first commit
Dependencies: PM2_Libary
Diff: main.cpp
- Revision:
- 43:057640e99f8e
- Parent:
- 42:ec3a88a24666
diff -r 96ed18b1af94 -r 057640e99f8e main.cpp --- a/main.cpp Wed Apr 13 07:11:14 2022 +0000 +++ b/main.cpp Sun May 22 10:10:17 2022 +0200 @@ -1,11 +1,21 @@ #include "mbed.h" #include "PM2_Libary.h" #include <cstdint> - - +#include <cstdio> +#include "math.h" +//******************************************************************************************************************************************************************* +// Defined Variables in mm coming from Hardware-team. Need to be updated +const float wheel_diameter = 30.0f; // diameter of wheel with caterpillar to calculate mm per wheel turn (4) +const float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3) +const float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6) +const float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9) +const float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5) +const float dist_arm_attach_OK_griparea = 10.5 ; // Height of Grappler cutout to grapple Stair (8) (maybe add 1mm so gripper is a bit over the plate) +const float dist_grappleratt_grappler_uk = 36.5; // distance between pivotpoint Grappler and bottom edge (?) -// logical variable main task -bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task +const float height_stairs = 100; // height to top of next stairstep in mm +//*********************************************************************************************************************************************************** +// declaration of Input - Output pins // user button on nucleo board Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) @@ -13,37 +23,47 @@ void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below void user_button_released_fcn(); -// while loop gets executed every main_task_period_ms milliseconds -int main_task_period_ms = 30; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second -Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms +// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor +// define variable to store measurement from infrared distancesensor in mm +float ir_distance_mm_L; +float ir_distance_mm_R; +float ir_distance_mm_Lookdown_B; +float ir_distance_mm_Lookdown_F; -// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor -float ir_distance_mV = 0.0f; // define variable to store measurement -AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 +// create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 +AnalogIn ir_analog_in_Distance_L(PC_2); +AnalogIn ir_analog_in_Lookdown_B(PC_5); +AnalogIn ir_analog_in_Lookdown_F(PB_1); + +// Digital Inputs +DigitalIn mechanical_button(PC_3); - -// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors + //motor pin declaration -FastPWM pwm_M_right(PB_13); -FastPWM pwm_M_left(PA_9); -FastPWM pwm_M_arm(PA_10); +FastPWM pwm_M_right (PB_13); //motor pin decalaration for wheels right side +FastPWM pwm_M_left (PA_9); //motor pin decalaration for wheels left side +FastPWM pwm_M_arm (PA_10); //motor pin decalaration for arm //Encoder pin declaration -EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side -EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side -EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm +EncoderCounter encoder_M_right (PA_6, PC_7); //encoder pin decalaration for wheels right side +EncoderCounter encoder_M_left (PB_6, PB_7); //encoder pin decalaration for wheels left side +EncoderCounter encoder_M_arm (PA_0, PA_1); //encoder pin decalaration for arm +//*********************************************************************************************************************************************************** +// Hardware controll Setup and functions (motors and sensors) + + // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box -float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack -float counts_per_turn_wheels = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels -float counts_per_turn_arm = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm -float kn = 180.0f / 12.0f; // define motor constant in rpm per V -float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 -float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 +const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack +const float counts_per_turn_wheels = 20.0f * 78.125f;// define counts per turn at gearbox end (counts/turn * gearratio) for wheels +const float counts_per_turn_arm = 20.0f * 78.125f * 19.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm +const float kn = 180.0f / 12.0f; // define motor constant in rpm per V +const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°) +const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 //motors for tracks PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here @@ -51,153 +71,378 @@ //Arm Motor PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here -//float max_speed_rps = 0.5f; not sure if needed // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here +//*********************************************************************************************************************************************************** -// LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage) -// LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" +//these variables represent relative position NOT absolut +float startPos = -0.545; //from last lift up position to start position +float liftPos = -0.555; //from start position to lift up position -//Platzhalter Variabeln für die Positionierung -float PositionStair = 0.2; -float PositionBackOff = -0.5; -float degArmStart = 0.5; -float degArmLift = -0.5; -int ToNextFunction = 0; -float max_speed_rps = 0.5f; +const float drive_straight_mm = 200.0; +const float drive_back_mm = -20.0f; +int ToNextFunction = 0; // current state of the system (which function is beeing executed) +int state=0; //return value of functions +float desired_pos; +int nextStep=0; + +// definition variables for calculations +const float pi = 2 * acos(0.0); // definiton of pi +const float end_pos_lift_deg = 180 + asin((dist_arm_ground-(dist_grappleratt_grappler_uk))/arm_length) * 180 / pi; // calculates the degree which the arm has to have when lift_up has been executed. +const float start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E) -int StartPosition(float deg){ +// definition of rotation speeds for motors 0 = none 1.0 = max. +const float max_speed_rps_wheel = 0.8f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage +const float max_speed_rps_arm = 0.9f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage - positionController_M_Arm.setDesiredRotation(deg); - - return NULL; +// calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area) +// PARAM: height_mm = height which OK Gripperarea has to reach. +// RETURN: deg_arm = absolut Position in deg that the arm has to take. +float calc_arm_deg_for_height(int height_mm) +{ + float height_arm = height_mm - (dist_arm_ground - dist_arm_attach_OK_griparea); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.) + float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach + return deg_arm; } -//Drives forward into the next step -int Drive(float dist){ -float distance; - -distance=dist; +//calculates the deg which the wheels have to turn in order to cover specified distance in mm +//PARAM: distance = distance to drive in milimeter +//RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm) +float wheel_dist_to_deg(float distance) +{ + float deg_wheel = (distance) / (wheel_diameter * pi) ; + return deg_wheel; +} - positionController_M_right.setDesiredRotation(distance,max_speed_rps); - positionController_M_left.setDesiredRotation(distance,max_speed_rps); +// increments the Motor for defined degree from the current one +// PARAM: deg_to_turn = degree to turn the Motor +// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation()) +// RETURN: new_turn_rotation = new Rotation value in rotations +float turn_relative_deg(float deg_to_turn, float current_rotation) +{ + float new_turn_rotation = current_rotation + deg_to_turn; + return new_turn_rotation; +} +// sets the Motor to a specified degree in one rotation +// PARAM: end_deg = new position of the arm in degree 0 <= value >=360 +// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation()) +// RETURN: new_partial_rotation = new deg value in rotations +float turn_absolut_deg(float end_deg, float current_rotations) +{ + int full_rotations; + if(current_rotations > 0) + { + full_rotations = round(current_rotations - 0.5); + } + else if(current_rotations < 0) + { + full_rotations = round(current_rotations + 0.5); + } + else + { + full_rotations = 0; + } + float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360; + return new_partial_rotation; +} - return 0; +//calculates position of arm when lift up has ended. +//RETURN: end_deg = degree which the motor has to turn in order to reach end lift position. +float calc_pos_end_lift() +{ + float end_deg; + end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-dist_grappleratt_grappler_uk))/arm_length) + start_deg_arm; + end_deg = end_deg * 180 / pi; + return end_deg; } -//only turns the arm until the robot is on the next step -//not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position -int LiftUp(float deg){ +//*********************************************************************************************************************************************************** +// important calculatet constant for Wall-E +const double deg_up_from_horizon_to_stair = calc_arm_deg_for_height(height_stairs); + +// import functions from file mapping +extern double powerx(double base, double pow2); +extern double mapping (float adc_value_mV); + +// +//simple check if there is an object in proximity +//returns 0 if there is NO object present +//returns 1 if there is an object present +//returns 2 if the distance isn't in the expected range - int8_t i = 0; //prov condition variable - - positionController_M_Arm.setDesiredRotation(deg); - - - return 0; +uint8_t nextStepDetection(double distanceCm,double setpointDistance){ + double distance = distanceCm; + double setpoint = setpointDistance; + if(distance == 0){ + return 10; //sensor value is outside the expected range + } + if((distance <= (setpoint + 2)) && (distance >= (setpoint - 2))){ + return 3; //the distance to the next step is in ±1cm of the setpoint + } + if(distance < setpoint){ + return 0; //the robot is to close to the step to rotate the arm unhindered + } + if(distance > setpoint){ + return 1; //the robot is too far away from the next step + } + else{ + return 2; + } + } -//pow function is here so we dont have to use the math.h library -//it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double -double powerx(double base, double pow2){ - double result = -1; - double power = pow2; - double basis = base; - result = 1; - //handling negative exponents - if(power<0){ - for(double i=1; i<=(power*(-1.0)); i++) { - result *= basis; - } - result = 1.0/result; +//simple check if there is an object in proximity +//returns 0 if there is NO object present +//returns 1 if there is an object present +//returns 2 if the distance isn't in the expected range +uint8_t StepDetection_down(float sensor) + +{ + double d_valueMM = mapping(sensor*1.0e3f*3.3f); + if(d_valueMM >= 4) return 0; + else if( d_valueMM > 100 ) return 2; + else if((d_valueMM < 4)||(d_valueMM==0)) return 1; + + else return 5; +} + +// bring arm in starting position. Height of stairs. +int set_arm_stair_height() + +{ + float diff; + int gripper=nextStepDetection(ir_distance_mm_L, 2); + + //first step to calculate desired position + if (desired_pos==0) { + desired_pos=turn_relative_deg(startPos, positionController_M_Arm.getRotation()); + positionController_M_Arm.setDesiredRotation(desired_pos, 0.5); // command to turn motor to desired deg. } - //handling positive exponents - else{ - for(double i=1; i<=power; i++){ - result *= basis;}} + // to check if the position controller is finished + diff =abs( desired_pos-(positionController_M_Arm.getRotation())); - return result; + //prints for testing + printf("Set arm Position ARM (rot): %3.3f Desired:%3.3f State:%d ToNextfunction:%d Diff:%3.3f\n", + positionController_M_Arm.getRotation(), desired_pos, state, ToNextFunction, diff); + + // stops the positioning, when the gripper is in proximity of the sensor + if (gripper==3){ + desired_pos=turn_relative_deg(-0.01, positionController_M_Arm.getRotation() ); + positionController_M_Arm.setDesiredRotation(desired_pos, 0.2); } -double mapping(float adc_value_mV){ - double distance = 0.0f; //distance in mm - double infY =360 , supY = 2360; //Window for sensor values - double voltage_mV = adc_value_mV; - double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert - if(voltage_mV > infY && voltage_mV < supY){ - distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6; + if((diff<0.008)&&gripper){ + return 1; } - return (distance); + else { + return NULL; +} +} + +//Drives forward into the next step +//Prameter:distance in milimeter +int drive_straight(float distance) +{ + float diff_R; + float diff_L; + +// calculates the desired position +if (desired_pos==0) { + desired_pos=wheel_dist_to_deg(distance); + float relativ_turns_rightmotor = turn_relative_deg(desired_pos, positionController_M_right.getRotation()); + float relativ_turns_leftmotor = turn_relative_deg(desired_pos, positionController_M_left.getRotation()); } + positionController_M_right.setDesiredRotation(desired_pos, max_speed_rps_wheel); + positionController_M_left.setDesiredRotation(desired_pos, max_speed_rps_wheel); + + // to check if the position controller are finished + diff_R= abs(desired_pos-(positionController_M_right.getRotation())); + diff_L= abs(desired_pos-(positionController_M_left.getRotation())); + + //prints for testing + printf("Drive Straight Position Right(rot): %3.3f; Position Left (rot): %3.3f Desired: %3.3f Diff:%3.3f State:%d ToNextfunction:%d\n", + positionController_M_right.getRotation(),positionController_M_left.getRotation(),desired_pos,diff_L, state, ToNextFunction); + + + if ((diff_R<=0.02) && (diff_L<=0.02)) + { + return 1; + } + else + { + return 0; + } +} + +//turns the arm until the robot is on the next step +int lift_up() +{ + float diff; + + // calculates the desired position + if (desired_pos==0) { + desired_pos = turn_relative_deg(liftPos,positionController_M_Arm.getRotation()); + } + + positionController_M_Arm.setDesiredRotation(desired_pos, max_speed_rps_arm); + + // to check if the position controller is finished + diff=abs(desired_pos-positionController_M_Arm.getRotation()); + + //prints for testing + printf("Lift Up: Position ARM (rot): %3.3f Desired:%3.3f State:%d ToNextfunction:%d\n",positionController_M_Arm.getRotation(),desired_pos, state, ToNextFunction); + + if(diff<=0.03) + { return 1; + } + else + { return 0; + } + +} +//*********************************************************************************************************************************************************** + +// while loop gets executed every main_task_period_ms milliseconds +int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second +Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms +//*********************************************************************************************************************************************************** + int main(void) { // attach button fall and rise functions to user button object -user_button.fall(&user_button_pressed_fcn); -user_button.rise(&user_button_released_fcn); - - - - while (true){ - enable_motors = 1; + user_button.fall(&user_button_pressed_fcn); + user_button.rise(&user_button_released_fcn); + mechanical_button.mode(PullDown); + + while (true) + { - ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; + ir_distance_mm_L= mapping(ir_analog_in_Distance_L.read()*1.0e3f * 3.3f); + + + if (ToNextFunction>=1||(mechanical_button.read()!=1)) { + enable_motors=1; + } + - // printf("test pow function 2 ^ 2 %lf\n",powerx(2,2)); - //printf("test mapping function %f\n", mapping(ir_distance_mV)); + switch (ToNextFunction) + { + + // case 0: For referencing the arm position + case 0: while (mechanical_button.read()!=1) + { + positionController_M_Arm.setDesiredRotation(-1,0.5); + + } + if (mechanical_button){ + positionController_M_Arm.setDesiredRotation(positionController_M_Arm.getRotation()); + + } + break; - //printf("IR sensor (mV): %3.3f\n", ir_distance_mV); + // case 1: + case 1: + ToNextFunction +=1; + state=0; + break; + + // case 2: drive too the stair + case 2: state=drive_straight(drive_straight_mm); + + if (state==1){ + ToNextFunction += 1; + state=0; + desired_pos=0; + } + break; - switch (ToNextFunction) { - case 1: StartPosition(degArmStart); - printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); - // ToNextFunction+=1; - break; - case 2: Drive(PositionStair); - printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", - positionController_M_right.getRotation(),positionController_M_left.getRotation()); - // ToNextFunction+=1; + // case 3: lift the roboer up + case 3: state=lift_up(); + + if (state==1){ + ToNextFunction += 1; + state=0; + desired_pos=0; + } break; - case 3: LiftUp(degArmLift); - // ToNextFunction+=1; - printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); + + // case 4: detect if there is a next step + case 4: state=nextStepDetection(ir_distance_mm_L,4); + // if there is a next step, variable nextStep=1 + if (state==3){ + nextStep=1; + } + + + ToNextFunction +=1; + state=0; + + printf("distance:%3.3f Output:%d NextStep:%d\n ", ir_distance_mm_L, nextStepDetection(ir_distance_mm_L,4), nextStep); break; - case 4: Drive(PositionBackOff); - printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", - positionController_M_right.getRotation(),positionController_M_left.getRotation()); - // ToNextFunction+=1; + + // case 5: Drive the roboter back until there is no step underneath the lookdown sensor + case 5: + state=drive_straight(drive_back_mm); + + if (StepDetection_down(ir_analog_in_Lookdown_B) != 1) + { + ToNextFunction += 1; + state=0; + desired_pos=0; + positionController_M_left.setDesiredRotation(positionController_M_left.getRotation()); + positionController_M_right.setDesiredRotation(positionController_M_right.getRotation()); + + } break; - case 5: LiftUp(degArmStart); - printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); - // ToNextFunction = 0; + + //case 6: bring arm back to starting positon + case 6: + state=set_arm_stair_height(); + //if there is a next step, continue to climb up + if ((state==1) && (nextStep)){ + ToNextFunction = 1; + state=0; + desired_pos=0; + nextStep=0; + } + //if there is no next step, stop + if ((state==1) && (nextStep!=1)) { + ToNextFunction=0; + state=0; + desired_pos=0; + nextStep=0; + } break; + default: ; } - - - } - // read timer and make the main thread sleep for the remaining time span (non blocking) - int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); - thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); + // read timer and make the main thread sleep for the remaining time span (non blocking) + int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); + thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); return 0; } + void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } -void user_button_released_fcn() { +void user_button_released_fcn() +{ // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); - if (user_button_elapsed_time_ms > 200) { - ToNextFunction += 1;} - } \ No newline at end of file + if (user_button_elapsed_time_ms > 200) + { + ToNextFunction =1; + } +} \ No newline at end of file