AHRS

Dependencies:   Eigen

Dependents:   IndNav_QK3_T265

AHRS.cpp

Committer:
altb2
Date:
2019-10-09
Revision:
20:1182bc29c195
Parent:
19:42ea6dd68185
Child:
21:31e01d3e0143

File content as of revision 20:1182bc29c195:

#include "AHRS.h"
#include "Mahony.h"
#include "MadgwickAHRS.h"
#include "EKF.h"

#define PI 3.141592653589793

using namespace std;

//OLD: AHRS::AHRS(uint8_t filtertype, float TS) : RPY_filter(TS), csAG(PA_15),csM(PD_2), spi(PC_12, PC_11, PC_10), imu(&spi, &csM, &csAG), thread(osPriorityBelowNormal, 4096){
AHRS::AHRS(uint8_t filtertype, float TS, bool calib) :  imu(PC_9, PA_8, 0xD6, 0x3C), ekf(TS), Mahony_filter(TS)//, dout3(PA_10)
{
    /* setup storage */
    this->Ts = TS;
    float gyro[3], accel[3], magnet[3];
    for(uint8_t i = 0; i < 3; i++)  
        {
        gyro[i]   = 0.0f;
        accel[i]  = 0.0f;
        magnet[i] = 0.0f;
        }

    /* inform user if imu is not responsive */
    while (!imu.begin()) 
        {
        wait(1);
        printf("Failed to communicate with LSM9DS1.\r\n");
        }

    /* take mean value of N samples */
    uint8_t N = 200;
    if(calib) 
        {
        wait_ms(500);
        /* read and cumsum data */
        for(uint16_t i = 0; i < N; i++) {
            imu.readGyro();
            imu.readAccel();
            imu.readMag();
            gyro[0]   += imu.gyroX;
            gyro[1]   += imu.gyroY;
            gyro[2]   += imu.gyroZ;
            accel[0]  += imu.accX;
            accel[1]  += imu.accY;
            accel[2]  += imu.accZ;
            magnet[0] += imu.magX;
            magnet[1] += imu.magY;
            magnet[2] += imu.magZ;
            wait_ms(10);
        }
        /* calculate mean value */
        for(uint16_t i = 0; i < 3; i++) {
            gyro[i] /= (float)N;
            accel[i] /= (float)N;
            magnet[i] /= (float)N;
            }
        printf("Correct gyro: %1.5f %1.5f %1.5f accel: %1.5f %1.5f %1.5f magnet: %1.5f %1.5f %1.5f\r\n", gyro[0], gyro[1], gyro[2], accel[0], accel[1], accel[2], magnet[0], magnet[1], magnet[2]);
    }

    /* gyro */
    raw_gx2gx.setup( 1.0, gyro[0]);
    raw_gy2gy.setup(-1.0, gyro[1]);  // y-axis reversed (lefthanded system)
    raw_gz2gz.setup( 1.0, gyro[2]);

    // pmic, 23.09.2019
    // calibration for acc and mag needs to be redone on real copter pes board with power on and spinning motors (no propellers)

    /* accel */
    raw_ax2ax.setup( 1.0f, accel[0]);  // use gain and offset here
    raw_ay2ay.setup(-1.0f, accel[1]);  // y-axis reversed // was -1,0.0
    raw_az2az.setup( 1.0,  0.0f);  // do not remove gravity!

    /* magnet */
    /* Caibration on 25.9.2019 QK2 delivers:
    A=[ 0.9904   0   0; 0.0605    1.0158  0;0.0397   -0.0199    0.9938]
    b0= [0.4160    0.1587   -0.0998], see T:\T-IMS-IndNav\01_Technisches\09_PES_Board_IMU\meas_mag_aFMA\calib_mag_QK2.m
    */
    raw_mx2mx.setup( 0.9904f,0.4160f);
    raw_my2my.setup( 1.0158f, 0.1587f);
    raw_mz2mz.setup(-0.9938f, -0.0998f);
    this->magnet_cal_0[0] = raw_mx2mx(magnet[0]);
    this->magnet_cal_0[1] = raw_my2my(magnet[1]);
    this->magnet_cal_0[2] = raw_mz2mz(magnet[2]);

    local_time = 0.0;
    
    this->filtertype = filtertype;
    // the thread starts

}

AHRS::~AHRS() {}

void AHRS::update(void)
{   
    //dout3.write(1);
    if(filtertype !=1)
        {
        Mahony_filter.update(data.sens_gyr[0],data.sens_gyr[1],data.sens_gyr[2],data.sens_acc[0],data.sens_acc[1],data.sens_acc[2],0.0f,0.0f,0.0f);
        data.est_RPY[0] = Mahony_filter.getRollRadians();
        data.est_RPY[1] = Mahony_filter.getPitchRadians();
        }
    else
        {
        ekf.update(data.sens_gyr[0],data.sens_gyr[1],data.sens_gyr[2],data.sens_acc[0],data.sens_acc[1],data.sens_acc[2]);
        data.est_RPY[0] = ekf.get_est_state(0);
        data.est_RPY[1] = ekf.get_est_state(1);
        }
 //   dout3.write(0);
}
void AHRS::update_as_thread(void)
{   
    while(1)
        {
        thread.signal_wait(signal);
//        dout3.write(1);
        if(filtertype !=1)
            {
            Mahony_filter.update(data.sens_gyr[0],data.sens_gyr[1],data.sens_gyr[2],data.sens_acc[0],data.sens_acc[1],data.sens_acc[2],0.0f,0.0f,0.0f);
            data.est_RPY[0] = Mahony_filter.getRollRadians();
            data.est_RPY[1] = Mahony_filter.getPitchRadians();
            }
        else
            {
            ekf.update(data.sens_gyr[0],data.sens_gyr[1],data.sens_gyr[2],data.sens_acc[0],data.sens_acc[1],data.sens_acc[2]);
            data.est_RPY[0] = ekf.get_est_state(0);
            data.est_RPY[1] = ekf.get_est_state(1);
            }
//            dout3.write(0);
        }
}
void AHRS::read_imu_sensors(void){
    imu.readGyro();
    imu.readAccel();
    imu.readMag();
    data.sens_gyr[0] = raw_gx2gx(imu.gyroX);
    data.sens_gyr[1] = raw_gy2gy(imu.gyroY);
    data.sens_gyr[2] = raw_gz2gz(imu.gyroZ);
    data.sens_acc[0] = raw_ax2ax(imu.accX);
    data.sens_acc[1] = raw_ay2ay(imu.accY);
    data.sens_acc[2] = raw_az2az(imu.accZ);
    data.sens_mag[0] = raw_mx2mx(imu.magX);
    data.sens_mag[1] = raw_my2my(imu.magY);
    data.sens_mag[2] = raw_mz2mz(imu.magZ);
}
// ------------------- start controllers ----------------
void AHRS::start_loop(void){
    thread.start(callback(this, &AHRS::update_as_thread));
    ticker.attach(callback(this, &AHRS::sendSignal), Ts);
}

// this is for realtime OS
void AHRS::sendSignal() {
    thread.signal_set(signal);
}