first commit

Dependencies:   PM2_Libary

Revision:
43:057640e99f8e
Parent:
42:ec3a88a24666
--- a/main.cpp	Wed Apr 13 07:11:14 2022 +0000
+++ b/main.cpp	Sun May 22 10:10:17 2022 +0200
@@ -1,11 +1,21 @@
 #include "mbed.h"
 #include "PM2_Libary.h"
 #include <cstdint>
-
-
+#include <cstdio>
+#include "math.h"
+//*******************************************************************************************************************************************************************
+// Defined Variables in mm coming from Hardware-team. Need to be updated
+const float wheel_diameter                = 30.0f; // diameter of wheel with caterpillar to calculate mm per wheel turn (4)
+const float arm_length                    = 118.5; // lenght of arm from pivotpoint to pivotpoint (3)
+const float dist_arm_attach_distsensor    = 20; // distance between pivot point arm  on body to start distancesensor on top in horizontal (6)
+const float dist_distsensors              = 200; // distance between the two distancesensors on top of Wall-E (9)
+const float dist_arm_ground               = 51; // distance between pivotpoint arm and ground (5)
+const float dist_arm_attach_OK_griparea   = 10.5 ; // Height of Grappler cutout to grapple Stair (8) (maybe add 1mm so gripper is a bit over the plate)
+const float dist_grappleratt_grappler_uk  = 36.5; // distance between pivotpoint Grappler and bottom edge (?)
 
-// logical variable main task
-bool do_execute_main_task = false;  // this variable will be toggled via the user button (blue button) to or not to execute the main task
+const float height_stairs                 = 100; // height to top of next stairstep in mm
+//***********************************************************************************************************************************************************
+// declaration of Input - Output pins
 
 // user button on nucleo board
 Timer user_button_timer;            // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
@@ -13,37 +23,47 @@
 void user_button_pressed_fcn();     // custom functions which gets executed when user button gets pressed and released, definition below
 void user_button_released_fcn();
 
-// while loop gets executed every main_task_period_ms milliseconds
-int main_task_period_ms = 30;   // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
-Timer main_task_timer;          // create Timer object which we use to run the main task every main task period time in ms
+// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
+// define variable to store measurement from infrared distancesensor in mm
+float ir_distance_mm_L;
+float ir_distance_mm_R;  
+float ir_distance_mm_Lookdown_B;
+float ir_distance_mm_Lookdown_F; 
 
-// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
-float ir_distance_mV = 0.0f;    // define variable to store measurement
-AnalogIn ir_analog_in(PC_2);    // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
+// create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
+AnalogIn ir_analog_in_Distance_L(PC_2);  
+AnalogIn ir_analog_in_Lookdown_B(PC_5);
+AnalogIn ir_analog_in_Lookdown_F(PB_1);
+
+// Digital Inputs
+DigitalIn mechanical_button(PC_3);
 
 
-
-// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
 DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
 
 float   pwm_period_s = 0.00005f;    // define pwm period time in seconds and create FastPWM objects to command dc motors
+
 //motor pin declaration
-FastPWM pwm_M_right(PB_13);              
-FastPWM pwm_M_left(PA_9);
-FastPWM pwm_M_arm(PA_10);
+FastPWM pwm_M_right (PB_13);    //motor pin decalaration for wheels right side         
+FastPWM pwm_M_left  (PA_9);     //motor pin decalaration for wheels left side 
+FastPWM pwm_M_arm   (PA_10);    //motor pin decalaration for arm 
 
 //Encoder pin declaration
-EncoderCounter  encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side
-EncoderCounter  encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side
-EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm
+EncoderCounter  encoder_M_right (PA_6, PC_7); //encoder pin decalaration for wheels right side
+EncoderCounter  encoder_M_left  (PB_6, PB_7); //encoder pin decalaration for wheels left side
+EncoderCounter  encoder_M_arm   (PA_0, PA_1); //encoder pin decalaration for arm
+//***********************************************************************************************************************************************************
+// Hardware controll Setup and functions (motors and sensors)
+
+
 
 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
-float max_voltage = 12.0f;                  // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
-float counts_per_turn_wheels = 2000.0f * 100.0f;    // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
-float counts_per_turn_arm = 2000.0f * 100.0f;      // define counts per turn at gearbox end (counts/turn * gearratio) for arm
-float kn = 180.0f / 12.0f;                  // define motor constant in rpm per V
-float k_gear = 100.0f / 78.125f;            // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
-float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1
+const float max_voltage               = 12.0f;     // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
+const float counts_per_turn_wheels    = 20.0f * 78.125f;//     define counts per turn at gearbox end (counts/turn * gearratio) for wheels
+const float counts_per_turn_arm       = 20.0f * 78.125f * 19.0f;    // define counts per turn at gearbox end (counts/turn * gearratio) for arm
+const float kn                        = 180.0f / 12.0f;      // define motor constant in rpm per V
+const float k_gear                    = 100.0f / 78.125f;   // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°)
+const float kp                        = 0.1f;     // define custom kp, this is the default speed controller gain for gear box 78.125:1
 
 //motors for tracks
 PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
@@ -51,153 +71,378 @@
 //Arm Motor
 PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
 
-//float max_speed_rps = 0.5f;       not sure if needed          // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
+//***********************************************************************************************************************************************************
 
 
-// LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
-// LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
+//these variables represent relative position NOT absolut
+float startPos = -0.545; //from last lift up position to start position
+float liftPos = -0.555; //from start position to lift up position
 
-//Platzhalter Variabeln für die Positionierung
-float PositionStair    = 0.2;
-float PositionBackOff  = -0.5;
-float degArmStart      = 0.5;
-float degArmLift       = -0.5;
-int ToNextFunction = 0;
-float max_speed_rps = 0.5f;  
+const float   drive_straight_mm = 200.0;
+const float   drive_back_mm = -20.0f;    
+int         ToNextFunction = 0;      // current state of the system (which function is beeing executed)
+int         state=0;        //return value of functions
+float       desired_pos;
+int        nextStep=0;
+
+// definition variables for calculations
+const float   pi = 2 * acos(0.0); // definiton of pi
+const float   end_pos_lift_deg = 180 + asin((dist_arm_ground-(dist_grappleratt_grappler_uk))/arm_length) * 180 / pi;  // calculates the degree which the arm has to have when lift_up has been executed.
+const float   start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E)
 
-int StartPosition(float deg){
+// definition of rotation speeds for motors 0 = none 1.0 = max.
+const float   max_speed_rps_wheel = 0.8f;  // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage
+const float   max_speed_rps_arm = 0.9f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage
 
-    positionController_M_Arm.setDesiredRotation(deg);
-
-    return NULL;
+// calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area)
+// PARAM: height_mm = height which OK Gripperarea has to reach.
+// RETURN: deg_arm = absolut Position in deg that the arm has to take.
+float calc_arm_deg_for_height(int height_mm)
+{
+    float height_arm = height_mm - (dist_arm_ground - dist_arm_attach_OK_griparea); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.)
+    float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach
+    return deg_arm;
 }
-//Drives forward into the next step
-int Drive(float dist){
 
-float distance;
-
-distance=dist;
+//calculates the deg which the wheels have to turn in order to cover specified distance in mm
+//PARAM: distance = distance to drive in milimeter
+//RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm)
+float wheel_dist_to_deg(float distance)
+{
+    float deg_wheel = (distance) / (wheel_diameter * pi) ;
+    return deg_wheel;
+}
 
 
-    positionController_M_right.setDesiredRotation(distance,max_speed_rps);
-    positionController_M_left.setDesiredRotation(distance,max_speed_rps);
+// increments the Motor for defined degree from the current one
+// PARAM: deg_to_turn = degree to turn the Motor
+// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
+// RETURN: new_turn_rotation = new Rotation value in rotations
+float turn_relative_deg(float deg_to_turn, float current_rotation)
+{
+    float new_turn_rotation = current_rotation + deg_to_turn;
+    return new_turn_rotation;
+}
 
+// sets the Motor to a specified degree in one rotation 
+// PARAM: end_deg = new position of the arm in degree 0 <= value >=360
+// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
+// RETURN: new_partial_rotation = new deg value in rotations
+float turn_absolut_deg(float end_deg, float current_rotations)
+{
+    int full_rotations;
+	if(current_rotations > 0)
+	{
+		full_rotations = round(current_rotations - 0.5);	
+	}
+	else if(current_rotations < 0)
+	{
+		full_rotations = round(current_rotations + 0.5);	
+	} 
+	else
+	{
+		full_rotations = 0;
+	}
+    float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360;
+    return new_partial_rotation;
+}
 
-    return 0;   
+//calculates position of arm when lift up has ended.
+//RETURN: end_deg = degree which the motor has to turn in order to reach end lift position.
+float calc_pos_end_lift()
+{
+    float end_deg;
+    end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-dist_grappleratt_grappler_uk))/arm_length) + start_deg_arm;
+    end_deg = end_deg * 180 / pi;
+    return end_deg;
 }
 
-//only turns the arm until the robot is on the next step
-//not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position
-int LiftUp(float deg){
+//***********************************************************************************************************************************************************
+// important calculatet constant for Wall-E
+const double deg_up_from_horizon_to_stair = calc_arm_deg_for_height(height_stairs);
+
+// import functions from file mapping
+extern double powerx(double base, double pow2);
+extern double mapping (float adc_value_mV);
+
+//
+//simple check if there is an object in proximity
+//returns 0 if there is NO object present
+//returns 1 if there is an object present
+//returns 2 if the distance isn't in the expected range
 
-    int8_t i = 0;         //prov condition variable
-    
-        positionController_M_Arm.setDesiredRotation(deg);
-        
-    
-    return 0;
+uint8_t nextStepDetection(double distanceCm,double setpointDistance){
+    double distance = distanceCm;
+    double setpoint = setpointDistance;
+    if(distance == 0){
+        return 10; //sensor value is outside the expected range
+    }
+    if((distance <= (setpoint + 2)) && (distance >= (setpoint - 2))){
+        return 3; //the distance to the next step is in ±1cm of the setpoint
+    }
+    if(distance < setpoint){
+        return 0; //the robot is to close to the step to rotate the arm unhindered
+    }
+    if(distance > setpoint){
+        return 1; //the robot is too far away from the next step
+    }
+    else{
+        return 2;
+    }
+
 }
-//pow function is here so we dont have to use the math.h library
-//it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double
-double powerx(double base, double pow2){
-    double result = -1;
-    double power = pow2;
-    double basis = base;
-    result = 1;
-    //handling negative exponents
-    if(power<0){
-        for(double i=1; i<=(power*(-1.0)); i++) {
-            result *= basis;
-        }
-        result = 1.0/result;
+//simple check if there is an object in proximity
+//returns 0 if there is NO object present
+//returns 1 if there is an object present
+//returns 2 if the distance isn't in the expected range
+uint8_t StepDetection_down(float sensor)
+
+{
+    double d_valueMM = mapping(sensor*1.0e3f*3.3f);   
+    if(d_valueMM >= 4) return 0;
+    else if( d_valueMM > 100 ) return  2;
+    else if((d_valueMM < 4)||(d_valueMM==0))  return 1;
+    
+    else return 5;
+}
+
+// bring arm in starting position. Height of stairs.
+int set_arm_stair_height()
+
+{
+    float diff;
+    int gripper=nextStepDetection(ir_distance_mm_L, 2);
+
+    //first step to calculate desired position
+    if (desired_pos==0) {
+    desired_pos=turn_relative_deg(startPos, positionController_M_Arm.getRotation()); 
+    positionController_M_Arm.setDesiredRotation(desired_pos, 0.5); // command to turn motor to desired deg.
     }
-    //handling positive exponents
-    else{
-    for(double i=1; i<=power; i++){
-    result *= basis;}}
+    // to check if the position controller is finished
+    diff =abs( desired_pos-(positionController_M_Arm.getRotation()));
 
-    return result;
+    //prints for testing
+    printf("Set arm      Position ARM (rot): %3.3f Desired:%3.3f    State:%d     ToNextfunction:%d Diff:%3.3f\n",
+    positionController_M_Arm.getRotation(), desired_pos, state, ToNextFunction, diff);
+
+    // stops the positioning, when the gripper is in proximity of the sensor
+    if (gripper==3){
+        desired_pos=turn_relative_deg(-0.01, positionController_M_Arm.getRotation() );
+        positionController_M_Arm.setDesiredRotation(desired_pos, 0.2);
     }
 
-double mapping(float adc_value_mV){
-    double distance = 0.0f; //distance in mm
-    double infY =360 , supY = 2360; //Window for sensor values
-    double voltage_mV = adc_value_mV;
-    double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert
-    if(voltage_mV > infY && voltage_mV < supY){
-        distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6;
+    if((diff<0.008)&&gripper){
+        return 1;
     }
-    return (distance);
+    else {
+        return NULL;
+}
+}
+
+//Drives forward into the next step 
+//Prameter:distance in milimeter
+int drive_straight(float distance)
+{
+    float diff_R;
+    float diff_L;
+
+// calculates the desired position
+if (desired_pos==0) {
+          desired_pos=wheel_dist_to_deg(distance);
+    float relativ_turns_rightmotor = turn_relative_deg(desired_pos, positionController_M_right.getRotation());
+    float relativ_turns_leftmotor = turn_relative_deg(desired_pos, positionController_M_left.getRotation());
 }
 
 
+    positionController_M_right.setDesiredRotation(desired_pos, max_speed_rps_wheel);
+    positionController_M_left.setDesiredRotation(desired_pos, max_speed_rps_wheel); 
+
+ // to check if the position controller are finished
+    diff_R= abs(desired_pos-(positionController_M_right.getRotation()));
+    diff_L= abs(desired_pos-(positionController_M_left.getRotation()));
+
+    //prints for testing
+    printf("Drive Straight Position Right(rot): %3.3f; Position Left (rot): %3.3f Desired: %3.3f Diff:%3.3f State:%d ToNextfunction:%d\n",
+     positionController_M_right.getRotation(),positionController_M_left.getRotation(),desired_pos,diff_L, state, ToNextFunction);
+
+
+    if ((diff_R<=0.02) && (diff_L<=0.02))
+    {
+        return 1;
+    }
+    else 
+    {
+    return 0;
+    }
+}
+
+//turns the arm until the robot is on the next step
+int lift_up()
+{
+    float diff;
+
+    // calculates the desired position
+    if (desired_pos==0) {
+    desired_pos = turn_relative_deg(liftPos,positionController_M_Arm.getRotation());
+    }
+    
+    positionController_M_Arm.setDesiredRotation(desired_pos, max_speed_rps_arm);
+
+    // to check if the position controller is finished
+    diff=abs(desired_pos-positionController_M_Arm.getRotation());
+ 
+  //prints for testing
+     printf("Lift Up:       Position ARM (rot): %3.3f Desired:%3.3f     State:%d  ToNextfunction:%d\n",positionController_M_Arm.getRotation(),desired_pos, state, ToNextFunction);
+
+    if(diff<=0.03)
+    { return 1;
+    }
+    else 
+    { return 0;
+    }  
+    
+}
+//***********************************************************************************************************************************************************
+
+// while loop gets executed every main_task_period_ms milliseconds
+int main_task_period_ms = 30;   // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second
+Timer main_task_timer;          // create Timer object which we use to run the main task every main task period time in ms
+//***********************************************************************************************************************************************************
+
 int main(void)
 {
     // attach button fall and rise functions to user button object
-user_button.fall(&user_button_pressed_fcn);
-user_button.rise(&user_button_released_fcn);
-  
-
-
-    while (true){
-         enable_motors = 1;
+    user_button.fall(&user_button_pressed_fcn);
+    user_button.rise(&user_button_released_fcn);
+    mechanical_button.mode(PullDown);
+ 
+    while (true)
+    {
 
-         ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
+        ir_distance_mm_L= mapping(ir_analog_in_Distance_L.read()*1.0e3f * 3.3f);
+     
+    
+        if (ToNextFunction>=1||(mechanical_button.read()!=1)) {
+            enable_motors=1;
+        }
+        
         
-        // printf("test pow function 2 ^ 2 %lf\n",powerx(2,2));
-         //printf("test mapping function %f\n", mapping(ir_distance_mV));
+        switch (ToNextFunction) 
+        {
+    
+            // case 0: For referencing the arm position
+            case 0: while  (mechanical_button.read()!=1) 
+            {
+            positionController_M_Arm.setDesiredRotation(-1,0.5);
+           
+            }
+            if (mechanical_button){
+                positionController_M_Arm.setDesiredRotation(positionController_M_Arm.getRotation());
+
+            }
+            break;
 
-         //printf("IR sensor (mV): %3.3f\n", ir_distance_mV);
+            // case 1:
+            case 1:  
         
+                ToNextFunction +=1;
+                state=0;
+            break;
+
+            // case 2: drive too the stair
+            case 2:  state=drive_straight(drive_straight_mm);
+           
+            if (state==1){
+                    ToNextFunction += 1;
+                    state=0;
+                    desired_pos=0;
+            }
+            break;
 
-       switch (ToNextFunction) {
-        case 1: StartPosition(degArmStart);
-            printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
-             //   ToNextFunction+=1;
-            break;
-        case 2: Drive(PositionStair);
-           printf("Case 2: Position Right(rot): %3.3f;    Position Left (rot): %3.3f\n",
-           positionController_M_right.getRotation(),positionController_M_left.getRotation());
-            // ToNextFunction+=1;
+            // case 3: lift the roboer up
+            case 3:    state=lift_up();
+            
+            if (state==1){
+                    ToNextFunction += 1;
+                	   state=0;
+                    desired_pos=0;
+            }
             break;
-        case 3: LiftUp(degArmLift);
-            //  ToNextFunction+=1;
-            printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
+
+            // case 4: detect if there is a next step
+            case 4:          state=nextStepDetection(ir_distance_mm_L,4);
+            // if there is a next step, variable nextStep=1
+            if (state==3){
+                 nextStep=1;
+               }
+
+        
+            ToNextFunction +=1;
+            state=0;
+
+            printf("distance:%3.3f  Output:%d NextStep:%d\n ", ir_distance_mm_L, nextStepDetection(ir_distance_mm_L,4), nextStep); 
              break;
-        case 4: Drive(PositionBackOff);
-            printf("Case 4: Position Right(rot): %3.3f;    Position Left (rot): %3.3f\n",
-           positionController_M_right.getRotation(),positionController_M_left.getRotation());
-            //   ToNextFunction+=1;
+
+            // case 5: Drive the roboter back until there is no step underneath the lookdown sensor
+            case 5: 
+            state=drive_straight(drive_back_mm);
+            
+            if  (StepDetection_down(ir_analog_in_Lookdown_B) != 1)
+            {
+                    ToNextFunction += 1;
+                    state=0;
+                    desired_pos=0;
+                    positionController_M_left.setDesiredRotation(positionController_M_left.getRotation());
+                    positionController_M_right.setDesiredRotation(positionController_M_right.getRotation());
+
+            }
             break;
-        case 5: LiftUp(degArmStart);
-                printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
-            //  ToNextFunction = 0;
+
+            //case 6: bring arm back to starting positon
+            case 6: 
+            state=set_arm_stair_height();
+            //if there is a next step, continue to climb up
+             if ((state==1) && (nextStep)){
+                    ToNextFunction = 1;
+                    state=0;
+                    desired_pos=0;
+                    nextStep=0;
+            }
+            //if there is no next step, stop
+            if ((state==1) && (nextStep!=1)) {
+                ToNextFunction=0;
+                state=0;
+                desired_pos=0;
+                nextStep=0;
+            }
             break;  
+
             default:  ;
         } 
-
-    
-    
     }
-       // read timer and make the main thread sleep for the remaining time span (non blocking)
-        int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
-        thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
+    // read timer and make the main thread sleep for the remaining time span (non blocking)
+    int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
+    thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
     return 0;
 }
 
 
+
 void user_button_pressed_fcn()
 {
     user_button_timer.start();
     user_button_timer.reset();
 }
 
-void user_button_released_fcn() {
+void user_button_released_fcn() 
+{
     // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
     int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
     user_button_timer.stop();
-    if (user_button_elapsed_time_ms > 200) {
-       ToNextFunction += 1;}
-       }
\ No newline at end of file
+    if (user_button_elapsed_time_ms > 200) 
+    {
+       ToNextFunction =1;
+    }
+}
\ No newline at end of file