Example for updating the MTi-1's firmware. Uses a platform independent, retargetable pure C implementation of the firmware updater protocol.
Important Information
This example is deprecated and no longer maintained. There are new embedded examples available in the MT SDK folder of the MT Software Suite. For more information please visit: https://xsenstechnologies.force.com/knowledgebase/s/article/Introduction-to-the-MT-SDK-programming-examples-for-MTi-devices
Overview
The purpose of this example is to demonstrate how to update the firmware of an MTi-1 series module using the FwUpdate library. The FwUpdate library is provided as C source in the xbus directory. It is setup to be platform independent and easily retargetable. The user must provide an instance of the FwUpdate struct having the platform specific callback function filled in. Refer to fwupdate.h for more information.
The example embeds an Xsens Firmware File (XFF). The XFF used is the official 1.1.1 MTi1-series firmware release. If needed binary copies of specific firmware files can be requested through our support department. We used srecord to convert the XFF to the C data array (See xffdata.c and xffdata.h). When using requested Xsens provided XFF file use srecord as follows:
srec_cat firmware.xff -binary -o xffdata.c -C-array g_xffData -include
This example updates the firmware only. The eMTS (extended Motion Tracker Settings) are not updated. This means that in rare cases (e.g. when hardware filter parameters are updated), you do not take full advantage of the filter update. Most functionality, such as filter behavior, outputs, output formats and communication options are updated with this example. Please use the Windows/Linux FW updater when HW parameters are updated (see release notes to check if HW parameters were changed).
Communication with the MTi-1 series device is implemented using a either a full-duplex UART, I2C or SPI bus. A reset line is used to reset the MTi during initialization. Data is output to a host PC terminal using a second UART.
Supported Platforms
The program has been tested on the following mbed platforms:
Porting to other mbed platforms is relatively be easy by adding its specific port information to board.h. It is however necessary that the board has sufficient code flash/ROM to keep a copy of the XFF (150K). In case you store the XFF data in a different memory (e.g. an external memory) you must re-implement the readXffData callback function.
Using the Example
- To use the example program connect one of the supported mbed boards to the host PC and download the application from the mbed online compiler to the target device.
- With the mbed board unpowered (USB disconnected) wire the mbed board to the MTi-1 development board. The following connections are required:
- In all cases:
- 5V (or 3V3) main supply to VDD (P300-1)
- MCU IO voltage (IORef) to VDDIO (P300-2)
- GND to GND (P300-3)
- MT_NRESET to nRST P(300-5)
- For I2C communication:
- MT_SCL to I2C_SCL (P300-9)
- MT_SDA to I2C_SDA (P300-11)
- MT_DRDY to DRDY (P300-15)
- MT_ADD0 to ADD0 (P300-17)
- MT_ADD1 to ADD0 (P300-19)
- MT_ADD2 to ADD0 (P300-21)
- For SPI communication:
- MT_DRDY to DRDY (P300-15)
- MT_SCLK to SPI_SCK (P300-17)
- MT_MISO to SPI_MISO (P300-19)
- MT_MOSI to SPI_MOSI (P300-21)
- MT_nCS to SPI_nCS (P300-23)
- For UART communication:
- MT_RX to UART_TX (P300-9)
- MT_TX to UART_RX (P300-11)
- In all cases:
Information
Check the defines in board.h to determine which IO pins are used for the MT_xxx connections on each mbed platform.
Information
The active peripheral (I2C, SPI or UART) is selected on the MTi-1 development board through the PSEL0 and PSEL1 switches. Look on the bottom of the development board for the correct settings.
- Connect to the target using a serial terminal. The application is configured for:
- Baudrate = 921600
- Stop bits = 1
- No parity bits
- No flow control
- Reset the mbed board.
- You should be presented with a simple user interface as shown below:
Embedded firmware updater example Interface: I2C h: Print this text c: GotoConfig m: GotoMeasurement r: Soft reset the module b: GotoBootloader v: Request firmware revision d: Request deviceId u: Start firmware update (make sure module is in bootloader mode) x: Hard reset the module and make it stay in bootloader
To do a firmware update
- Make the MTi-1 enter bootloader mode. Either through 'b' or 'x'
- You can check if the MTi-1 is in bootloader by requesting the firmware revision ('v'). The bootloader revision always starts with 255
- Press 'u' to start the firmware update
- After about 20 seconds the "Firmware update ready" message should appear indicating the update succeeded
- The device should automatically reboot into its application firmware (use 'v' to verify)
mtinterface/mtinterface.cpp
- Committer:
- tjerkhofmeijer
- Date:
- 2016-12-21
- Revision:
- 6:fd42cb49cdd0
- Parent:
- 5:63985ca16eb9
File content as of revision 6:fd42cb49cdd0:
/*! * \file * \copyright Copyright (C) Xsens Technologies B.V., 2015. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. */ #include "mtinterface.h" #include <stdlib.h> #include <assert.h> #define XBUS_ERROR_MID 0x42 /*! \class MtInterface \brief Abstract interface for communicating with an Xsens Motion Tracker (MT) on an mbed platform MtInterface defines an abstract interface for communicating with a Motion Tracker (MT) via xbus messages. Depending on the type of communication interface a specific implementation must be made which inherits from MtInterface. */ static MtInterface* g_thisPtr = 0; /*! \brief Callback function for XbusParserCallback for allocating a block of memory \param bufferSize buffer size */ static void *allocateMessageDataWrapper(size_t bufferSize) { return g_thisPtr->allocateMessageData(bufferSize); } /*! \brief Callback function for XbusParserCallback for deallocating a block of memory \param buffer Pointer to the buffer that should be deallocated */ static void deallocateMessageDataWrapper(void const *buffer) { g_thisPtr->deallocateMessageData(buffer); } /*! \brief Callback function for XbusParserCallback that handles completely received xbus messages from the motion tracker \param Pointer to the received xbus message */ static void xbusParserCallbackFunctionWrapper(struct XbusMessage const *message) { g_thisPtr->xbusParserCallbackFunction(message); } /*! \brief Constructs an MtInterface. * \note Only a single instance of MtInterface is allowed */ MtInterface::MtInterface() { assert(g_thisPtr == 0); g_thisPtr = this; // Create an xbusParser: XbusParserCallback xbusCallback = {}; xbusCallback.allocateBuffer = allocateMessageDataWrapper; xbusCallback.deallocateBuffer = deallocateMessageDataWrapper; xbusCallback.handleMessage = xbusParserCallbackFunctionWrapper; m_xbusParser = XbusParser_create(&xbusCallback); } /*! \brief Destructor */ MtInterface::~MtInterface() { g_thisPtr = 0; } /*! \brief Returns the next message from the rx queue or NULL if the queue is empty \note The caller must dealocate the message with releaseXbusMessage() after use. */ XbusMessage *MtInterface::getXbusMessage() { XbusMessage *xbusMessage = NULL; osEvent ev = m_xbusRxQueue.get(1); if (ev.status == osEventMessage) { xbusMessage = (XbusMessage*)ev.value.p; } return xbusMessage; } /*! \brief Releases an xbus message previously obtained by a call to getXbusMessage() \param xbusMessage that should be released */ void MtInterface::releaseXbusMessage(XbusMessage *xbusMessage) { if (xbusMessage != NULL) { deallocateMessageData(xbusMessage->m_data); m_xbusMessagePool.free(xbusMessage); } } /*! \brief Callback function for XbusParserCallback to allocate a block of memory \param bufferSize buffer size */ void *MtInterface::allocateMessageData(size_t bufferSize) { assert(bufferSize < m_rxBufferSize); void *ptr = m_memoryPool.alloc(); assert(ptr); return ptr; } /*! \brief Callback function for XbusParserCallback to deallocate a block of memory \param buffer Pointer to the buffer that should be deallocated */ void MtInterface::deallocateMessageData(void const *buffer) { m_memoryPool.free((uint8_t(*)[m_rxBufferSize])buffer); } /*! \brief Callback function for XbusParserCallback that handles a completely received xbus message from the motion tracker \param message Pointer to the received xbus message */ void MtInterface::xbusParserCallbackFunction(struct XbusMessage const *message) { XbusMessage *xbusMessage = m_xbusMessagePool.alloc(); assert(xbusMessage); memcpy(xbusMessage, message, sizeof(XbusMessage)); m_xbusRxQueue.put(xbusMessage); } /*! \brief Sends an Xbus message and waits for the related acknowledge \returns 0 if no related message was received. Pointer to the message otherwise. This message can also be an error message. */ XbusMessage* MtInterface::sendAndWait(const XbusMessage* xbusMessage) { sendXbusMessage(xbusMessage); Timer timer; timer.start(); bool waiting = true; uint8_t expectedMid = xbusMessage->m_mid + 1; while(waiting && (timer.read_ms() < 1000)) { process(); XbusMessage* xbusMessage = getXbusMessage(); if (xbusMessage) { if (xbusMessage->m_mid == expectedMid || xbusMessage->m_mid == XBUS_ERROR_MID) { return xbusMessage; } releaseXbusMessage(xbusMessage); } } return NULL; }