servo_tread + imu

Dependencies:   Servo mbed-rtos mbed

Fork of Turtlecase by TurtleBot

Revision:
1:5609c1795245
Parent:
0:812929a5d5ad
--- a/main.cpp	Fri Feb 09 15:59:52 2018 +0000
+++ b/main.cpp	Tue Feb 20 11:06:35 2018 +0000
@@ -1,85 +1,72 @@
+//////////////////////////////////////////////////////////////////
+// project:   TurtleBot Project                                 //
+// code v.:   1.0                                               //  
+// board  :   NUCLEO-F303KB                                     //
+// date   :   20/2/2018                                         //
+// code by:   Coding on Earth by Humans                         //
+////////////////////////////////////////////////////////////////// 
+
+///////////////////////// init    ////////////////////////////////
+//////////////////////////////////////////////////////////////////
 #include "mbed.h"
-#include "Servo.h"
 #include "rtos.h"
 
 Serial pc(USBTX, USBRX);
- 
-Servo Servo1(D7);
+
+Thread thread1;         //control servo left
+Thread thread2;         //control servo right
+Thread thread3;         //read data from IMU
+
+/////////////////////////   IMU   ////////////////////////////////
+//////////////////////////////////////////////////////////////////
+#include "MPU9250.h"
+
+float sum = 0;
+uint32_t sumCount = 0;
+char buffer[14];
+float origin = 0;
+
+MPU9250 mpu9250;
+Timer t;
+
+
+///////////////////////// Servo   ////////////////////////////////
+//////////////////////////////////////////////////////////////////
+#include "Servo.h"
+Servo Servo1(D10);
 Servo Servo2(D6);
-Servo Servo3(D9);
-Servo Servo4(D8);
-Thread thread;
-
+Servo Servo3(D8);
+Servo Servo4(D9);
+/*
 int pos_up_start;
 int pos_up_end;
 int pos_down_start;
-int pos_down_end;
+int pos_down_end;*/
 
-void myservoright_thread() {       
-    for(int n = 0; n <= 5; n += 1){
-    Servo3.Enable(1000,20000);
-    Servo4.Disable();
-    for (int pos = pos_down_start; pos <= pos_down_end; pos += 5) {
-            Servo3.SetPosition(pos);
-            wait(0.01);
-        }
-    Servo4.Enable(1000,20000);
-    Servo3.Disable();
-    for (int pos = pos_up_start; pos <= pos_up_end; pos += 5) {
-            Servo4.SetPosition(pos);
-            wait(0.01);
-        }
-    Servo3.Enable(1000,20000);
-    Servo4.Disable();
-    for (int pos = pos_down_end; pos >= pos_down_start; pos -= 5) {
-            Servo3.SetPosition(pos); 
-            wait(0.01);
-        }
-    Servo4.Enable(1000,20000);
-    Servo3.Disable();
-    for (int pos = pos_up_end; pos >= pos_up_start; pos -= 5) {
-            Servo4.SetPosition(pos); 
-            wait(0.01);
-        }
-    }
-}
+int pos_down_start = 1400;
+int pos_down_end = 1600; 
+int pos_up_start = 1000; 
+int pos_up_end = 1600;
 
-void turtlewalk(int pos_down_start,int pos_down_end,int pos_up_start,int pos_up_end){
-    for(int n = 0; n <= 5; n += 1){
-    Servo1.Enable(1000,20000);
-    Servo2.Disable();
-    thread.start(myservoright_thread);
-    for (int pos = pos_down_start; pos <= pos_down_end; pos += 5) {
-            Servo1.SetPosition(pos);
-            wait(0.01);
-        }
-    Servo2.Enable(1000,20000);
-    Servo1.Disable();
-    for (int pos = pos_up_start; pos <= pos_up_end; pos += 5) {
-            Servo2.SetPosition(pos);
-            wait(0.01);
-        }
-    Servo1.Enable(1000,20000);
-    Servo2.Disable();
-    for (int pos = pos_down_end; pos >= pos_down_start; pos -= 5) {
-            Servo1.SetPosition(pos); 
-            wait(0.01);
-        }
-    Servo2.Enable(1000,20000);
-    Servo1.Disable();
-    for (int pos = pos_up_end; pos >= pos_up_start; pos -= 5) {
-            Servo2.SetPosition(pos); 
-            wait(0.01);
-        }
-    }
-}
+///////////////////////// prototype func   ///////////////////////
+//////////////////////////////////////////////////////////////////
+void myservoLeft();
+void myservoRight();
+void IMU();
 
-int main(){
-    
-    while(1) {
+/////////////////////////    main     ////////////////////////////
+//////////////////////////////////////////////////////////////////
+int main()
+{
+    thread1.start(myservoLeft);
+    thread2.start(myservoRight);
+    IMU();
+/*    while(1) 
+    {
         printf("Hello World! Turtlebot is READY\n");
         printf("case 1-5\n");                 
-        switch(pc.getc()) {
+        switch(pc.getc()) 
+        {
             case '1':
                 pos_down_start = 1400;
                 pos_down_end = 1700; 
@@ -115,6 +102,277 @@
     printf("position down motor end = %d\n", pos_down_end);
     printf("position up motor start = %d\n", pos_up_start);
     printf("position up motor end = %d\n", pos_up_end);
-    turtlewalk(pos_down_start,pos_down_end,pos_up_start,pos_up_end);
+    thread1.start(myservoLeft);
+    thread2.start(myservoRight);
+    thread3.start(IMU);
+    } */
+}
+
+
+///////////////////////// myservoLeft     /////////////////////////
+//////////////////////////////////////////////////////////////////
+void myservoLeft()
+{
+    for(int n = 0; n <= 5; n += 1)
+    {
+        Servo1.Enable(1000,20000);
+        Servo2.Disable();
+        
+        for (int pos = pos_down_start; pos <= pos_down_end; pos += 5) 
+        {
+            Servo1.SetPosition(pos);
+            wait(0.01);
+        }
+        
+        Servo2.Enable(1000,20000);
+        Servo1.Disable();
+        
+        for (int pos = pos_up_start; pos <= pos_up_end; pos += 5) 
+        {
+            Servo2.SetPosition(pos);
+            wait(0.01);
+        }
+        
+        Servo1.Enable(1000,20000);
+        Servo2.Disable();
+        
+        for (int pos = pos_down_end; pos >= pos_down_start; pos -= 5) 
+        {
+            Servo1.SetPosition(pos); 
+            wait(0.01);
+        }
+        
+        Servo2.Enable(1000,20000);
+        Servo1.Disable();
+    
+        for (int pos = pos_up_end; pos >= pos_up_start; pos -= 5) 
+        {
+            Servo2.SetPosition(pos); 
+            wait(0.01);
+        }
+    }
+}
+
+///////////////////////// myservoRight     ///////////////////////
+//////////////////////////////////////////////////////////////////
+void myservoRight() 
+{       
+    for(int n = 0; n <= 5; n += 1)
+    {
+        Servo3.Enable(1000,20000);
+        Servo4.Disable();
+    
+        for (int pos = pos_down_start; pos <= pos_down_end; pos += 5) 
+        {
+            Servo3.SetPosition(pos);
+            wait(0.01);
+        }
+        
+        Servo4.Enable(1000,20000);
+        Servo3.Disable();
+        
+        for (int pos = pos_up_start; pos <= pos_up_end; pos += 5) 
+        {
+            Servo4.SetPosition(pos);
+            wait(0.01);
+        }
+    
+        Servo3.Enable(1000,20000);
+        Servo4.Disable();
+    
+        for (int pos = pos_down_end; pos >= pos_down_start; pos -= 5) 
+        {
+            Servo3.SetPosition(pos); 
+            wait(0.01);
+        }
+        
+        Servo4.Enable(1000,20000);
+        Servo3.Disable();
+    
+        for (int pos = pos_up_end; pos >= pos_up_start; pos -= 5) 
+        {
+            Servo4.SetPosition(pos); 
+            wait(0.01);
+        }
     }
+}
+
+/////////////////////////      IMU         ///////////////////////
+//////////////////////////////////////////////////////////////////
+void IMU()
+{
+    //Set up I2C
+    i2c.frequency(400000);  // use fast (400 kHz) I2C  
+  
+    //pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
+    t.start();        
+      
+    // Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
+    //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
+  
+    if (whoami == 0x73 ) // WHO_AM_I should always be 0x68
+    {  
+        //pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
+        //pc.printf("MPU9250 is online...\n\r");
+        sprintf(buffer, "0x%x", whoami);  
+        wait(1);
+    
+        mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
+        mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
+        //pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);  
+        //pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);  
+        //pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);  
+        //pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);  
+        //pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);  
+        //pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);  
+        mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
+        //pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
+        //pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
+        //pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
+        //pc.printf("x accel bias = %f\n\r", accelBias[0]);
+        //pc.printf("y accel bias = %f\n\r", accelBias[1]);
+        //pc.printf("z accel bias = %f\n\r", accelBias[2]);
+        wait(2);
+        mpu9250.initMPU9250(); 
+        //pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+        mpu9250.initAK8963(magCalibration);
+        //pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
+        //pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
+        //pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
+        
+        if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
+        if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
+        if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
+        if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
+        wait(1);
+    }
+    else
+    {
+        pc.printf("Could not connect to MPU9250: \n\r");
+        pc.printf("%#x \n",  whoami);
+ 
+        sprintf(buffer, "WHO_AM_I 0x%x", whoami); 
+ 
+        while(1) ; // Loop forever if communication doesn't happen
+        }
+
+            mpu9250.getAres(); // Get accelerometer sensitivity
+            mpu9250.getGres(); // Get gyro sensitivity
+            mpu9250.getMres(); // Get magnetometer sensitivity
+            //pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
+            //pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
+            //pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
+            magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
+            magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
+            magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
+
+            while(1) 
+            {
+                // If intPin goes high, all data registers have new data
+                if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
+
+                mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
+                // Now we'll calculate the accleration value into actual g's
+                ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+                ay = (float)accelCount[1]*aRes - accelBias[1];   
+                az = (float)accelCount[2]*aRes - accelBias[2];  
+   
+                mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
+                // Calculate the gyro value into actual degrees per second
+                gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
+                gy = (float)gyroCount[1]*gRes - gyroBias[1];  
+                gz = (float)gyroCount[2]*gRes - gyroBias[2];   
+  
+                mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
+                // Calculate the magnetometer values in milliGauss
+                // Include factory calibration per data sheet and user environmental corrections
+                mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
+                my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
+                mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
+            }
+   
+            Now = t.read_us();
+            deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+            lastUpdate = Now;
+    
+            sum += deltat;
+            sumCount++;
+    
+            //if(lastUpdate - firstUpdate > 10000000.0f) 
+            //{
+                //beta = 0.04;  // decrease filter gain after stabilized
+                //zeta = 0.015; // increasey bias drift gain after stabilized
+            //}
+    
+            //Pass gyro rate as rad/s
+            //mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
+            mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
+
+            //Serial print and/or display at 0.5 s rate independent of data rates
+            delt_t = t.read_ms() - count;
+    
+            if (delt_t > 50) 
+            { // update LCD once per half-second independent of read rate
+
+                //pc.printf("ax = %f", 1000*ax); 
+                //pc.printf(" ay = %f", 1000*ay); 
+                //pc.printf(" az = %f  mg\n\r", 1000*az); 
+
+                //pc.printf("gx = %f", gx); 
+                //pc.printf(" gy = %f", gy); 
+                //pc.printf(" gz = %f  deg/s\n\r", gz); 
+    
+                //pc.printf("gx = %f", mx); 
+                //pc.printf(" gy = %f", my); 
+                //pc.printf(" gz = %f  mG\n\r", mz); 
+    
+                //tempCount = mpu9250.readTempData();  // Read the adc values
+                //temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
+                //pc.printf(" temperature = %f  C\n\r", temperature); 
+    
+                //pc.printf("q0 = %f\n\r", q[0]);
+                //pc.printf("q1 = %f\n\r", q[1]);
+                //pc.printf("q2 = %f\n\r", q[2]);
+                //pc.printf("q3 = %f\n\r", q[3]);      
+    
+ 
+                // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+                // In this coordinate system, the positive z-axis is down toward Earth. 
+                // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+                // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+                // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+                // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+                // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+                // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+                // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+                yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
+                pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+                roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+                pitch *= 180.0f / PI;
+                yaw   *= 180.0f / PI; 
+                yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
+                roll  *= 180.0f / PI;
+
+                pc.printf("%f   %f  %f  %f \n\r",roll, pitch, yaw, origin);
+                //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+                //sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
+                //lcd.printString(buffer, 0, 4);
+                //sprintf(buffer, "rate = %f", (float) sumCount/sum);
+                //lcd.printString(buffer, 0, 5);
+    
+                myled= !myled;
+                count = t.read_ms(); 
+
+                if(count > 1<<21) 
+                {
+                    t.start(); // start the timer over again if ~30 minutes has passed
+                    count = 0;
+                    deltat= 0;
+                    lastUpdate = t.read_us();
+                }
+                sum = 0;
+                sumCount = 0; 
+            }
+        }
 }
\ No newline at end of file