IMU for turtle robot project
Dependencies: mbed
Diff: main.cpp
- Revision:
- 4:5002036c82df
- Parent:
- 3:0d58dbc24178
--- a/main.cpp Wed Jan 24 08:44:45 2018 +0000 +++ b/main.cpp Sun Jan 28 09:02:04 2018 +0000 @@ -26,35 +26,18 @@ We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. */ -//#include "ST_F401_84MHZ.h" -//F401_init84 myinit(0); #include "mbed.h" #include "MPU9250.h" -//#include "N5110.h" - -// Using NOKIA 5110 monochrome 84 x 48 pixel display -// pin 9 - Serial clock out (SCLK) -// pin 8 - Serial data out (DIN) -// pin 7 - Data/Command select (D/C) -// pin 5 - LCD chip select (CS) -// pin 6 - LCD reset (RST) -//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); float sum = 0; uint32_t sumCount = 0; char buffer[14]; - - MPU9250 mpu9250; - - Timer t; +float origin = 0; - Serial pc(USBTX, USBRX); // tx, rx +MPU9250 mpu9250; +Timer t; +Serial pc(USBTX, USBRX); // tx, rx - // VCC, SCE, RST, D/C, MOSI,S CLK, LED -// N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); - - - int main() { pc.baud(9600); @@ -62,51 +45,43 @@ //Set up I2C i2c.frequency(400000); // use fast (400 kHz) I2C - pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); + //pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); t.start(); - -// lcd.init(); -// lcd.setBrightness(0.05); - - + // Read the WHO_AM_I register, this is a good test of communication uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 - pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); + //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); - if (whoami == 0x71) // WHO_AM_I should always be 0x68 + if (whoami == 0x68) // WHO_AM_I should always be 0x68 { - pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); - pc.printf("MPU9250 is online...\n\r"); -// lcd.clear(); -// lcd.printString("MPU9250 is", 0, 0); - sprintf(buffer, "0x%x", whoami); -// lcd.printString(buffer, 0, 1); -// lcd.printString("shoud be 0x71", 0, 2); + //pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); + //pc.printf("MPU9250 is online...\n\r"); + sprintf(buffer, "0x%x", whoami); wait(1); mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values - pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); - pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); - pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); - pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); - pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); - pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); + //pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); + //pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); + //pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); + //pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); + //pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); + //pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers - pc.printf("x gyro bias = %f\n\r", gyroBias[0]); - pc.printf("y gyro bias = %f\n\r", gyroBias[1]); - pc.printf("z gyro bias = %f\n\r", gyroBias[2]); - pc.printf("x accel bias = %f\n\r", accelBias[0]); - pc.printf("y accel bias = %f\n\r", accelBias[1]); - pc.printf("z accel bias = %f\n\r", accelBias[2]); + //pc.printf("x gyro bias = %f\n\r", gyroBias[0]); + //pc.printf("y gyro bias = %f\n\r", gyroBias[1]); + //pc.printf("z gyro bias = %f\n\r", gyroBias[2]); + //pc.printf("x accel bias = %f\n\r", accelBias[0]); + //pc.printf("y accel bias = %f\n\r", accelBias[1]); + //pc.printf("z accel bias = %f\n\r", accelBias[2]); wait(2); mpu9250.initMPU9250(); - pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + //pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature mpu9250.initAK8963(magCalibration); - pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer - pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); - pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); + //pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer + //pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); + //pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); @@ -118,11 +93,7 @@ pc.printf("Could not connect to MPU9250: \n\r"); pc.printf("%#x \n", whoami); -// lcd.clear(); -// lcd.printString("MPU9250", 0, 0); -// lcd.printString("no connection", 0, 1); - sprintf(buffer, "WHO_AM_I 0x%x", whoami); -// lcd.printString(buffer, 0, 2); + sprintf(buffer, "WHO_AM_I 0x%x", whoami); while(1) ; // Loop forever if communication doesn't happen } @@ -130,9 +101,9 @@ mpu9250.getAres(); // Get accelerometer sensitivity mpu9250.getGres(); // Get gyro sensitivity mpu9250.getMres(); // Get magnetometer sensitivity - pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); - pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); - pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); + //pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); + //pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); + //pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated magbias[1] = +120.; // User environmental x-axis correction in milliGauss magbias[2] = +125.; // User environmental x-axis correction in milliGauss @@ -180,39 +151,30 @@ // Serial print and/or display at 0.5 s rate independent of data rates delt_t = t.read_ms() - count; - if (delt_t > 500) { // update LCD once per half-second independent of read rate - - pc.printf("ax = %f", 1000*ax); - pc.printf(" ay = %f", 1000*ay); - pc.printf(" az = %f mg\n\r", 1000*az); + if (delt_t > 50) { // update LCD once per half-second independent of read rate - pc.printf("gx = %f", gx); - pc.printf(" gy = %f", gy); - pc.printf(" gz = %f deg/s\n\r", gz); - - pc.printf("gx = %f", mx); - pc.printf(" gy = %f", my); - pc.printf(" gz = %f mG\n\r", mz); + //pc.printf("ax = %f", 1000*ax); + //pc.printf(" ay = %f", 1000*ay); + //pc.printf(" az = %f mg\n\r", 1000*az); + + //pc.printf("gx = %f", gx); + //pc.printf(" gy = %f", gy); + //pc.printf(" gz = %f deg/s\n\r", gz); - tempCount = mpu9250.readTempData(); // Read the adc values - temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade - pc.printf(" temperature = %f C\n\r", temperature); - - pc.printf("q0 = %f\n\r", q[0]); - pc.printf("q1 = %f\n\r", q[1]); - pc.printf("q2 = %f\n\r", q[2]); - pc.printf("q3 = %f\n\r", q[3]); + //pc.printf("gx = %f", mx); + //pc.printf(" gy = %f", my); + //pc.printf(" gz = %f mG\n\r", mz); -/* lcd.clear(); - lcd.printString("MPU9250", 0, 0); - lcd.printString("x y z", 0, 1); - sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az)); - lcd.printString(buffer, 0, 2); - sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz); - lcd.printString(buffer, 0, 3); - sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz); - lcd.printString(buffer, 0, 4); - */ + //tempCount = mpu9250.readTempData(); // Read the adc values + //temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade + //pc.printf(" temperature = %f C\n\r", temperature); + + //pc.printf("q0 = %f\n\r", q[0]); + //pc.printf("q1 = %f\n\r", q[1]); + //pc.printf("q2 = %f\n\r", q[2]); + //pc.printf("q3 = %f\n\r", q[3]); + + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. @@ -231,7 +193,7 @@ roll *= 180.0f / PI; pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); - pc.printf("average rate = %f\n\r", (float) sumCount/sum); + //pc.printf("average rate = %f\n\r", (float) sumCount/sum); // sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll); // lcd.printString(buffer, 0, 4); // sprintf(buffer, "rate = %f", (float) sumCount/sum);