IMU for turtle robot project
Dependencies: mbed
main.cpp@4:5002036c82df, 2018-01-28 (annotated)
- Committer:
- worasuchad
- Date:
- Sun Jan 28 09:02:04 2018 +0000
- Revision:
- 4:5002036c82df
- Parent:
- 3:0d58dbc24178
edit print
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
onehorse | 0:2e5e65a6fb30 | 1 | /* MPU9250 Basic Example Code |
onehorse | 0:2e5e65a6fb30 | 2 | by: Kris Winer |
onehorse | 0:2e5e65a6fb30 | 3 | date: April 1, 2014 |
onehorse | 0:2e5e65a6fb30 | 4 | license: Beerware - Use this code however you'd like. If you |
onehorse | 0:2e5e65a6fb30 | 5 | find it useful you can buy me a beer some time. |
onehorse | 0:2e5e65a6fb30 | 6 | |
onehorse | 0:2e5e65a6fb30 | 7 | Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, |
onehorse | 0:2e5e65a6fb30 | 8 | getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to |
onehorse | 0:2e5e65a6fb30 | 9 | allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and |
onehorse | 0:2e5e65a6fb30 | 10 | Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. |
onehorse | 0:2e5e65a6fb30 | 11 | |
onehorse | 0:2e5e65a6fb30 | 12 | SDA and SCL should have external pull-up resistors (to 3.3V). |
onehorse | 0:2e5e65a6fb30 | 13 | 10k resistors are on the EMSENSR-9250 breakout board. |
onehorse | 0:2e5e65a6fb30 | 14 | |
onehorse | 0:2e5e65a6fb30 | 15 | Hardware setup: |
onehorse | 0:2e5e65a6fb30 | 16 | MPU9250 Breakout --------- Arduino |
onehorse | 0:2e5e65a6fb30 | 17 | VDD ---------------------- 3.3V |
onehorse | 0:2e5e65a6fb30 | 18 | VDDI --------------------- 3.3V |
onehorse | 0:2e5e65a6fb30 | 19 | SDA ----------------------- A4 |
onehorse | 0:2e5e65a6fb30 | 20 | SCL ----------------------- A5 |
onehorse | 0:2e5e65a6fb30 | 21 | GND ---------------------- GND |
onehorse | 0:2e5e65a6fb30 | 22 | |
onehorse | 0:2e5e65a6fb30 | 23 | Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. |
onehorse | 0:2e5e65a6fb30 | 24 | Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. |
onehorse | 0:2e5e65a6fb30 | 25 | We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. |
onehorse | 0:2e5e65a6fb30 | 26 | We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. |
onehorse | 0:2e5e65a6fb30 | 27 | */ |
onehorse | 0:2e5e65a6fb30 | 28 | |
onehorse | 0:2e5e65a6fb30 | 29 | #include "mbed.h" |
onehorse | 0:2e5e65a6fb30 | 30 | #include "MPU9250.h" |
onehorse | 0:2e5e65a6fb30 | 31 | |
onehorse | 0:2e5e65a6fb30 | 32 | float sum = 0; |
onehorse | 0:2e5e65a6fb30 | 33 | uint32_t sumCount = 0; |
onehorse | 0:2e5e65a6fb30 | 34 | char buffer[14]; |
worasuchad | 4:5002036c82df | 35 | float origin = 0; |
onehorse | 0:2e5e65a6fb30 | 36 | |
worasuchad | 4:5002036c82df | 37 | MPU9250 mpu9250; |
worasuchad | 4:5002036c82df | 38 | Timer t; |
worasuchad | 4:5002036c82df | 39 | Serial pc(USBTX, USBRX); // tx, rx |
onehorse | 0:2e5e65a6fb30 | 40 | |
onehorse | 0:2e5e65a6fb30 | 41 | int main() |
onehorse | 0:2e5e65a6fb30 | 42 | { |
onehorse | 0:2e5e65a6fb30 | 43 | pc.baud(9600); |
onehorse | 0:2e5e65a6fb30 | 44 | |
onehorse | 0:2e5e65a6fb30 | 45 | //Set up I2C |
onehorse | 0:2e5e65a6fb30 | 46 | i2c.frequency(400000); // use fast (400 kHz) I2C |
onehorse | 0:2e5e65a6fb30 | 47 | |
worasuchad | 4:5002036c82df | 48 | //pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); |
onehorse | 0:2e5e65a6fb30 | 49 | |
onehorse | 0:2e5e65a6fb30 | 50 | t.start(); |
worasuchad | 4:5002036c82df | 51 | |
onehorse | 0:2e5e65a6fb30 | 52 | // Read the WHO_AM_I register, this is a good test of communication |
onehorse | 0:2e5e65a6fb30 | 53 | uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 |
worasuchad | 4:5002036c82df | 54 | //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); |
onehorse | 0:2e5e65a6fb30 | 55 | |
worasuchad | 4:5002036c82df | 56 | if (whoami == 0x68) // WHO_AM_I should always be 0x68 |
onehorse | 0:2e5e65a6fb30 | 57 | { |
worasuchad | 4:5002036c82df | 58 | //pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); |
worasuchad | 4:5002036c82df | 59 | //pc.printf("MPU9250 is online...\n\r"); |
worasuchad | 4:5002036c82df | 60 | sprintf(buffer, "0x%x", whoami); |
onehorse | 0:2e5e65a6fb30 | 61 | wait(1); |
onehorse | 0:2e5e65a6fb30 | 62 | |
onehorse | 0:2e5e65a6fb30 | 63 | mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration |
onehorse | 1:71c319f03fda | 64 | mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values |
worasuchad | 4:5002036c82df | 65 | //pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); |
worasuchad | 4:5002036c82df | 66 | //pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); |
worasuchad | 4:5002036c82df | 67 | //pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); |
worasuchad | 4:5002036c82df | 68 | //pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); |
worasuchad | 4:5002036c82df | 69 | //pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); |
worasuchad | 4:5002036c82df | 70 | //pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); |
onehorse | 0:2e5e65a6fb30 | 71 | mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers |
worasuchad | 4:5002036c82df | 72 | //pc.printf("x gyro bias = %f\n\r", gyroBias[0]); |
worasuchad | 4:5002036c82df | 73 | //pc.printf("y gyro bias = %f\n\r", gyroBias[1]); |
worasuchad | 4:5002036c82df | 74 | //pc.printf("z gyro bias = %f\n\r", gyroBias[2]); |
worasuchad | 4:5002036c82df | 75 | //pc.printf("x accel bias = %f\n\r", accelBias[0]); |
worasuchad | 4:5002036c82df | 76 | //pc.printf("y accel bias = %f\n\r", accelBias[1]); |
worasuchad | 4:5002036c82df | 77 | //pc.printf("z accel bias = %f\n\r", accelBias[2]); |
onehorse | 0:2e5e65a6fb30 | 78 | wait(2); |
onehorse | 0:2e5e65a6fb30 | 79 | mpu9250.initMPU9250(); |
worasuchad | 4:5002036c82df | 80 | //pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature |
onehorse | 0:2e5e65a6fb30 | 81 | mpu9250.initAK8963(magCalibration); |
worasuchad | 4:5002036c82df | 82 | //pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer |
worasuchad | 4:5002036c82df | 83 | //pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); |
worasuchad | 4:5002036c82df | 84 | //pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); |
onehorse | 0:2e5e65a6fb30 | 85 | if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); |
onehorse | 0:2e5e65a6fb30 | 86 | if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); |
onehorse | 0:2e5e65a6fb30 | 87 | if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); |
onehorse | 0:2e5e65a6fb30 | 88 | if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); |
onehorse | 0:2e5e65a6fb30 | 89 | wait(1); |
onehorse | 0:2e5e65a6fb30 | 90 | } |
onehorse | 0:2e5e65a6fb30 | 91 | else |
onehorse | 0:2e5e65a6fb30 | 92 | { |
onehorse | 0:2e5e65a6fb30 | 93 | pc.printf("Could not connect to MPU9250: \n\r"); |
onehorse | 0:2e5e65a6fb30 | 94 | pc.printf("%#x \n", whoami); |
onehorse | 0:2e5e65a6fb30 | 95 | |
worasuchad | 4:5002036c82df | 96 | sprintf(buffer, "WHO_AM_I 0x%x", whoami); |
onehorse | 0:2e5e65a6fb30 | 97 | |
onehorse | 0:2e5e65a6fb30 | 98 | while(1) ; // Loop forever if communication doesn't happen |
onehorse | 0:2e5e65a6fb30 | 99 | } |
onehorse | 0:2e5e65a6fb30 | 100 | |
onehorse | 0:2e5e65a6fb30 | 101 | mpu9250.getAres(); // Get accelerometer sensitivity |
onehorse | 0:2e5e65a6fb30 | 102 | mpu9250.getGres(); // Get gyro sensitivity |
onehorse | 0:2e5e65a6fb30 | 103 | mpu9250.getMres(); // Get magnetometer sensitivity |
worasuchad | 4:5002036c82df | 104 | //pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); |
worasuchad | 4:5002036c82df | 105 | //pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); |
worasuchad | 4:5002036c82df | 106 | //pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); |
onehorse | 0:2e5e65a6fb30 | 107 | magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated |
onehorse | 0:2e5e65a6fb30 | 108 | magbias[1] = +120.; // User environmental x-axis correction in milliGauss |
onehorse | 0:2e5e65a6fb30 | 109 | magbias[2] = +125.; // User environmental x-axis correction in milliGauss |
onehorse | 0:2e5e65a6fb30 | 110 | |
onehorse | 0:2e5e65a6fb30 | 111 | while(1) { |
onehorse | 0:2e5e65a6fb30 | 112 | |
onehorse | 0:2e5e65a6fb30 | 113 | // If intPin goes high, all data registers have new data |
onehorse | 0:2e5e65a6fb30 | 114 | if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt |
onehorse | 0:2e5e65a6fb30 | 115 | |
onehorse | 0:2e5e65a6fb30 | 116 | mpu9250.readAccelData(accelCount); // Read the x/y/z adc values |
onehorse | 0:2e5e65a6fb30 | 117 | // Now we'll calculate the accleration value into actual g's |
onehorse | 0:2e5e65a6fb30 | 118 | ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set |
onehorse | 0:2e5e65a6fb30 | 119 | ay = (float)accelCount[1]*aRes - accelBias[1]; |
onehorse | 0:2e5e65a6fb30 | 120 | az = (float)accelCount[2]*aRes - accelBias[2]; |
onehorse | 0:2e5e65a6fb30 | 121 | |
onehorse | 0:2e5e65a6fb30 | 122 | mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values |
onehorse | 0:2e5e65a6fb30 | 123 | // Calculate the gyro value into actual degrees per second |
onehorse | 0:2e5e65a6fb30 | 124 | gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set |
onehorse | 0:2e5e65a6fb30 | 125 | gy = (float)gyroCount[1]*gRes - gyroBias[1]; |
onehorse | 0:2e5e65a6fb30 | 126 | gz = (float)gyroCount[2]*gRes - gyroBias[2]; |
onehorse | 0:2e5e65a6fb30 | 127 | |
onehorse | 0:2e5e65a6fb30 | 128 | mpu9250.readMagData(magCount); // Read the x/y/z adc values |
onehorse | 0:2e5e65a6fb30 | 129 | // Calculate the magnetometer values in milliGauss |
onehorse | 0:2e5e65a6fb30 | 130 | // Include factory calibration per data sheet and user environmental corrections |
onehorse | 0:2e5e65a6fb30 | 131 | mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set |
onehorse | 0:2e5e65a6fb30 | 132 | my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; |
onehorse | 0:2e5e65a6fb30 | 133 | mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; |
onehorse | 0:2e5e65a6fb30 | 134 | } |
onehorse | 0:2e5e65a6fb30 | 135 | |
onehorse | 0:2e5e65a6fb30 | 136 | Now = t.read_us(); |
onehorse | 0:2e5e65a6fb30 | 137 | deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update |
onehorse | 0:2e5e65a6fb30 | 138 | lastUpdate = Now; |
onehorse | 0:2e5e65a6fb30 | 139 | |
onehorse | 0:2e5e65a6fb30 | 140 | sum += deltat; |
onehorse | 0:2e5e65a6fb30 | 141 | sumCount++; |
onehorse | 0:2e5e65a6fb30 | 142 | |
onehorse | 0:2e5e65a6fb30 | 143 | // if(lastUpdate - firstUpdate > 10000000.0f) { |
onehorse | 0:2e5e65a6fb30 | 144 | // beta = 0.04; // decrease filter gain after stabilized |
onehorse | 0:2e5e65a6fb30 | 145 | // zeta = 0.015; // increasey bias drift gain after stabilized |
onehorse | 0:2e5e65a6fb30 | 146 | // } |
onehorse | 0:2e5e65a6fb30 | 147 | |
onehorse | 0:2e5e65a6fb30 | 148 | // Pass gyro rate as rad/s |
onehorse | 0:2e5e65a6fb30 | 149 | // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
onehorse | 0:2e5e65a6fb30 | 150 | mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
onehorse | 0:2e5e65a6fb30 | 151 | |
onehorse | 0:2e5e65a6fb30 | 152 | // Serial print and/or display at 0.5 s rate independent of data rates |
onehorse | 0:2e5e65a6fb30 | 153 | delt_t = t.read_ms() - count; |
worasuchad | 4:5002036c82df | 154 | if (delt_t > 50) { // update LCD once per half-second independent of read rate |
onehorse | 0:2e5e65a6fb30 | 155 | |
worasuchad | 4:5002036c82df | 156 | //pc.printf("ax = %f", 1000*ax); |
worasuchad | 4:5002036c82df | 157 | //pc.printf(" ay = %f", 1000*ay); |
worasuchad | 4:5002036c82df | 158 | //pc.printf(" az = %f mg\n\r", 1000*az); |
worasuchad | 4:5002036c82df | 159 | |
worasuchad | 4:5002036c82df | 160 | //pc.printf("gx = %f", gx); |
worasuchad | 4:5002036c82df | 161 | //pc.printf(" gy = %f", gy); |
worasuchad | 4:5002036c82df | 162 | //pc.printf(" gz = %f deg/s\n\r", gz); |
onehorse | 0:2e5e65a6fb30 | 163 | |
worasuchad | 4:5002036c82df | 164 | //pc.printf("gx = %f", mx); |
worasuchad | 4:5002036c82df | 165 | //pc.printf(" gy = %f", my); |
worasuchad | 4:5002036c82df | 166 | //pc.printf(" gz = %f mG\n\r", mz); |
onehorse | 0:2e5e65a6fb30 | 167 | |
worasuchad | 4:5002036c82df | 168 | //tempCount = mpu9250.readTempData(); // Read the adc values |
worasuchad | 4:5002036c82df | 169 | //temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade |
worasuchad | 4:5002036c82df | 170 | //pc.printf(" temperature = %f C\n\r", temperature); |
worasuchad | 4:5002036c82df | 171 | |
worasuchad | 4:5002036c82df | 172 | //pc.printf("q0 = %f\n\r", q[0]); |
worasuchad | 4:5002036c82df | 173 | //pc.printf("q1 = %f\n\r", q[1]); |
worasuchad | 4:5002036c82df | 174 | //pc.printf("q2 = %f\n\r", q[2]); |
worasuchad | 4:5002036c82df | 175 | //pc.printf("q3 = %f\n\r", q[3]); |
worasuchad | 4:5002036c82df | 176 | |
worasuchad | 4:5002036c82df | 177 | |
onehorse | 0:2e5e65a6fb30 | 178 | // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. |
onehorse | 0:2e5e65a6fb30 | 179 | // In this coordinate system, the positive z-axis is down toward Earth. |
onehorse | 0:2e5e65a6fb30 | 180 | // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. |
onehorse | 0:2e5e65a6fb30 | 181 | // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. |
onehorse | 0:2e5e65a6fb30 | 182 | // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. |
onehorse | 0:2e5e65a6fb30 | 183 | // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. |
onehorse | 0:2e5e65a6fb30 | 184 | // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be |
onehorse | 0:2e5e65a6fb30 | 185 | // applied in the correct order which for this configuration is yaw, pitch, and then roll. |
onehorse | 0:2e5e65a6fb30 | 186 | // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. |
onehorse | 0:2e5e65a6fb30 | 187 | yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); |
onehorse | 0:2e5e65a6fb30 | 188 | pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); |
onehorse | 0:2e5e65a6fb30 | 189 | roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); |
onehorse | 0:2e5e65a6fb30 | 190 | pitch *= 180.0f / PI; |
onehorse | 0:2e5e65a6fb30 | 191 | yaw *= 180.0f / PI; |
onehorse | 0:2e5e65a6fb30 | 192 | yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 |
onehorse | 0:2e5e65a6fb30 | 193 | roll *= 180.0f / PI; |
onehorse | 0:2e5e65a6fb30 | 194 | |
onehorse | 0:2e5e65a6fb30 | 195 | pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); |
worasuchad | 4:5002036c82df | 196 | //pc.printf("average rate = %f\n\r", (float) sumCount/sum); |
onehorse | 0:2e5e65a6fb30 | 197 | // sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll); |
onehorse | 0:2e5e65a6fb30 | 198 | // lcd.printString(buffer, 0, 4); |
onehorse | 0:2e5e65a6fb30 | 199 | // sprintf(buffer, "rate = %f", (float) sumCount/sum); |
onehorse | 0:2e5e65a6fb30 | 200 | // lcd.printString(buffer, 0, 5); |
onehorse | 0:2e5e65a6fb30 | 201 | |
onehorse | 0:2e5e65a6fb30 | 202 | myled= !myled; |
onehorse | 0:2e5e65a6fb30 | 203 | count = t.read_ms(); |
onehorse | 0:2e5e65a6fb30 | 204 | |
onehorse | 0:2e5e65a6fb30 | 205 | if(count > 1<<21) { |
onehorse | 0:2e5e65a6fb30 | 206 | t.start(); // start the timer over again if ~30 minutes has passed |
onehorse | 0:2e5e65a6fb30 | 207 | count = 0; |
onehorse | 0:2e5e65a6fb30 | 208 | deltat= 0; |
onehorse | 0:2e5e65a6fb30 | 209 | lastUpdate = t.read_us(); |
onehorse | 0:2e5e65a6fb30 | 210 | } |
onehorse | 0:2e5e65a6fb30 | 211 | sum = 0; |
onehorse | 0:2e5e65a6fb30 | 212 | sumCount = 0; |
onehorse | 0:2e5e65a6fb30 | 213 | } |
onehorse | 0:2e5e65a6fb30 | 214 | } |
onehorse | 0:2e5e65a6fb30 | 215 | |
onehorse | 0:2e5e65a6fb30 | 216 | } |