servo_tread + imu

Dependencies:   Servo mbed-rtos mbed

Fork of Turtlecase by TurtleBot

main.cpp

Committer:
worasuchad
Date:
2018-02-20
Revision:
1:5609c1795245
Parent:
0:812929a5d5ad

File content as of revision 1:5609c1795245:

//////////////////////////////////////////////////////////////////
// project:   TurtleBot Project                                 //
// code v.:   1.0                                               //  
// board  :   NUCLEO-F303KB                                     //
// date   :   20/2/2018                                         //
// code by:   Coding on Earth by Humans                         //
////////////////////////////////////////////////////////////////// 

///////////////////////// init    ////////////////////////////////
//////////////////////////////////////////////////////////////////
#include "mbed.h"
#include "rtos.h"

Serial pc(USBTX, USBRX);

Thread thread1;         //control servo left
Thread thread2;         //control servo right
Thread thread3;         //read data from IMU

/////////////////////////   IMU   ////////////////////////////////
//////////////////////////////////////////////////////////////////
#include "MPU9250.h"

float sum = 0;
uint32_t sumCount = 0;
char buffer[14];
float origin = 0;

MPU9250 mpu9250;
Timer t;


///////////////////////// Servo   ////////////////////////////////
//////////////////////////////////////////////////////////////////
#include "Servo.h"
Servo Servo1(D10);
Servo Servo2(D6);
Servo Servo3(D8);
Servo Servo4(D9);
/*
int pos_up_start;
int pos_up_end;
int pos_down_start;
int pos_down_end;*/

int pos_down_start = 1400;
int pos_down_end = 1600; 
int pos_up_start = 1000; 
int pos_up_end = 1600;

///////////////////////// prototype func   ///////////////////////
//////////////////////////////////////////////////////////////////
void myservoLeft();
void myservoRight();
void IMU();

/////////////////////////    main     ////////////////////////////
//////////////////////////////////////////////////////////////////
int main()
{
    thread1.start(myservoLeft);
    thread2.start(myservoRight);
    IMU();
/*    while(1) 
    {
        printf("Hello World! Turtlebot is READY\n");
        printf("case 1-5\n");                 
        switch(pc.getc()) 
        {
            case '1':
                pos_down_start = 1400;
                pos_down_end = 1700; 
                pos_up_start = 1000; 
                pos_up_end = 1700; 
                break;
            case '2':
                pos_down_start = 1400;
                pos_down_end = 1600; 
                pos_up_start = 1000; 
                pos_up_end = 1600;
                break;
            case '3':
                pos_down_start = 1400;
                pos_down_end = 1650; 
                pos_up_start = 1000; 
                pos_up_end = 1500;
                break;
            case '4':
                pos_down_start = 1400;
                pos_down_end = 1700; 
                pos_up_start = 1000; 
                pos_up_end = 1650;
                break; 
            case '5':
                pos_down_start = 1400;
                pos_down_end = 1600; 
                pos_up_start = 1000; 
                pos_up_end = 1550;
                break;  
        }
    printf("position down motor start = %d\n", pos_down_start);
    printf("position down motor end = %d\n", pos_down_end);
    printf("position up motor start = %d\n", pos_up_start);
    printf("position up motor end = %d\n", pos_up_end);
    thread1.start(myservoLeft);
    thread2.start(myservoRight);
    thread3.start(IMU);
    } */
}


///////////////////////// myservoLeft     /////////////////////////
//////////////////////////////////////////////////////////////////
void myservoLeft()
{
    for(int n = 0; n <= 5; n += 1)
    {
        Servo1.Enable(1000,20000);
        Servo2.Disable();
        
        for (int pos = pos_down_start; pos <= pos_down_end; pos += 5) 
        {
            Servo1.SetPosition(pos);
            wait(0.01);
        }
        
        Servo2.Enable(1000,20000);
        Servo1.Disable();
        
        for (int pos = pos_up_start; pos <= pos_up_end; pos += 5) 
        {
            Servo2.SetPosition(pos);
            wait(0.01);
        }
        
        Servo1.Enable(1000,20000);
        Servo2.Disable();
        
        for (int pos = pos_down_end; pos >= pos_down_start; pos -= 5) 
        {
            Servo1.SetPosition(pos); 
            wait(0.01);
        }
        
        Servo2.Enable(1000,20000);
        Servo1.Disable();
    
        for (int pos = pos_up_end; pos >= pos_up_start; pos -= 5) 
        {
            Servo2.SetPosition(pos); 
            wait(0.01);
        }
    }
}

///////////////////////// myservoRight     ///////////////////////
//////////////////////////////////////////////////////////////////
void myservoRight() 
{       
    for(int n = 0; n <= 5; n += 1)
    {
        Servo3.Enable(1000,20000);
        Servo4.Disable();
    
        for (int pos = pos_down_start; pos <= pos_down_end; pos += 5) 
        {
            Servo3.SetPosition(pos);
            wait(0.01);
        }
        
        Servo4.Enable(1000,20000);
        Servo3.Disable();
        
        for (int pos = pos_up_start; pos <= pos_up_end; pos += 5) 
        {
            Servo4.SetPosition(pos);
            wait(0.01);
        }
    
        Servo3.Enable(1000,20000);
        Servo4.Disable();
    
        for (int pos = pos_down_end; pos >= pos_down_start; pos -= 5) 
        {
            Servo3.SetPosition(pos); 
            wait(0.01);
        }
        
        Servo4.Enable(1000,20000);
        Servo3.Disable();
    
        for (int pos = pos_up_end; pos >= pos_up_start; pos -= 5) 
        {
            Servo4.SetPosition(pos); 
            wait(0.01);
        }
    }
}

/////////////////////////      IMU         ///////////////////////
//////////////////////////////////////////////////////////////////
void IMU()
{
    //Set up I2C
    i2c.frequency(400000);  // use fast (400 kHz) I2C  
  
    //pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
    t.start();        
      
    // Read the WHO_AM_I register, this is a good test of communication
    uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
    //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
  
    if (whoami == 0x73 ) // WHO_AM_I should always be 0x68
    {  
        //pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
        //pc.printf("MPU9250 is online...\n\r");
        sprintf(buffer, "0x%x", whoami);  
        wait(1);
    
        mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
        mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
        //pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);  
        //pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);  
        //pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);  
        //pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);  
        //pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);  
        //pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);  
        mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
        //pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
        //pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
        //pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
        //pc.printf("x accel bias = %f\n\r", accelBias[0]);
        //pc.printf("y accel bias = %f\n\r", accelBias[1]);
        //pc.printf("z accel bias = %f\n\r", accelBias[2]);
        wait(2);
        mpu9250.initMPU9250(); 
        //pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
        mpu9250.initAK8963(magCalibration);
        //pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
        //pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
        //pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
        
        if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
        if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
        if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
        if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
        wait(1);
    }
    else
    {
        pc.printf("Could not connect to MPU9250: \n\r");
        pc.printf("%#x \n",  whoami);
 
        sprintf(buffer, "WHO_AM_I 0x%x", whoami); 
 
        while(1) ; // Loop forever if communication doesn't happen
        }

            mpu9250.getAres(); // Get accelerometer sensitivity
            mpu9250.getGres(); // Get gyro sensitivity
            mpu9250.getMres(); // Get magnetometer sensitivity
            //pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
            //pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
            //pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
            magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
            magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
            magbias[2] = +125.;  // User environmental x-axis correction in milliGauss

            while(1) 
            {
                // If intPin goes high, all data registers have new data
                if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt

                mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
                // Now we'll calculate the accleration value into actual g's
                ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
                ay = (float)accelCount[1]*aRes - accelBias[1];   
                az = (float)accelCount[2]*aRes - accelBias[2];  
   
                mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
                // Calculate the gyro value into actual degrees per second
                gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
                gy = (float)gyroCount[1]*gRes - gyroBias[1];  
                gz = (float)gyroCount[2]*gRes - gyroBias[2];   
  
                mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
                // Calculate the magnetometer values in milliGauss
                // Include factory calibration per data sheet and user environmental corrections
                mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
                my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
                mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
            }
   
            Now = t.read_us();
            deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
            lastUpdate = Now;
    
            sum += deltat;
            sumCount++;
    
            //if(lastUpdate - firstUpdate > 10000000.0f) 
            //{
                //beta = 0.04;  // decrease filter gain after stabilized
                //zeta = 0.015; // increasey bias drift gain after stabilized
            //}
    
            //Pass gyro rate as rad/s
            //mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
            mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);

            //Serial print and/or display at 0.5 s rate independent of data rates
            delt_t = t.read_ms() - count;
    
            if (delt_t > 50) 
            { // update LCD once per half-second independent of read rate

                //pc.printf("ax = %f", 1000*ax); 
                //pc.printf(" ay = %f", 1000*ay); 
                //pc.printf(" az = %f  mg\n\r", 1000*az); 

                //pc.printf("gx = %f", gx); 
                //pc.printf(" gy = %f", gy); 
                //pc.printf(" gz = %f  deg/s\n\r", gz); 
    
                //pc.printf("gx = %f", mx); 
                //pc.printf(" gy = %f", my); 
                //pc.printf(" gz = %f  mG\n\r", mz); 
    
                //tempCount = mpu9250.readTempData();  // Read the adc values
                //temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
                //pc.printf(" temperature = %f  C\n\r", temperature); 
    
                //pc.printf("q0 = %f\n\r", q[0]);
                //pc.printf("q1 = %f\n\r", q[1]);
                //pc.printf("q2 = %f\n\r", q[2]);
                //pc.printf("q3 = %f\n\r", q[3]);      
    
 
                // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
                // In this coordinate system, the positive z-axis is down toward Earth. 
                // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
                // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
                // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
                // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
                // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
                // applied in the correct order which for this configuration is yaw, pitch, and then roll.
                // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
                yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
                pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
                roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
                pitch *= 180.0f / PI;
                yaw   *= 180.0f / PI; 
                yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
                roll  *= 180.0f / PI;

                pc.printf("%f   %f  %f  %f \n\r",roll, pitch, yaw, origin);
                //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
                //sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
                //lcd.printString(buffer, 0, 4);
                //sprintf(buffer, "rate = %f", (float) sumCount/sum);
                //lcd.printString(buffer, 0, 5);
    
                myled= !myled;
                count = t.read_ms(); 

                if(count > 1<<21) 
                {
                    t.start(); // start the timer over again if ~30 minutes has passed
                    count = 0;
                    deltat= 0;
                    lastUpdate = t.read_us();
                }
                sum = 0;
                sumCount = 0; 
            }
        }
}