e1a699e | 79 | volatile int sx;//value of the button and store as switch |
AppelSab | 12:3e084e1a699e | 80 | volatile int sy;//value of the button and store as switch |
AppelSab | 12:3e084e1a699e | 81 | double dirx = 1.0; //determine the direction of the setpoint placement |
AppelSab | 12:3e084e1a699e | 82 | double diry = 1.0; //determine the direction of the setpoint placement |
AppelSab | 12:3e084e1a699e | 83 | volatile double U1; |
AppelSab | 12:3e084e1a699e | 84 | volatile double U2; |
AppelSab | 12:3e084e1a699e | 85 | |
AppelSab | 12:3e084e1a699e | 86 | // Inverse Kinematics |
AppelSab | 12:3e084e1a699e | 87 | volatile double q1_diff; |
AppelSab | 12:3e084e1a699e | 88 | volatile double q2_diff; |
AppelSab | 12:3e084e1a699e | 89 | const double sq = 2.0; //to square numbers |
AppelSab | 12:3e084e1a699e | 90 | const double L1 = 250.0; //length of the first link |
AppelSab | 12:3e084e1a699e | 91 | const double L3 = 350.0; //length of the second link |
AppelSab | 12:3e084e1a699e | 92 | |
AppelSab | 12:3e084e1a699e | 93 | // Reference angles of the starting position |
arnouddomhof | 13:a2e281d5de89 | 94 | double q2_0 = pi + acos((pow(x0,sq)+pow(y0,sq)-pow(L1,sq)-pow(L3,sq))/(2.0*L1*L3)); |
AppelSab | 12:3e084e1a699e | 95 | double q1_0 = atan(y0/x0)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x0,sq)+pow(y0,sq))/(2.0*L1*sqrt(pow(x0,sq)+pow(y0,sq)))); |
arnouddomhof | 13:a2e281d5de89 | 96 | double q2_0_enc = q2_0 - q1_0; |
AppelSab | 12:3e084e1a699e | 97 | |
AppelSab | 12:3e084e1a699e | 98 | // DEMO |
AppelSab | 12:3e084e1a699e | 99 | double point1x = 200.0; |
AppelSab | 12:3e084e1a699e | 100 | double point1y = 200.0; |
AppelSab | 12:3e084e1a699e | 101 | double point2x = 350.0; |
AppelSab | 12:3e084e1a699e | 102 | double point2y = 200.0; |
AppelSab | 12:3e084e1a699e | 103 | double point3x = 350.0; |
AppelSab | 12:3e084e1a699e | 104 | double point3y = 0; |
AppelSab | 12:3e084e1a699e | 105 | double point4x = 200.0; |
AppelSab | 12:3e084e1a699e | 106 | double point4y = 0; |
AppelSab | 12:3e084e1a699e | 107 | volatile int track = 1; |
AppelSab | 12:3e084e1a699e | 108 | |
arnouddomhof | 14:059fd8f6cbfd | 109 | // Motoraansturing met knopjes |
arnouddomhof | 14:059fd8f6cbfd | 110 | const double v=0.1; //moving speed of setpoint |
arnouddomhof | 14:059fd8f6cbfd | 111 | |
arnouddomhof | 14:059fd8f6cbfd | 112 | double potwaarde1; |
arnouddomhof | 14:059fd8f6cbfd | 113 | double pot1; |
arnouddomhof | 14:059fd8f6cbfd | 114 | double potwaarde2; |
arnouddomhof | 14:059fd8f6cbfd | 115 | double pot2; |
arnouddomhof | 14:059fd8f6cbfd | 116 | |
AppelSab | 12:3e084e1a699e | 117 | // Determine demo setpoints |
AppelSab | 12:3e084e1a699e | 118 | const double stepsize1 = 0.15; |
AppelSab | 12:3e084e1a699e | 119 | const double stepsize2 = 0.25; |
AppelSab | 12:3e084e1a699e | 120 | const double setpoint_error = 0.3; |
Mirjam | 7:d4090f334ce2 | 121 | |
AppelSab | 6:a02ad75f0333 | 122 | // ---------------------------------------------- |
AppelSab | 6:a02ad75f0333 | 123 | // ------- FUNCTIONS ---------------------------- |
AppelSab | 6:a02ad75f0333 | 124 | // ---------------------------------------------- |
AppelSab | 6:a02ad75f0333 | 125 | |
AppelSab | 12:3e084e1a699e | 126 | // Encoders |
AppelSab | 12:3e084e1a699e | 127 | void ReadEncoder1() // Read Encoder of motor 1. |
AppelSab | 6:a02ad75f0333 | 128 | { |
AppelSab | 6:a02ad75f0333 | 129 | counts1 = Encoder1.getPulses(); // Counts of outputshaft of motor 1 |
AppelSab | 6:a02ad75f0333 | 130 | theta1 = (float(counts1)/4200) * 2*pi; // Angle of outputshaft of motor 1 |
AppelSab | 6:a02ad75f0333 | 131 | vel_1 = (theta1 - theta1_prev) / tijd; // Velocity, current angle - previous angle, devided by avarage time between encoder read-outs |
AppelSab | 6:a02ad75f0333 | 132 | theta1_prev = theta1; // Define theta_prev |
AppelSab | 6:a02ad75f0333 | 133 | } |
AppelSab | 12:3e084e1a699e | 134 | void ReadEncoder2() // Read encoder of motor 2. |
AppelSab | 6:a02ad75f0333 | 135 | { |
AppelSab | 6:a02ad75f0333 | 136 | counts2 = Encoder2.getPulses(); // Counts of outputshaft of motor 2 |
AppelSab | 6:a02ad75f0333 | 137 | theta2 = (float(counts2)/4200) * 2*pi; // Angle of outputshaft of motor 2 |
AppelSab | 6:a02ad75f0333 | 138 | vel_2 = (theta2 - theta2_prev) / tijd; // Velocity, current angle - previous angle, devided by avarage time between encoder read-outs |
AppelSab | 6:a02ad75f0333 | 139 | theta2_prev = theta2; // Define theta_prev |
AppelSab | 6:a02ad75f0333 | 140 | } |
AppelSab | 12:3e084e1a699e | 141 | |
arnouddomhof | 13:a2e281d5de89 | 142 | double counts2angle1() |
arnouddomhof | 13:a2e281d5de89 | 143 | { |
arnouddomhof | 13:a2e281d5de89 | 144 | counts1 = Encoder1.getPulses(); // Counts of outputshaft of motor 1 |
arnouddomhof | 13:a2e281d5de89 | 145 | theta1 = -(double(counts1)/4200) * 2*pi; // Angle of outputshaft of motor 1 |
arnouddomhof | 13:a2e281d5de89 | 146 | return theta1; |
arnouddomhof | 13:a2e281d5de89 | 147 | } |
arnouddomhof | 13:a2e281d5de89 | 148 | |
arnouddomhof | 13:a2e281d5de89 | 149 | double counts2angle2() |
arnouddomhof | 13:a2e281d5de89 | 150 | { |
arnouddomhof | 13:a2e281d5de89 | 151 | counts2 = Encoder2.getPulses(); // Counts of outputshaft of motor 2 |
arnouddomhof | 13:a2e281d5de89 | 152 | theta2 = (double(counts2)/4200) * 2*pi; // Angle of outputshaft of motor 2 |
arnouddomhof | 13:a2e281d5de89 | 153 | return theta2; |
arnouddomhof | 13:a2e281d5de89 | 154 | } |
arnouddomhof | 13:a2e281d5de89 | 155 | |
AppelSab | 12:3e084e1a699e | 156 | // Motor calibration |
AppelSab | 6:a02ad75f0333 | 157 | void MotorAngleCalibrate() // Function that drives motor 1 and 2. |
AppelSab | 6:a02ad75f0333 | 158 | { |
AppelSab | 6:a02ad75f0333 | 159 | float U1 = -0.2; // Negative, so arm goes backwards. |
AppelSab | 6:a02ad75f0333 | 160 | float U2 = -0.2; // Motor 2 is not taken into account yet. |
AppelSab | 6:a02ad75f0333 | 161 | |
AppelSab | 6:a02ad75f0333 | 162 | motor1_pwm.write(fabs(U1)); // Send PWM values to motor |
AppelSab | 6:a02ad75f0333 | 163 | motor2_pwm.write(fabs(U2)); |
AppelSab | 6:a02ad75f0333 | 164 | |
AppelSab | 6:a02ad75f0333 | 165 | directionM1 = U1 > 0.0f; // Either true or false, determines direction. |
AppelSab | 6:a02ad75f0333 | 166 | directionM2 = U2 > 0.0f; |
AppelSab | 6:a02ad75f0333 | 167 | } |
AppelSab | 12:3e084e1a699e | 168 | |
AppelSab | 12:3e084e1a699e | 169 | // Read EMG |
AppelSab | 12:3e084e1a699e | 170 | void ReadEMG() |
AppelSab | 12:3e084e1a699e | 171 | { |
AppelSab | 12:3e084e1a699e | 172 | emg1_cal = FilterDesign(emg1_raw.read()); |
AppelSab | 12:3e084e1a699e | 173 | emg2_cal = FilterDesign2(emg2_raw.read()); |
AppelSab | 12:3e084e1a699e | 174 | pc.printf("emg1_cal = %g, emg2_cal = %g \n\r", emg1_cal, emg2_cal); |
AppelSab | 12:3e084e1a699e | 175 | } |
AppelSab | 12:3e084e1a699e | 176 | |
AppelSab | 12:3e084e1a699e | 177 | // EMG calibration |
AppelSab | 12:3e084e1a699e | 178 | void EMG_calibration() |
AppelSab | 12:3e084e1a699e | 179 | { |
AppelSab | 12:3e084e1a699e | 180 | |
AppelSab | 12:3e084e1a699e | 181 | for (int i = 0; i <= 10; i++) //10 measuring points |
AppelSab | 12:3e084e1a699e | 182 | { |
AppelSab | 12:3e084e1a699e | 183 | ReadEMG(); |
AppelSab | 12:3e084e1a699e | 184 | if (emg1_cal > EMG_calibrated_max_1){ |
AppelSab | 12:3e084e1a699e | 185 | EMG_calibrated_max_1 = emg1_cal;} |
AppelSab | 12:3e084e1a699e | 186 | |
AppelSab | 12:3e084e1a699e | 187 | if (emg2_cal > EMG_calibrated_max_2){ |
AppelSab | 12:3e084e1a699e | 188 | EMG_calibrated_max_2 = emg2_cal;} |
AppelSab | 12:3e084e1a699e | 189 | |
AppelSab | 12:3e084e1a699e | 190 | pc.printf("EMG1_max = %f, EMG2_max = %f \r\nEMG1_filtered = %f \r\nEMG2_filtered = %f \r\n",EMG_calibrated_max_1,EMG_calibrated_max_2, emg1_cal, emg2_cal); |
AppelSab | 12:3e084e1a699e | 191 | wait(0.5f); |
AppelSab | 12:3e084e1a699e | 192 | } |
AppelSab | 12:3e084e1a699e | 193 | } |
AppelSab | 12:3e084e1a699e | 194 | |
AppelSab | 12:3e084e1a699e | 195 | // Inverse Kinematics |
AppelSab | 12:3e084e1a699e | 196 | double makeAngleq1(double x, double y){ |
AppelSab | 12:3e084e1a699e | 197 | double q1 = atan(y/x)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x,sq)+pow(y,sq))/(2.0*L1*sqrt(pow(x,sq)+pow(y,sq)))); //angle of the first joint in the setpoint configuration |
arnouddomhof | 13:a2e281d5de89 | 198 | q1_diff = -2.0*(q1-q1_0); //the actual amount of radians that the motor has to turn in total to reach the setpoint |
AppelSab | 12:3e084e1a699e | 199 | return q1_diff; |
AppelSab | 12:3e084e1a699e | 200 | } |
AppelSab | 12:3e084e1a699e | 201 | |
AppelSab | 12:3e084e1a699e | 202 | double makeAngleq2(double x, double y){ |
AppelSab | 12:3e084e1a699e | 203 | double q2 = -acos((pow(x,sq)+pow(y,sq)-pow(L1,sq)-pow(L3,sq))/(2.0*L1*L3)); //angle of the second joint in setpoint configuration |
AppelSab | 12:3e084e1a699e | 204 | double q1 = atan(y/x)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x,sq)+pow(y,sq))/(2.0*L1*sqrt(pow(x,sq)+pow(y,sq)))); //angle of the first joint in the setpoint configuration |
AppelSab | 12:3e084e1a699e | 205 | double q2_motor = (pi - q2) - q1; //because q2 represents the angle at joint two and not at the motor a calculation has to be done |
AppelSab | 12:3e084e1a699e | 206 | q2_diff = (2.0*(q2_motor - q2_0_enc)); //the actual amount of radians that the motor has to turn in total to reach the setpoint |
AppelSab | 12:3e084e1a699e | 207 | return q2_diff; |
AppelSab | 12:3e084e1a699e | 208 | } |
AppelSab | 12:3e084e1a699e | 209 | |
AppelSab | 12:3e084e1a699e | 210 | // PI controllers |
arnouddomhof | 14:059fd8f6cbfd | 211 | double PID_controller1(double error1) |
Mirjam | 7:d4090f334ce2 | 212 | { |
AppelSab | 12:3e084e1a699e | 213 | static double error_integral1 = 0; |
AppelSab | 12:3e084e1a699e | 214 | static double error_prev1 = error1; // initialization with this value only done once! |
AppelSab | 12:3e084e1a699e | 215 | |
AppelSab | 12:3e084e1a699e | 216 | // Proportional part |
AppelSab | 12:3e084e1a699e | 217 | double Kp1 = 20.0; // Kp (proportionele controller, nu nog een random waarde) |
AppelSab | 12:3e084e1a699e | 218 | double u_p1 = Kp1*error1; // Voltage dat naar de motor gestuurd wordt (volgt uit error en Kp) |
AppelSab | 12:3e084e1a699e | 219 | |
AppelSab | 12:3e084e1a699e | 220 | // Integral part |
AppelSab | 12:3e084e1a699e | 221 | double Ki1 = 6.0; // Ki (Integrale deel vd controller, nu nog een random waarde) |
AppelSab | 12:3e084e1a699e | 222 | double Ts1 = 0.005; // Sample tijd, net zo vaak als de controller wordt aangeroepen (200 Hz, statemachine) |
AppelSab | 12:3e084e1a699e | 223 | error_integral1 = error_integral1 + error1 * Ts1; |
AppelSab | 12:3e084e1a699e | 224 | double u_i1 = Ki1 * error_integral1; |
AppelSab | 12:3e084e1a699e | 225 | |
AppelSab | 12:3e084e1a699e | 226 | // Derivative part |
AppelSab | 12:3e084e1a699e | 227 | double Kd1 = 2.0; |
AppelSab | 12:3e084e1a699e | 228 | double error_derivative1 = (error1 - error_prev1)/Ts1; |
AppelSab | 12:3e084e1a699e | 229 | double u_d1 = Kd1 * error_derivative1; |
AppelSab | 12:3e084e1a699e | 230 | error_prev1 = error1; |
AppelSab | 12:3e084e1a699e | 231 | |
AppelSab | 12:3e084e1a699e | 232 | // Sum |
AppelSab | 12:3e084e1a699e | 233 | U1 = u_p1 + u_i1 + u_d1; |
AppelSab | 12:3e084e1a699e | 234 | |
AppelSab | 12:3e084e1a699e | 235 | // Return |
AppelSab | 12:3e084e1a699e | 236 | return U1; |
AppelSab | 12:3e084e1a699e | 237 | } |
arnouddomhof | 14:059fd8f6cbfd | 238 | double PID_controller2(double error2) |
AppelSab | 12:3e084e1a699e | 239 | { |
AppelSab | 12:3e084e1a699e | 240 | static double error_integral2 = 0; |
AppelSab | 12:3e084e1a699e | 241 | static double error_prev2 = error2; // initialization with this value only done once! |
AppelSab | 12:3e084e1a699e | 242 | |
AppelSab | 12:3e084e1a699e | 243 | // Proportional part |
AppelSab | 12:3e084e1a699e | 244 | double Kp2 = 20.0; // Kp (proportionele controller, nu nog een random waarde) |
AppelSab | 12:3e084e1a699e | 245 | double u_p2 = Kp2*error2; // Voltage dat naar de motor gestuurd wordt (volgt uit error en Kp) |
AppelSab | 12:3e084e1a699e | 246 | |
AppelSab | 12:3e084e1a699e | 247 | // Integral part |
AppelSab | 12:3e084e1a699e | 248 | double Ki2 = 6.0; // Ki (Integrale deel vd controller, nu nog een random waarde) |
AppelSab | 12:3e084e1a699e | 249 | double Ts2 = 0.005; // Sample tijd, net zo vaak als de controller wordt aangeroepen (200 Hz, statemachine) |
AppelSab | 12:3e084e1a699e | 250 | error_integral2 = error_integral2 + error2 * Ts2; |
AppelSab | 12:3e084e1a699e | 251 | double u_i2 = Ki2 * error_integral2; |
AppelSab | 12:3e084e1a699e | 252 | |
AppelSab | 12:3e084e1a699e | 253 | // Derivative part |
AppelSab | 12:3e084e1a699e | 254 | double Kd2 = 2.0; |
AppelSab | 12:3e084e1a699e | 255 | double error_derivative2 = (error2 - error_prev2)/Ts2; |
AppelSab | 12:3e084e1a699e | 256 | double u_d2 = Kd2 * error_derivative2; |
AppelSab | 12:3e084e1a699e | 257 | error_prev2 = error2; |
Mirjam | 7:d4090f334ce2 | 258 | |
AppelSab | 12:3e084e1a699e | 259 | // Sum + |
AppelSab | 12:3e084e1a699e | 260 | U2 = u_p2 + u_i2 + u_d2; |
AppelSab | 12:3e084e1a699e | 261 | |
AppelSab | 12:3e084e1a699e | 262 | // Return |
AppelSab | 12:3e084e1a699e | 263 | return U2; |
AppelSab | 12:3e084e1a699e | 264 | } |
AppelSab | 12:3e084e1a699e | 265 | |
AppelSab | 12:3e084e1a699e | 266 | // Determination of setpoint |
AppelSab | 12:3e084e1a699e | 267 | void determineEMGset(){ |
AppelSab | 12:3e084e1a699e | 268 | const double v = 0.1; //moving speed of setpoint |
AppelSab | 12:3e084e1a699e | 269 | setpointx = setpointx + dirx*sx*v; |
AppelSab | 12:3e084e1a699e | 270 | setpointy = setpointy + diry*sy*v; |
AppelSab | 12:3e084e1a699e | 271 | } |
AppelSab | 12:3e084e1a699e | 272 | void ChangeDirectionX(){ |
AppelSab | 12:3e084e1a699e | 273 | dirx = -1*dirx; |
AppelSab | 12:3e084e1a699e | 274 | } |
AppelSab | 12:3e084e1a699e | 275 | void ChangeDirectionY(){ |
AppelSab | 12:3e084e1a699e | 276 | diry = -1*diry; |
AppelSab | 12:3e084e1a699e | 277 | } |
AppelSab | 12:3e084e1a699e | 278 | |
AppelSab | 12:3e084e1a699e | 279 | // Motoraansturing voor EMG signalen |
AppelSab | 12:3e084e1a699e | 280 | /** |
AppelSab | 12:3e084e1a699e | 281 | void motoraansturing() |
AppelSab | 12:3e084e1a699e | 282 | { |
AppelSab | 12:3e084e1a699e | 283 | determineEMGset(); |
AppelSab | 12:3e084e1a699e | 284 | q1_diff = makeAngleq1(setpointx, setpointy); |
AppelSab | 12:3e084e1a699e | 285 | q2_diff = makeAngleq2(setpointx, setpointy); |
AppelSab | 12:3e084e1a699e | 286 | ReadEncoder1(); |
AppelSab | 12:3e084e1a699e | 287 | ReadEncoder2(); |
AppelSab | 12:3e084e1a699e | 288 | double error2 = q2_diff - theta2; |
AppelSab | 12:3e084e1a699e | 289 | double error1 = q1_diff - theta1; // Setpoint error, te behalen setpoint minus de huidige positie van de as. |
AppelSab | 12:3e084e1a699e | 290 | U1 = PI_controller1(error1); // Voltage dat naar de motor gestuurd wordt. |
AppelSab | 12:3e084e1a699e | 291 | U2 = PI_controller2(error2); |
AppelSab | 12:3e084e1a699e | 292 | pc.printf("U1 = %g, U2 = %g \n\r", U1, U2); |
AppelSab | 12:3e084e1a699e | 293 | motor1_pwm.write(fabs(U1)); // Motor aansturen |
AppelSab | 12:3e084e1a699e | 294 | directionM1 = U1 > 0.0f; // Richting van de motor bepalen |
AppelSab | 12:3e084e1a699e | 295 | motor2_pwm.write(fabs(U2)); |
AppelSab | 12:3e084e1a699e | 296 | directionM2 = U2 > 0.0f; |
Mirjam | 7:d4090f334ce2 | 297 | } |
AppelSab | 12:3e084e1a699e | 298 | **/ |
AppelSab | 12:3e084e1a699e | 299 | double determinedemosetx(double setpointx, double setpointy) |
AppelSab | 12:3e084e1a699e | 300 | { |
AppelSab | 12:3e084e1a699e | 301 | |
AppelSab | 12:3e084e1a699e | 302 | if (setpointx < point1x && track == 1){ |
AppelSab | 12:3e084e1a699e | 303 | setpointx = setpointx + stepsize1; |
AppelSab | 12:3e084e1a699e | 304 | } |
AppelSab | 12:3e084e1a699e | 305 | |
AppelSab | 12:3e084e1a699e | 306 | // Van punt 1 naar punt 2. |
AppelSab | 12:3e084e1a699e | 307 | if (fabs(setpointx - point1x) <= setpoint_error && fabs(setpointy - point1y) <= setpoint_error && (track == 1 || track == 41)) { |
AppelSab | 12:3e084e1a699e | 308 | track = 12; |
AppelSab | 12:3e084e1a699e | 309 | } |
AppelSab | 12:3e084e1a699e | 310 | |
AppelSab | 12:3e084e1a699e | 311 | if (setpointx < point2x && track == 12){ |
AppelSab | 12:3e084e1a699e | 312 | setpointx = setpointx + stepsize2; |
AppelSab | 12:3e084e1a699e | 313 | } |
AppelSab | 12:3e084e1a699e | 314 | |
AppelSab | 12:3e084e1a699e | 315 | // Van punt 2 naar punt 3. |
AppelSab | 12:3e084e1a699e | 316 | if (fabs(setpointx - point2x) <= setpoint_error && fabs(setpointy - point2y) <= setpoint_error && track == 12){ |
AppelSab | 12:3e084e1a699e | 317 | setpointx = point3x; |
AppelSab | 12:3e084e1a699e | 318 | track = 23; |
AppelSab | 12:3e084e1a699e | 319 | } |
arnouddomhof | 13:a2e281d5de89 | 320 | |
AppelSab | 12:3e084e1a699e | 321 | if (setpointy > point3y && track == 23){ |
AppelSab | 12:3e084e1a699e | 322 | setpointx = point3x; // Van punt 1 naar punt 2 op dezelfde x blijven. |
AppelSab | 12:3e084e1a699e | 323 | } |
AppelSab | 12:3e084e1a699e | 324 | |
AppelSab | 12:3e084e1a699e | 325 | // Van punt 3 naar punt 4. |
AppelSab | 12:3e084e1a699e | 326 | if ((fabs(setpointx - point3x) <= setpoint_error) && (fabs(setpointy - point3y) <= setpoint_error) && (track == 23)) { |
AppelSab | 12:3e084e1a699e | 327 | setpointy = point4y; |
AppelSab | 12:3e084e1a699e | 328 | track = 34; |
AppelSab | 12:3e084e1a699e | 329 | } |
AppelSab | 12:3e084e1a699e | 330 | |
AppelSab | 12:3e084e1a699e | 331 | if (setpointx > point4x && track == 34){ |
AppelSab | 12:3e084e1a699e | 332 | setpointx = setpointx - stepsize2; |
AppelSab | 12:3e084e1a699e | 333 | } |
AppelSab | 12:3e084e1a699e | 334 | |
AppelSab | 12:3e084e1a699e | 335 | // Van punt 4 naar punt 1. |
AppelSab | 12:3e084e1a699e | 336 | if ((fabs(setpointx - point4x) <= setpoint_error) && (fabs(setpointy - point4y) <= setpoint_error) && (track == 34)){ |
AppelSab | 12:3e084e1a699e | 337 | setpointx = point4x; |
AppelSab | 12:3e084e1a699e | 338 | track = 41; |
AppelSab | 12:3e084e1a699e | 339 | } |
AppelSab | 12:3e084e1a699e | 340 | |
AppelSab | 12:3e084e1a699e | 341 | if (setpointy < point1y && track == 41){ |
AppelSab | 12:3e084e1a699e | 342 | setpointx = point4x; // Van punt 4 naar punt 2 op dezelfde x blijven. |
AppelSab | 12:3e084e1a699e | 343 | } |
AppelSab | 12:3e084e1a699e | 344 | return setpointx; |
AppelSab | 12:3e084e1a699e | 345 | } |
AppelSab | 12:3e084e1a699e | 346 | |
AppelSab | 12:3e084e1a699e | 347 | double determinedemosety(double setpointx, double setpointy) |
AppelSab | 12:3e084e1a699e | 348 | { |
AppelSab | 12:3e084e1a699e | 349 | // Van reference positie naar punt 1. |
AppelSab | 12:3e084e1a699e | 350 | if(setpointy < point1y && track == 1){ |
AppelSab | 12:3e084e1a699e | 351 | setpointy = setpointy + (stepsize2); |
AppelSab | 12:3e084e1a699e | 352 | } |
AppelSab | 12:3e084e1a699e | 353 | |
AppelSab | 12:3e084e1a699e | 354 | // Van punt 1 naar punt 2. |
AppelSab | 12:3e084e1a699e | 355 | if (fabs(setpointx - point1x) <= setpoint_error && fabs(setpointy - point1y) <= setpoint_error && (track == 1 || track == 41)){ |
AppelSab | 12:3e084e1a699e | 356 | setpointy = point2y; // Van punt 1 naar punt 2 op dezelfde y blijven. |
AppelSab | 12:3e084e1a699e | 357 | track = 12; |
AppelSab | 12:3e084e1a699e | 358 | } |
AppelSab | 12:3e084e1a699e | 359 | if (setpointx < point2x && track == 12){ |
AppelSab | 12:3e084e1a699e | 360 | setpointy = point2y; |
AppelSab | 12:3e084e1a699e | 361 | } |
AppelSab | 12:3e084e1a699e | 362 | |
AppelSab | 12:3e084e1a699e | 363 | // Van punt 2 naar punt 3. |
AppelSab | 12:3e084e1a699e | 364 | if (fabs(setpointx - point2x) <= setpoint_error && fabs(setpointy - point2y) <= setpoint_error && (track == 12)){ |
AppelSab | 12:3e084e1a699e | 365 | setpointx = point3x; |
AppelSab | 12:3e084e1a699e | 366 | track = 23; |
AppelSab | 12:3e084e1a699e | 367 | } |
AppelSab | 12:3e084e1a699e | 368 | if ((setpointy > point3y) && (track == 23)){ |
AppelSab | 12:3e084e1a699e | 369 | setpointy = setpointy + (-stepsize2); |
AppelSab | 12:3e084e1a699e | 370 | track = 23; |
AppelSab | 12:3e084e1a699e | 371 | } |
AppelSab | 12:3e084e1a699e | 372 | |
AppelSab | 12:3e084e1a699e | 373 | // Van punt 3 naar punt 4. |
AppelSab | 12:3e084e1a699e | 374 | if ((fabs(setpointx - point3x) <= setpoint_error) && (fabs(setpointy - point3y) <= setpoint_error) && (track == 23)){ |
AppelSab | 12:3e084e1a699e | 375 | setpointy = setpointy; |
AppelSab | 12:3e084e1a699e | 376 | track = 34; |
AppelSab | 12:3e084e1a699e | 377 | } |
AppelSab | 12:3e084e1a699e | 378 | if (setpointx > point4x && track == 34){ |
AppelSab | 12:3e084e1a699e | 379 | setpointy = setpointy; |
AppelSab | 12:3e084e1a699e | 380 | } |
AppelSab | 12:3e084e1a699e | 381 | |
AppelSab | 12:3e084e1a699e | 382 | // Van punt 4 naar punt 1. |
AppelSab | 12:3e084e1a699e | 383 | if ((fabs(setpointx - point4x) <= setpoint_error) && (fabs(setpointy - point4y) <= setpoint_error) && (track == 34)){ |
AppelSab | 12:3e084e1a699e | 384 | track = 41; |
AppelSab | 12:3e084e1a699e | 385 | } |
AppelSab | 12:3e084e1a699e | 386 | |
AppelSab | 12:3e084e1a699e | 387 | if (setpointy < point1y && track == 41){ |
AppelSab | 12:3e084e1a699e | 388 | setpointy = setpointy + (stepsize2); // Van punt 4 naar punt 2 op dezelfde x blijven. |
AppelSab | 12:3e084e1a699e | 389 | } |
AppelSab | 12:3e084e1a699e | 390 | return setpointy; |
AppelSab | 12:3e084e1a699e | 391 | |
AppelSab | 12:3e084e1a699e | 392 | } |
arnouddomhof | 14:059fd8f6cbfd | 393 | |
arnouddomhof | 14:059fd8f6cbfd | 394 | void determineknopjesset() { |
arnouddomhof | 14:059fd8f6cbfd | 395 | setpointx = setpointx + dirx*sx*v; |
arnouddomhof | 14:059fd8f6cbfd | 396 | setpointy = setpointy + diry*sy*v; |
arnouddomhof | 14:059fd8f6cbfd | 397 | } |
arnouddomhof | 14:059fd8f6cbfd | 398 | |
arnouddomhof | 14:059fd8f6cbfd | 399 | void motoraansturingknopjes() |
arnouddomhof | 14:059fd8f6cbfd | 400 | { |
arnouddomhof | 14:059fd8f6cbfd | 401 | determineknopjesset(); |
arnouddomhof | 14:059fd8f6cbfd | 402 | q1_diff = makeAngleq1(setpointx, setpointy); |
arnouddomhof | 14:059fd8f6cbfd | 403 | q2_diff = makeAngleq2(setpointx, setpointy); |
arnouddomhof | 14:059fd8f6cbfd | 404 | //q1_diff_final = makeAngleq1(xfinal, yfinal); |
arnouddomhof | 14:059fd8f6cbfd | 405 | //q2_diff_final = makeAngleq2(xfinal, yfinal); |
arnouddomhof | 14:059fd8f6cbfd | 406 | |
arnouddomhof | 14:059fd8f6cbfd | 407 | theta2 = counts2angle2(); |
arnouddomhof | 14:059fd8f6cbfd | 408 | error2 = q2_diff - theta2; |
arnouddomhof | 14:059fd8f6cbfd | 409 | theta1 = counts2angle1(); |
arnouddomhof | 14:059fd8f6cbfd | 410 | error1 = q1_diff - theta1; // Setpoint error, te behalen setpoint minus de huidige positie van de as. |
arnouddomhof | 14:059fd8f6cbfd | 411 | |
arnouddomhof | 14:059fd8f6cbfd | 412 | //errors die de setpoints bepalen |
arnouddomhof | 14:059fd8f6cbfd | 413 | //error1_final = q1_diff_final - theta1; |
arnouddomhof | 14:059fd8f6cbfd | 414 | //error2_final = q2_diff_final - theta2; |
arnouddomhof | 14:059fd8f6cbfd | 415 | |
arnouddomhof | 14:059fd8f6cbfd | 416 | U1 = PID_controller1(error1); // Voltage dat naar de motor gestuurd wordt. |
arnouddomhof | 14:059fd8f6cbfd | 417 | U2 = PID_controller2(error2); |
arnouddomhof | 14:059fd8f6cbfd | 418 | |
arnouddomhof | 14:059fd8f6cbfd | 419 | motor1_pwm.write(fabs(U1)); // Motor aansturen |
arnouddomhof | 14:059fd8f6cbfd | 420 | directionM1 = U1 > 0.0f; // Richting van de motor bepalen |
arnouddomhof | 14:059fd8f6cbfd | 421 | motor2_pwm.write(fabs(U2)); |
arnouddomhof | 14:059fd8f6cbfd | 422 | directionM2 = U2 > 0.0f; |
arnouddomhof | 14:059fd8f6cbfd | 423 | } |
arnouddomhof | 14:059fd8f6cbfd | 424 | |
AppelSab | 12:3e084e1a699e | 425 | void motoraansturingdemo() |
arnouddomhof | 13:a2e281d5de89 | 426 | { |
AppelSab | 12:3e084e1a699e | 427 | setpointx = determinedemosetx(setpointx, setpointy); |
AppelSab | 12:3e084e1a699e | 428 | setpointy = determinedemosety(setpointx, setpointy); |
AppelSab | 12:3e084e1a699e | 429 | q1_diff = makeAngleq1(setpointx, setpointy); |
AppelSab | 12:3e084e1a699e | 430 | q2_diff = makeAngleq2(setpointx, setpointy); |
AppelSab | 12:3e084e1a699e | 431 | |
arnouddomhof | 13:a2e281d5de89 | 432 | theta2 = counts2angle2(); |
arnouddomhof | 13:a2e281d5de89 | 433 | error2 = q2_diff - theta2; |
arnouddomhof | 13:a2e281d5de89 | 434 | theta1 = counts2angle1(); |
arnouddomhof | 13:a2e281d5de89 | 435 | error1 = q1_diff - theta1; // Setpoint error, te behalen setpoint minus de huidige positie van de as. |
AppelSab | 12:3e084e1a699e | 436 | |
arnouddomhof | 14:059fd8f6cbfd | 437 | U1 = PID_controller1(error1); // Voltage dat naar de motor gestuurd wordt. |
arnouddomhof | 14:059fd8f6cbfd | 438 | U2 = PID_controller2(error2); |
AppelSab | 12:3e084e1a699e | 439 | |
AppelSab | 12:3e084e1a699e | 440 | motor1_pwm.write(fabs(U1)); // Motor aansturen |
AppelSab | 12:3e084e1a699e | 441 | directionM1 = U1 > 0.0f; // Richting van de motor bepalen |
AppelSab | 12:3e084e1a699e | 442 | motor2_pwm.write(fabs(U2)); |
AppelSab | 12:3e084e1a699e | 443 | directionM2 = U2 > 0.0f; |
arnouddomhof | 13:a2e281d5de89 | 444 | } |
arnouddomhof | 13:a2e281d5de89 | 445 | |
arnouddomhof | 13:a2e281d5de89 | 446 | void motoraansturinghoming() |
arnouddomhof | 13:a2e281d5de89 | 447 | { |
arnouddomhof | 13:a2e281d5de89 | 448 | setpointx = x0; |
arnouddomhof | 13:a2e281d5de89 | 449 | setpointy = y0; |
arnouddomhof | 13:a2e281d5de89 | 450 | q1_diff = makeAngleq1(setpointx, setpointy); |
arnouddomhof | 13:a2e281d5de89 | 451 | q2_diff = makeAngleq2(setpointx, setpointy); |
arnouddomhof | 13:a2e281d5de89 | 452 | |
arnouddomhof | 13:a2e281d5de89 | 453 | theta2 = counts2angle2(); |
arnouddomhof | 13:a2e281d5de89 | 454 | error2 = q2_diff - theta2; |
arnouddomhof | 13:a2e281d5de89 | 455 | theta1 = counts2angle1(); |
arnouddomhof | 13:a2e281d5de89 | 456 | error1 = q1_diff - theta1; // Setpoint error, te behalen setpoint minus de huidige positie van de as. |
arnouddomhof | 13:a2e281d5de89 | 457 | |
arnouddomhof | 14:059fd8f6cbfd | 458 | U1 = PID_controller1(error1); // Voltage dat naar de motor gestuurd wordt. |
arnouddomhof | 14:059fd8f6cbfd | 459 | U2 = PID_controller2(error2); |
arnouddomhof | 13:a2e281d5de89 | 460 | |
arnouddomhof | 13:a2e281d5de89 | 461 | motor1_pwm.write(fabs(U1)); // Motor aansturen |
arnouddomhof | 13:a2e281d5de89 | 462 | directionM1 = U1 > 0.0f; // Richting van de motor bepalen |
arnouddomhof | 13:a2e281d5de89 | 463 | motor2_pwm.write(fabs(U2)); |
arnouddomhof | 13:a2e281d5de89 | 464 | directionM2 = U2 > 0.0f; |
arnouddomhof | 13:a2e281d5de89 | 465 | } |
AppelSab | 6:a02ad75f0333 | 466 | // --------------------------------------------------- |
AppelSab | 6:a02ad75f0333 | 467 | // --------STATEMACHINE------------------------------- |
AppelSab | 6:a02ad75f0333 | 468 | // --------------------------------------------------- |
AppelSab | 6:a02ad75f0333 | 469 | void ProcessStateMachine(void) |
AppelSab | 6:a02ad75f0333 | 470 | { |
AppelSab | 6:a02ad75f0333 | 471 | switch (currentState) |
AppelSab | 6:a02ad75f0333 | 472 | { |
AppelSab | 6:a02ad75f0333 | 473 | case WAITING: |
AppelSab | 6:a02ad75f0333 | 474 | // Description: |
AppelSab | 6:a02ad75f0333 | 475 | // In this state we do nothing, and wait for a command |
AppelSab | 6:a02ad75f0333 | 476 | |
AppelSab | 6:a02ad75f0333 | 477 | // Actions |
AppelSab | 6:a02ad75f0333 | 478 | led_red = 0; led_green = 0; led_blue = 0; // Colouring the led WHITE |
AppelSab | 6:a02ad75f0333 | 479 | |
AppelSab | 6:a02ad75f0333 | 480 | // State transition logic |
arnouddomhof | 9:8b2d6ec577e3 | 481 | if (button_clbrt_home == 0) |
AppelSab | 6:a02ad75f0333 | 482 | { |
AppelSab | 6:a02ad75f0333 | 483 | currentState = MOTOR_ANGLE_CLBRT; |
AppelSab | 6:a02ad75f0333 | 484 | stateChanged = true; |
AppelSab | 6:a02ad75f0333 | 485 | pc.printf("Starting Calibration\n\r"); |
AppelSab | 6:a02ad75f0333 | 486 | } |
arnouddomhof | 9:8b2d6ec577e3 | 487 | else if (Fail_button == 0) |
AppelSab | 6:a02ad75f0333 | 488 | { |
AppelSab | 6:a02ad75f0333 | 489 | currentState = FAILURE_MODE; |
AppelSab | 6:a02ad75f0333 | 490 | stateChanged = true; |
AppelSab | 6:a02ad75f0333 | 491 | } |
AppelSab | 6:a02ad75f0333 | 492 | break; |
AppelSab | 6:a02ad75f0333 | 493 | |
AppelSab | 6:a02ad75f0333 | 494 | case MOTOR_ANGLE_CLBRT: |
AppelSab | 6:a02ad75f0333 | 495 | // Description: |
AppelSab | 6:a02ad75f0333 | 496 | // In this state the robot moves with low motor PWM to some |
AppelSab | 6:a02ad75f0333 | 497 | // mechanical limit of motion, in order to calibrate the motors. |
AppelSab | 6:a02ad75f0333 | 498 | |
AppelSab | 6:a02ad75f0333 | 499 | // Actions |
AppelSab | 6:a02ad75f0333 | 500 | led_red = 1; led_green = 0; led_blue = 0; // Colouring the led TURQUOISE |
AppelSab | 6:a02ad75f0333 | 501 | timer.start(); //Start timer to get time in the state "MOTOR_ANGLE_CLRBRT" |
AppelSab | 6:a02ad75f0333 | 502 | if (stateChanged) |
AppelSab | 6:a02ad75f0333 | 503 | { |
AppelSab | 6:a02ad75f0333 | 504 | MotorAngleCalibrate(); // Actuate motor 1 and 2. |
AppelSab | 12:3e084e1a699e | 505 | ReadEncoder1(); // Get velocity of motor 1 |
AppelSab | 12:3e084e1a699e | 506 | ReadEncoder2(); // Get velocity of motor 2 |
AppelSab | 6:a02ad75f0333 | 507 | stateChanged = true; // Keep this loop going, until the transition conditions are satisfied. |
AppelSab | 6:a02ad75f0333 | 508 | } |
AppelSab | 6:a02ad75f0333 | 509 | |
AppelSab | 6:a02ad75f0333 | 510 | // State transition logic |
AppelSab | 6:a02ad75f0333 | 511 | time_in_state = timer.read(); // Determine if this state has run for long enough. |
arnouddomhof | 3:dca57056e5cb | 512 | |
AppelSab | 6:a02ad75f0333 | 513 | if(time_in_state > 2.0f && vel_1 < 1.1f && vel_2 < 1.1f) |
AppelSab | 6:a02ad75f0333 | 514 | { |
AppelSab | 6:a02ad75f0333 | 515 | //pc.printf( "Tijd in deze staat = %f \n\r", time_in_state); |
AppelSab | 6:a02ad75f0333 | 516 | //pc.printf( "Tijd tijdens actions loop (Waarde voor bepalen van snelheid)") = %f \n\r", tijd); |
arnouddomhof | 8:2afb66572fc4 | 517 | pc.printf("Motor calibration has ended. \n\r"); |
AppelSab | 6:a02ad75f0333 | 518 | timer.stop(); // Stop timer for this state |
AppelSab | 6:a02ad75f0333 | 519 | timer.reset(); // Reset timer for this state |
AppelSab | 6:a02ad75f0333 | 520 | motor1_pwm.write(fabs(0.0)); // Send PWM values to motor |
AppelSab | 6:a02ad75f0333 | 521 | motor2_pwm.write(fabs(0.0)); |
AppelSab | 6:a02ad75f0333 | 522 | Encoder1.reset(); // Reset Encoders when arrived at zero-position |
AppelSab | 6:a02ad75f0333 | 523 | Encoder2.reset(); |
AppelSab | 6:a02ad75f0333 | 524 | |
AppelSab | 12:3e084e1a699e | 525 | currentState = HOMING; // Switch to next state (EMG_CLRBRT). |
AppelSab | 6:a02ad75f0333 | 526 | stateChanged = true; |
AppelSab | 6:a02ad75f0333 | 527 | } |
AppelSab | 6:a02ad75f0333 | 528 | if (Fail_button == 0) |
AppelSab | 6:a02ad75f0333 | 529 | { |
AppelSab | 6:a02ad75f0333 | 530 | currentState = FAILURE_MODE; |
AppelSab | 6:a02ad75f0333 | 531 | stateChanged = true; |
AppelSab | 6:a02ad75f0333 | 532 | } |
AppelSab | 6:a02ad75f0333 | 533 | break; |
AppelSab | 12:3e084e1a699e | 534 | /** |
AppelSab | 6:a02ad75f0333 | 535 | case EMG_CLBRT: |
AppelSab | 6:a02ad75f0333 | 536 | // In this state the person whom is connected to the robot needs |
AppelSab | 6:a02ad75f0333 | 537 | // to flex his/her muscles as hard as possible, in order to |
AppelSab | 6:a02ad75f0333 | 538 | // measure the maximum EMG-signal, which can be used to scale |
AppelSab | 6:a02ad75f0333 | 539 | // the EMG-filter. |
AppelSab | 12:3e084e1a699e | 540 | |
AppelSab | 12:3e084e1a699e | 541 | |
AppelSab | 12:3e084e1a699e | 542 | led_red = 1; led_green = 1; led_blue = 0; // Colouring the led BLUE |
AppelSab | 12:3e084e1a699e | 543 | |
AppelSab | 12:3e084e1a699e | 544 | // Actions |
AppelSab | 12:3e084e1a699e | 545 | if (stateChanged) |
AppelSab | 12:3e084e1a699e | 546 | { |
AppelSab | 12:3e084e1a699e | 547 | pc.printf("Starting EMG calibration. Contract muscles until the calibration is ended.\n\r"); |
AppelSab | 12:3e084e1a699e | 548 | // motor1_pwm.write(fabs(0.0)); // Send PWM values to motor |
AppelSab | 12:3e084e1a699e | 549 | // motor2_pwm.write(fabs(0.0)); |
AppelSab | 12:3e084e1a699e | 550 | EMG_calibration(); |
AppelSab | 12:3e084e1a699e | 551 | pc.printf("Final: EMG1 = %f, EMG2 = %f \r\n",EMG_calibrated_max_1,EMG_calibrated_max_2); |
AppelSab | 12:3e084e1a699e | 552 | stateChanged = false; |
Duif | 10:3f93fdb90c29 | 553 | } |
Duif | 10:3f93fdb90c29 | 554 | |
AppelSab | 12:3e084e1a699e | 555 | // State change logic |
AppelSab | 12:3e084e1a699e | 556 | |
AppelSab | 12:3e084e1a699e | 557 | if (currentState == EMG_CLBRT && stateChanged == false){ |
AppelSab | 12:3e084e1a699e | 558 | pc.printf("EMG calibration has ended. \n\r"); |
AppelSab | 12:3e084e1a699e | 559 | currentState = WAITING4SIGNAL; |
AppelSab | 12:3e084e1a699e | 560 | stateChanged = true; |
AppelSab | 12:3e084e1a699e | 561 | } |
AppelSab | 6:a02ad75f0333 | 562 | if (Fail_button == 0) |
AppelSab | 6:a02ad75f0333 | 563 | { |
AppelSab | 6:a02ad75f0333 | 564 | currentState = FAILURE_MODE; |
AppelSab | 6:a02ad75f0333 | 565 | stateChanged = true; |
AppelSab | 12:3e084e1a699e | 566 | } |
AppelSab | 12:3e084e1a699e | 567 | |
AppelSab | 12:3e084e1a699e | 568 | break; |
AppelSab | 12:3e084e1a699e | 569 | **/ |
AppelSab | 12:3e084e1a699e | 570 | |
AppelSab | 6:a02ad75f0333 | 571 | case HOMING: |
AppelSab | 6:a02ad75f0333 | 572 | // Description: |
AppelSab | 6:a02ad75f0333 | 573 | // Robot moves to the home starting configuration |
arnouddomhof | 9:8b2d6ec577e3 | 574 | pc.printf("HOMING \r\n"); |
AppelSab | 6:a02ad75f0333 | 575 | led_red = 0; led_green = 1; led_red = 0; // Colouring the led PURPLE |
arnouddomhof | 13:a2e281d5de89 | 576 | motor1_pwm.period_us(60); // Period is 60 microseconde |
arnouddomhof | 13:a2e281d5de89 | 577 | motor2_pwm.period_us(60); |
arnouddomhof | 13:a2e281d5de89 | 578 | |
AppelSab | 12:3e084e1a699e | 579 | // Actions |
AppelSab | 12:3e084e1a699e | 580 | timer.start(); //Start timer to get time in the state "MOTOR_ANGLE_CLRBRT" |
arnouddomhof | 13:a2e281d5de89 | 581 | if(stateChanged){ |
arnouddomhof | 13:a2e281d5de89 | 582 | motoraansturinghoming(); |
arnouddomhof | 13:a2e281d5de89 | 583 | stateChanged = true; |
arnouddomhof | 13:a2e281d5de89 | 584 | } |
arnouddomhof | 13:a2e281d5de89 | 585 | |
AppelSab | 12:3e084e1a699e | 586 | |
AppelSab | 12:3e084e1a699e | 587 | // State transition logic |
AppelSab | 12:3e084e1a699e | 588 | time_in_state = timer.read(); // Determine if this state has run for long enough. |
arnouddomhof | 13:a2e281d5de89 | 589 | if(time_in_state > 5.0f && vel_1 < 1.1f && vel_2 < 1.1f) |
AppelSab | 12:3e084e1a699e | 590 | { |
AppelSab | 12:3e084e1a699e | 591 | pc.printf("Homing has ended. We are now in reference position. \n\r"); |
AppelSab | 12:3e084e1a699e | 592 | timer.stop(); // Stop timer for this state |
AppelSab | 12:3e084e1a699e | 593 | timer.reset(); // Reset timer for this state |
AppelSab | 12:3e084e1a699e | 594 | motor1_pwm.write(fabs(0.0)); // Send PWM values to motor |
AppelSab | 12:3e084e1a699e | 595 | motor2_pwm.write(fabs(0.0)); |
AppelSab | 12:3e084e1a699e | 596 | Encoder1.reset(); // Reset Encoders when arrived at zero-position |
AppelSab | 12:3e084e1a699e | 597 | Encoder2.reset(); |
arnouddomhof | 13:a2e281d5de89 | 598 | track = 1; |
AppelSab | 12:3e084e1a699e | 599 | |
AppelSab | 12:3e084e1a699e | 600 | currentState = WAITING4SIGNAL; // Switch to next state (EMG_CLRBRT). |
AppelSab | 12:3e084e1a699e | 601 | stateChanged = true; |
AppelSab | 12:3e084e1a699e | 602 | } |
AppelSab | 6:a02ad75f0333 | 603 | if (Fail_button == 0) |
AppelSab | 12:3e084e1a699e | 604 | { |
AppelSab | 12:3e084e1a699e | 605 | currentState = FAILURE_MODE; |
AppelSab | 12:3e084e1a699e | 606 | stateChanged = true; |
AppelSab | 12:3e084e1a699e | 607 | } |
arnouddomhof | 13:a2e281d5de89 | 608 | |
arnouddomhof | 13:a2e281d5de89 | 609 | |
AppelSab | 6:a02ad75f0333 | 610 | break; |
AppelSab | 12:3e084e1a699e | 611 | |
AppelSab | 6:a02ad75f0333 | 612 | case WAITING4SIGNAL: |
AppelSab | 6:a02ad75f0333 | 613 | // Description: |
AppelSab | 6:a02ad75f0333 | 614 | // In this state the robot waits for an action to occur. |
arnouddomhof | 9:8b2d6ec577e3 | 615 | |
AppelSab | 6:a02ad75f0333 | 616 | led_red = 0; led_green = 0; led_blue = 0; // Colouring the led WHITE |
AppelSab | 6:a02ad75f0333 | 617 | |
AppelSab | 6:a02ad75f0333 | 618 | // Requirements to move to the next state: |
AppelSab | 6:a02ad75f0333 | 619 | // If a certain button is pressed we move to the corresponding |
AppelSab | 6:a02ad75f0333 | 620 | // state (MOVE_W_DEMO, MOVE_W_EMG or SHUTDOWN) |
arnouddomhof | 9:8b2d6ec577e3 | 621 | |
arnouddomhof | 9:8b2d6ec577e3 | 622 | if (button_clbrt_home == 0) |
AppelSab | 6:a02ad75f0333 | 623 | { |
arnouddomhof | 9:8b2d6ec577e3 | 624 | currentState = MOTOR_ANGLE_CLBRT; |
arnouddomhof | 9:8b2d6ec577e3 | 625 | stateChanged = true; |
arnouddomhof | 9:8b2d6ec577e3 | 626 | pc.printf("Starting Calibration \n\r"); |
AppelSab | 6:a02ad75f0333 | 627 | } |
arnouddomhof | 13:a2e281d5de89 | 628 | else if (button_Demo == 0) |
AppelSab | 6:a02ad75f0333 | 629 | { |
arnouddomhof | 9:8b2d6ec577e3 | 630 | currentState = MOVE_W_DEMO; |
AppelSab | 12:3e084e1a699e | 631 | stateChanged = true; |
AppelSab | 12:3e084e1a699e | 632 | pc.printf("DEMO mode \r\n"); |
arnouddomhof | 9:8b2d6ec577e3 | 633 | wait(1.0f); |
AppelSab | 6:a02ad75f0333 | 634 | } |
arnouddomhof | 13:a2e281d5de89 | 635 | else if (button_Emg == 0) |
AppelSab | 6:a02ad75f0333 | 636 | { |
arnouddomhof | 9:8b2d6ec577e3 | 637 | currentState = MOVE_W_EMG; |
AppelSab | 12:3e084e1a699e | 638 | stateChanged = true; |
AppelSab | 12:3e084e1a699e | 639 | pc.printf("EMG mode\r\n"); |
arnouddomhof | 9:8b2d6ec577e3 | 640 | wait(1.0f); |
AppelSab | 6:a02ad75f0333 | 641 | } |
arnouddomhof | 9:8b2d6ec577e3 | 642 | else if (Fail_button == 0) |
AppelSab | 6:a02ad75f0333 | 643 | { |
AppelSab | 6:a02ad75f0333 | 644 | currentState = FAILURE_MODE; |
AppelSab | 6:a02ad75f0333 | 645 | stateChanged = true; |
AppelSab | 6:a02ad75f0333 | 646 | } |
arnouddomhof | 9:8b2d6ec577e3 | 647 | |
AppelSab | 6:a02ad75f0333 | 648 | break; |
AppelSab | 12:3e084e1a699e | 649 | |
AppelSab | 12:3e084e1a699e | 650 | |
AppelSab | 6:a02ad75f0333 | 651 | case MOVE_W_DEMO: |
AppelSab | 6:a02ad75f0333 | 652 | // Description: |
AppelSab | 6:a02ad75f0333 | 653 | // In this state the robot follows a preprogrammed shape, e.g. |
AppelSab | 6:a02ad75f0333 | 654 | // a square. |
arnouddomhof | 13:a2e281d5de89 | 655 | motor1_pwm.period_us(60); // Period is 60 microseconde |
arnouddomhof | 13:a2e281d5de89 | 656 | motor2_pwm.period_us(60); |
arnouddomhof | 13:a2e281d5de89 | 657 | |
AppelSab | 6:a02ad75f0333 | 658 | led_red = 1; led_green = 1; led_blue = 0; // Colouring the led GREEN |
AppelSab | 6:a02ad75f0333 | 659 | |
AppelSab | 6:a02ad75f0333 | 660 | // Requirements to move to the next state: |
AppelSab | 6:a02ad75f0333 | 661 | // When the home button or the failure button is pressed, we |
AppelSab | 6:a02ad75f0333 | 662 | // will the move to the corresponding state. |
AppelSab | 6:a02ad75f0333 | 663 | |
AppelSab | 12:3e084e1a699e | 664 | // Actions |
AppelSab | 12:3e084e1a699e | 665 | if(stateChanged){ |
AppelSab | 12:3e084e1a699e | 666 | motoraansturingdemo(); |
AppelSab | 12:3e084e1a699e | 667 | stateChanged = true; |
AppelSab | 12:3e084e1a699e | 668 | } |
arnouddomhof | 9:8b2d6ec577e3 | 669 | |
AppelSab | 12:3e084e1a699e | 670 | // State transition |
arnouddomhof | 9:8b2d6ec577e3 | 671 | if (button_clbrt_home == 0) |
AppelSab | 6:a02ad75f0333 | 672 | { |
arnouddomhof | 9:8b2d6ec577e3 | 673 | currentState = HOMING; |
arnouddomhof | 9:8b2d6ec577e3 | 674 | stateChanged = true; |
arnouddomhof | 9:8b2d6ec577e3 | 675 | pc.printf("Moving home\n\r"); |
AppelSab | 6:a02ad75f0333 | 676 | } |
arnouddomhof | 9:8b2d6ec577e3 | 677 | else if (Fail_button == 0) |
AppelSab | 6:a02ad75f0333 | 678 | { |
AppelSab | 6:a02ad75f0333 | 679 | currentState = FAILURE_MODE; |
AppelSab | 6:a02ad75f0333 | 680 | stateChanged = true; |
AppelSab | 6:a02ad75f0333 | 681 | } |
AppelSab | 6:a02ad75f0333 | 682 | break; |
arnouddomhof | 14:059fd8f6cbfd | 683 | |
arnouddomhof | 14:059fd8f6cbfd | 684 | case MOVE_W_KNOPJES: |
arnouddomhof | 14:059fd8f6cbfd | 685 | |
arnouddomhof | 14:059fd8f6cbfd | 686 | motor1_pwm.period_us(60); // Period is 60 microseconde |
arnouddomhof | 14:059fd8f6cbfd | 687 | motor2_pwm.period_us(60); |
arnouddomhof | 14:059fd8f6cbfd | 688 | led_red = 1; led_green = 1; led_blue = 0; // Colouring the led BLUE |
arnouddomhof | 14:059fd8f6cbfd | 689 | |
arnouddomhof | 14:059fd8f6cbfd | 690 | // Actions |
arnouddomhof | 14:059fd8f6cbfd | 691 | if (stateChanged) { |
arnouddomhof | 14:059fd8f6cbfd | 692 | motoraansturingknopjes(); |
arnouddomhof | 14:059fd8f6cbfd | 693 | stateChanged = true; |
arnouddomhof | 14:059fd8f6cbfd | 694 | } |
arnouddomhof | 14:059fd8f6cbfd | 695 | |
arnouddomhof | 14:059fd8f6cbfd | 696 | potwaarde1 = potmeter1.read(); // Lees de potwaardes uit |
arnouddomhof | 14:059fd8f6cbfd | 697 | |
arnouddomhof | 14:059fd8f6cbfd | 698 | pot1 = potwaarde1*2 - 1; // Scale van -1 tot 1 ipv. 0 tot 1 |
arnouddomhof | 14:059fd8f6cbfd | 699 | if (pot1 < 0) { |
arnouddomhof | 14:059fd8f6cbfd | 700 | dirx = -1; |
arnouddomhof | 14:059fd8f6cbfd | 701 | } |
arnouddomhof | 14:059fd8f6cbfd | 702 | else if (pot1 >= 0) { |
arnouddomhof | 14:059fd8f6cbfd | 703 | dirx = 1; |
arnouddomhof | 14:059fd8f6cbfd | 704 | } |
arnouddomhof | 14:059fd8f6cbfd | 705 | |
arnouddomhof | 14:059fd8f6cbfd | 706 | potwaarde2 = potmeter2.read(); // Lees de potwaardes uit |
arnouddomhof | 14:059fd8f6cbfd | 707 | |
arnouddomhof | 14:059fd8f6cbfd | 708 | pot2 = potwaarde2*2 - 1; // Scale van -1 tot 1 ipv. 0 tot 1 |
arnouddomhof | 14:059fd8f6cbfd | 709 | if (pot2 < 0) { |
arnouddomhof | 14:059fd8f6cbfd | 710 | diry = -1; |
arnouddomhof | 14:059fd8f6cbfd | 711 | } |
arnouddomhof | 14:059fd8f6cbfd | 712 | else if (pot2 >= 0) { |
arnouddomhof | 14:059fd8f6cbfd | 713 | diry = 1; |
arnouddomhof | 14:059fd8f6cbfd | 714 | } |
arnouddomhof | 14:059fd8f6cbfd | 715 | |
arnouddomhof | 14:059fd8f6cbfd | 716 | sx = !buttonx.read(); //this has to be replaced with the input from the EMG, this then functions like a button |
arnouddomhof | 14:059fd8f6cbfd | 717 | sy = !buttony.read(); //this has to be replaced with the input from the EMG, this then functions like a button |
arnouddomhof | 14:059fd8f6cbfd | 718 | |
arnouddomhof | 14:059fd8f6cbfd | 719 | // State transition |
arnouddomhof | 14:059fd8f6cbfd | 720 | if (button_clbrt_home == 0) |
arnouddomhof | 14:059fd8f6cbfd | 721 | { |
arnouddomhof | 14:059fd8f6cbfd | 722 | currentState = HOMING; |
arnouddomhof | 14:059fd8f6cbfd | 723 | stateChanged = true; |
arnouddomhof | 14:059fd8f6cbfd | 724 | pc.printf("Moving home\n\r"); |
arnouddomhof | 14:059fd8f6cbfd | 725 | } |
arnouddomhof | 14:059fd8f6cbfd | 726 | else if (Fail_button == 0) |
arnouddomhof | 14:059fd8f6cbfd | 727 | { |
arnouddomhof | 14:059fd8f6cbfd | 728 | currentState = FAILURE_MODE; |
arnouddomhof | 14:059fd8f6cbfd | 729 | stateChanged = true; |
arnouddomhof | 14:059fd8f6cbfd | 730 | } |
arnouddomhof | 14:059fd8f6cbfd | 731 | |
arnouddomhof | 14:059fd8f6cbfd | 732 | break; |
arnouddomhof | 14:059fd8f6cbfd | 733 | |
AppelSab | 12:3e084e1a699e | 734 | |
AppelSab | 12:3e084e1a699e | 735 | /** |
AppelSab | 6:a02ad75f0333 | 736 | case MOVE_W_EMG: |
AppelSab | 6:a02ad75f0333 | 737 | // Description: |
AppelSab | 6:a02ad75f0333 | 738 | // In this state the robot will be controlled by use of |
AppelSab | 6:a02ad75f0333 | 739 | // EMG-signals. |
AppelSab | 12:3e084e1a699e | 740 | |
AppelSab | 12:3e084e1a699e | 741 | // Actions |
AppelSab | 6:a02ad75f0333 | 742 | led_red = 1; led_green = 0; led_blue = 1; // Colouring the led GREEN |
AppelSab | 12:3e084e1a699e | 743 | ReadEMG(); |
AppelSab | 12:3e084e1a699e | 744 | if (stateChanged){ |
AppelSab | 12:3e084e1a699e | 745 | //ReadEMG(); |
AppelSab | 12:3e084e1a699e | 746 | //pc.printf(" emg1 = %g, emg2 = %g \n\r ", emg1_cal, emg2_cal); |
AppelSab | 12:3e084e1a699e | 747 | if (emg1_cal >= (threshold_EMG*EMG_calibrated_max_1)){ |
AppelSab | 12:3e084e1a699e | 748 | sx = 1; // The robot does have to move |
Mirjam | 7:d4090f334ce2 | 749 | } |
Mirjam | 7:d4090f334ce2 | 750 | else { |
AppelSab | 12:3e084e1a699e | 751 | sx = 0; // If the robot does not have to move |
Mirjam | 7:d4090f334ce2 | 752 | } |
Mirjam | 7:d4090f334ce2 | 753 | |
AppelSab | 12:3e084e1a699e | 754 | if(emg1_cal >= threshold_EMG*EMG_calibrated_max_2){ |
AppelSab | 12:3e084e1a699e | 755 | sy = 1; |
Mirjam | 7:d4090f334ce2 | 756 | } |
Mirjam | 7:d4090f334ce2 | 757 | else { |
AppelSab | 12:3e084e1a699e | 758 | sy = 0; |
Mirjam | 7:d4090f334ce2 | 759 | } |
AppelSab | 12:3e084e1a699e | 760 | |
AppelSab | 12:3e084e1a699e | 761 | motoraansturing(); |
AppelSab | 12:3e084e1a699e | 762 | stateChanged = true; |
AppelSab | 12:3e084e1a699e | 763 | } |
arnouddomhof | 9:8b2d6ec577e3 | 764 | |
AppelSab | 12:3e084e1a699e | 765 | // State transition logic |
arnouddomhof | 9:8b2d6ec577e3 | 766 | if (button_clbrt_home == 0) |
AppelSab | 6:a02ad75f0333 | 767 | { |
arnouddomhof | 9:8b2d6ec577e3 | 768 | currentState = MOTOR_ANGLE_CLBRT; |
arnouddomhof | 9:8b2d6ec577e3 | 769 | stateChanged = true; |
arnouddomhof | 9:8b2d6ec577e3 | 770 | pc.printf("Starting Calibration \n\r"); |
arnouddomhof | 9:8b2d6ec577e3 | 771 | } |
arnouddomhof | 9:8b2d6ec577e3 | 772 | else if (Fail_button == 0) |
AppelSab | 6:a02ad75f0333 | 773 | { |
AppelSab | 6:a02ad75f0333 | 774 | currentState = FAILURE_MODE; |
AppelSab | 6:a02ad75f0333 | 775 | stateChanged = true; |
AppelSab | 6:a02ad75f0333 | 776 | } |
AppelSab | 12:3e084e1a699e | 777 | break; |
AppelSab | 12:3e084e1a699e | 778 | **/ |
AppelSab | 12:3e084e1a699e | 779 | |
AppelSab | 6:a02ad75f0333 | 780 | case FAILURE_MODE: |
AppelSab | 6:a02ad75f0333 | 781 | // Description: |
AppelSab | 6:a02ad75f0333 | 782 | // This state is reached when the failure button is reached. |
AppelSab | 6:a02ad75f0333 | 783 | // In this state everything is turned off. |
AppelSab | 6:a02ad75f0333 | 784 | |
AppelSab | 6:a02ad75f0333 | 785 | led_red = 0; led_green = 1; led_blue = 1; // Colouring the led RED |
AppelSab | 6:a02ad75f0333 | 786 | // Actions |
AppelSab | 6:a02ad75f0333 | 787 | if (stateChanged) |
AppelSab | 6:a02ad75f0333 | 788 | { |
AppelSab | 6:a02ad75f0333 | 789 | motor1_pwm.write(fabs(0.0)); // Stop all motors! |
AppelSab | 6:a02ad75f0333 | 790 | motor2_pwm.write(fabs(0.0)); |
AppelSab | 6:a02ad75f0333 | 791 | pc.printf("FAILURE MODE \r\n PLEASE RESTART THE WHOLE ROBOT \r\n (and make sure this does not happen again) \r\n"); |
AppelSab | 6:a02ad75f0333 | 792 | stateChanged = false; |
AppelSab | 6:a02ad75f0333 | 793 | } |
AppelSab | 6:a02ad75f0333 | 794 | break; |
AppelSab | 6:a02ad75f0333 | 795 | |
AppelSab | 6:a02ad75f0333 | 796 | // State transition logic |
AppelSab | 6:a02ad75f0333 | 797 | // No state transition, you need to restart the robot. |
AppelSab | 6:a02ad75f0333 | 798 | |
AppelSab | 6:a02ad75f0333 | 799 | default: |
AppelSab | 6:a02ad75f0333 | 800 | // This state is a default state, this state is reached when |
AppelSab | 6:a02ad75f0333 | 801 | // the program somehow defies all of the other states. |
AppelSab | 6:a02ad75f0333 | 802 | |
AppelSab | 6:a02ad75f0333 | 803 | pc.printf("Unknown or unimplemented state reached!!! \n\r"); |
AppelSab | 6:a02ad75f0333 | 804 | led_red = 1; led_green = 1; led_blue = 1; // Colouring the led BLACK |
AppelSab | 6:a02ad75f0333 | 805 | for (int n = 0; n < 50; n++) // Making an SOS signal with the RED led |
AppelSab | 6:a02ad75f0333 | 806 | { |
AppelSab | 6:a02ad75f0333 | 807 | for (int i = 0; i < 6; i++) |
AppelSab | 6:a02ad75f0333 | 808 | { |
AppelSab | 6:a02ad75f0333 | 809 | led_red = !led_red; |
AppelSab | 6:a02ad75f0333 | 810 | wait(0.6f); |
AppelSab | 6:a02ad75f0333 | 811 | } |
AppelSab | 6:a02ad75f0333 | 812 | wait(0.4f); |
AppelSab | 6:a02ad75f0333 | 813 | for (int i = 0 ; i < 6; i++) |
AppelSab | 6:a02ad75f0333 | 814 | { |
AppelSab | 6:a02ad75f0333 | 815 | led_red = !led_red; |
AppelSab | 6:a02ad75f0333 | 816 | wait(0.2f); |
AppelSab | 6:a02ad75f0333 | 817 | } |
AppelSab | 6:a02ad75f0333 | 818 | wait(0.4f); |
AppelSab | 12:3e084e1a699e | 819 | } |
arnouddomhof | 3:dca57056e5cb | 820 | } |
AppelSab | 12:3e084e1a699e | 821 | |
AppelSab | 6:a02ad75f0333 | 822 | } |
AppelSab | 12:3e084e1a699e | 823 | |
AppelSab | 6:a02ad75f0333 | 824 | // -------------------------------- |
AppelSab | 6:a02ad75f0333 | 825 | // ----- MAIN LOOP ---------------- |
AppelSab | 6:a02ad75f0333 | 826 | // -------------------------------- |
AppelSab | 6:a02ad75f0333 | 827 | |
Mirjam | 0:46dbc9b620d8 | 828 | int main() |
Mirjam | 0:46dbc9b620d8 | 829 | { |
Mirjam | 4:a0c1c021026b | 830 | // Switch all LEDs off |
arnouddomhof | 3:dca57056e5cb | 831 | led_red = 1; |
arnouddomhof | 3:dca57056e5cb | 832 | led_green = 1; |
arnouddomhof | 3:dca57056e5cb | 833 | led_blue = 1; |
AppelSab | 6:a02ad75f0333 | 834 | |
arnouddomhof | 3:dca57056e5cb | 835 | pc.baud(115200); |
arnouddomhof | 8:2afb66572fc4 | 836 | |
AppelSab | 12:3e084e1a699e | 837 | pc.printf("\r\n _______________ FEED ME! _______________ \r\n"); |
arnouddomhof | 8:2afb66572fc4 | 838 | wait(0.5f); |
arnouddomhof | 8:2afb66572fc4 | 839 | pc.printf("WAITING... \r\n"); |
arnouddomhof | 8:2afb66572fc4 | 840 | |
AppelSab | 12:3e084e1a699e | 841 | //sample.attach(&ReadEMG, 0.02f); |
AppelSab | 6:a02ad75f0333 | 842 | StateMachine.attach(&ProcessStateMachine, 0.005f); // Run statemachine 200 times per second |
AppelSab | 12:3e084e1a699e | 843 | |
AppelSab | 12:3e084e1a699e | 844 | |
AppelSab | 12:3e084e1a699e | 845 | InterruptIn directionx(SW3); |
AppelSab | 12:3e084e1a699e | 846 | directionx.fall(ChangeDirectionX); //change the direction of the setpoint in x direction |
AppelSab | 12:3e084e1a699e | 847 | InterruptIn directiony(SW2); |
AppelSab | 12:3e084e1a699e | 848 | directiony.fall(ChangeDirectionY); //change the direction of the setpoint in y direction |
AppelSab | 12:3e084e1a699e | 849 | |
Mirjam | 0:46dbc9b620d8 | 850 | while (true) { |
arnouddomhof | 13:a2e281d5de89 | 851 | |
arnouddomhof | 13:a2e281d5de89 | 852 | if (currentState == MOVE_W_DEMO) { |
arnouddomhof | 13:a2e281d5de89 | 853 | pc.printf("Setpointx: %0.2f, Setpointy: %0.2f, q1_diff: %0.2f, q2_diff: %0.2f, error1: %0.2f, error2: %0.2f, U1: %0.2f, U2: %0.2f\r\n", setpointx,setpointy,q1_diff,q2_diff,error1,error2,U1,U2); |
arnouddomhof | 13:a2e281d5de89 | 854 | |
arnouddomhof | 13:a2e281d5de89 | 855 | if (track == 1) { |
arnouddomhof | 13:a2e281d5de89 | 856 | pc.printf("Gaat naar positie 1\r\n"); |
arnouddomhof | 13:a2e281d5de89 | 857 | } |
arnouddomhof | 13:a2e281d5de89 | 858 | else if (track == 12) { |
arnouddomhof | 13:a2e281d5de89 | 859 | pc.printf("Gaat naar positie 2\r\n"); |
arnouddomhof | 13:a2e281d5de89 | 860 | } |
arnouddomhof | 13:a2e281d5de89 | 861 | |
arnouddomhof | 13:a2e281d5de89 | 862 | else if (track == 23) { |
arnouddomhof | 13:a2e281d5de89 | 863 | pc.printf("Gaat naar positie 3\r\n"); |
arnouddomhof | 13:a2e281d5de89 | 864 | } |
arnouddomhof | 13:a2e281d5de89 | 865 | else if (track == 34) { |
arnouddomhof | 13:a2e281d5de89 | 866 | pc.printf("Gaat naar positie 4\r\n"); |
arnouddomhof | 13:a2e281d5de89 | 867 | } |
arnouddomhof | 13:a2e281d5de89 | 868 | } |
arnouddomhof | 13:a2e281d5de89 | 869 | |
arnouddomhof | 13:a2e281d5de89 | 870 | wait(0.5f); |
AppelSab | 6:a02ad75f0333 | 871 | } |
AppelSab | 6:a02ad75f0333 | 872 | } |
AppelSab | 6:a02ad75f0333 | 873 | |
arnouddomhof | 5:07e401cb251d | 874 |