first commit

Dependencies:   PM2_Libary

Branch:
lupo
Revision:
38:8121e7a79c0b
Parent:
37:05252c4a2d4e
Child:
39:4c5e4ff386da
--- a/main.cpp	Mon May 02 14:35:00 2022 +0200
+++ b/main.cpp	Mon May 16 16:37:07 2022 +0200
@@ -10,8 +10,8 @@
 const float dist_arm_attach_distsensor    = 20; // distance between pivot point arm  on body to start distancesensor on top in horizontal (6)
 const float dist_distsensors              = 200; // distance between the two distancesensors on top of Wall-E (9)
 const float dist_arm_ground               = 51; // distance between pivotpoint arm and ground (5)
-const float gripper_area_height           = 16 ; // Height of Grappler cutout to grapple Stair (8)
-const float dist_grappleratt_grappler_uk  = 33; // distance between pivotpoint Grappler and bottom edge (?)
+const float dist_arm_attach_OK_griparea   = 10.5 ; // Height of Grappler cutout to grapple Stair (8) (maybe add 1mm so gripper is a bit over the plate)
+const float dist_grappleratt_grappler_uk  = 36.5; // distance between pivotpoint Grappler and bottom edge (?)
 
 const float height_stairs                 = 100; // height to top of next stairstep in mm
 //***********************************************************************************************************************************************************
@@ -31,11 +31,13 @@
 float ir_distance_mm_Lookdown_F; 
 
 AnalogIn ir_analog_in_Distance_L(PC_2);  
-AnalogIn ir_analog_in_Distance_R(PC_3);
+
 AnalogIn ir_analog_in_Lookdown_B(PC_5);
 AnalogIn ir_analog_in_Lookdown_F(PB_1);
 // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
 
+DigitalIn mechanical_button(PC_3);
+
 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
 DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
 float   pwm_period_s = 0.00005f;    // define pwm period time in seconds and create FastPWM objects to command dc motors
@@ -52,10 +54,14 @@
 //***********************************************************************************************************************************************************
 // Hardware controll Setup and functions (motors and sensors)
 
+//these variables represent relative position NOT absolut
+float startPos = -0.525; //from last lift up position to start position
+float liftPos = -0.555; //from start position to lift up position
+
 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
 const float max_voltage               = 12.0f;     // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
 const float counts_per_turn_wheels    = 20.0f * 78.125f;    // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
-const float counts_per_turn_arm       = 20.0f * 78.125f * 20.0f;    // define counts per turn at gearbox end (counts/turn * gearratio) for arm
+const float counts_per_turn_arm       = 20.0f * 78.125f * 19.0f;    // define counts per turn at gearbox end (counts/turn * gearratio) for arm
 const float kn                        = 180.0f / 12.0f;      // define motor constant in rpm per V
 const float k_gear                    = 100.0f / 78.125f;   // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°)
 const float kp                        = 0.1f;     // define custom kp, this is the default speed controller gain for gear box 78.125:1
@@ -69,39 +75,75 @@
 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
 //***********************************************************************************************************************************************************
-// logic functions for basic movement
+// calculations for basic movment and controll
 
 //placeholder variables for prototype testing
 
-const int   drive_stright_mm = 500; // placeholder for testing drives amount forward
-const int   drive_back_mm = -100; // placeholder for testing drives amount backwards
-int         ToNextFunction = 0;  // current state of the system (which function is beeing executed)
+const int   drive_straight_mm = 2;  // placeholder for testing drives amount forward
+const int   drive_back_mm = -2;    // placeholder for testing drives amount backwards
+int         ToNextFunction = 0;      // current state of the system (which function is beeing executed)
 int         state=0;
+float       desired_pos;
+// definition variables for calculations
+const float   pi = 2 * acos(0.0); // definiton of pi
+const float   end_pos_lift_deg = 180 + asin((dist_arm_ground-(dist_grappleratt_grappler_uk))/arm_length) * 180 / pi;  // calculates the degree which the arm has to have when lift_up has been executed.
+const float   start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E)
+
+// definition of rotation speeds for motors 0 = none 1.0 = max.
+const float   max_speed_rps_wheel = 0.7f;  // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage
+const float   max_speed_rps_arm = 0.9f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage
+
+// calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area)
+// PARAM: height_mm = height which OK Gripperarea has to reach.
+// RETURN: deg_arm = absolut Position in deg that the arm has to take.
+float calc_arm_deg_for_height(int height_mm)
+{
+    float height_arm = height_mm - (dist_arm_ground - dist_arm_attach_OK_griparea); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.)
+    float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach
+    return deg_arm;
+}
+
+//calculates the deg which the wheels have to turn in order to cover specified distance in mm
+//PARAM: distance = distance to drive in milimeter
+//RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm)
+float wheel_dist_to_deg(int distance)
+{
+    float deg_wheel = distance / (wheel_diameter * pi) * 360;
+    return deg_wheel;
+}
 
 
-// definition important variables
-const float   pi = 2 * acos(0.0); // definiton of pi
-const float   max_speed_rps_wheel = 0.5f;  // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage
-const float   max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage
-float         start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; ///calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E)
-// import functions from file mapping
-extern double powerx(double base, double pow2);
-extern double mapping (float adc_value_mV);
+// increments the Motor for defined degree from the current one
+// PARAM: deg_to_turn = degree to turn the Motor
+// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
+// RETURN: new_turn_rotation = new Rotation value in rotations
+float turn_relative_deg(float deg_to_turn, float current_rotation)
+{
+    float new_turn_rotation = current_rotation + deg_to_turn;
+    return new_turn_rotation;
+}
 
-// calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area)
-float calc_arm_deg_for_height(int height_mm)
+// sets the Motor to a specified degree in one rotation 
+// PARAM: end_deg = new position of the arm in degree 0 <= value >=360
+// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation())
+// RETURN: new_partial_rotation = new deg value in rotations
+float turn_absolut_deg(float end_deg, float current_rotations)
 {
-    float deg_arm;
-    if ((height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height)) > arm_length) //check if height is reachable
-    {
-        printf("Error in calc_arm_deg_for_height: desired height is bigger than Wall-E arm lenght."); // error message when desired height is not reachable. 
-    }
-    else 
-    {
-        float height_arm = height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.)
-        deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach
-    }
-    return deg_arm;
+    int full_rotations;
+	if(current_rotations > 0)
+	{
+		full_rotations = round(current_rotations - 0.5);	
+	}
+	else if(current_rotations < 0)
+	{
+		full_rotations = round(current_rotations + 0.5);	
+	} 
+	else
+	{
+		full_rotations = 0;
+	}
+    float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360;
+    return new_partial_rotation;
 }
 
 //calculates position of arm when lift up has ended.
@@ -109,66 +151,85 @@
 float calc_pos_end_lift()
 {
     float end_deg;
-    end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-gripper_area_height))/arm_length) + start_deg_arm;
+    end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-dist_grappleratt_grappler_uk))/arm_length) + start_deg_arm;
     end_deg = end_deg * 180 / pi;
     return end_deg;
 }
 
-//calculates the deg which the wheels have to turn in order to cover specified distance in mm
-//RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm)
-float wheel_dist_to_deg(int distance) // distance has to be in mm.
-{
-    float deg_wheel = distance * 360 /(wheel_diameter * pi);
-    return deg_wheel;
+//***********************************************************************************************************************************************************
+// important calculatet constant for Wall-E
+const double deg_up_from_horizon_to_stair = calc_arm_deg_for_height(height_stairs);
+
+// import functions from file mapping
+extern double powerx(double base, double pow2);
+extern double mapping (float adc_value_mV);
+
+//
+//simple check if there is an object in proximity
+//returns 0 if there is NO object present
+//returns 1 if there is an object present
+//returns 2 if the distance isn't in the expected range
+
+uint8_t nextStepDetection(double distanceCm,double setpointDistance){
+    double distance = distanceCm;
+    double setpoint = setpointDistance;
+    if(distance == 0){
+        return 10; //sensor value is outside the expected range
+    }
+    if((distance <= (setpoint + 1)) && (distance >= (setpoint - 1))){
+        return 3; //the distance to the next step is in ±1cm of the setpoint
+    }
+    if(distance < setpoint){
+        return 0; //the robot is to close to the step to rotate the arm unhindered
+    }
+    if(distance > setpoint){
+        return 1; //the robot is too far away from the next step
+    }
+    else{
+        return 2;
+    }
+
 }
+//simple check if there is an object in proximity
+//returns 0 if there is NO object present
+//returns 1 if there is an object present
+//returns 2 if the distance isn't in the expected range
+uint8_t StepDetection_down(float sensor)
 
-// increments the Motor for defined degree from the current one
-// PARAM: deg_to_turn = degree to turn the Motor
-// PARAM: current_full_rotation = the current rotation of the Motor (Motor.getRotation())
-// RETURN: new Rotation value in rotations
-float turn_relative_deg(float deg_to_turn, float current_full_rotation)
 {
-    float current_rotations = current_full_rotation;
-    float new_turn_rotation = current_rotations + deg_to_turn/360.0;
-    return new_turn_rotation;
-}
-
-// sets the Motor to a specified degree in one rotation 
-// PARAM: end_deg = new position of the arm in degree 0 <= value >=360
-// PARAM: current_rotations = the current rotation of the Motor (Motor.getRotation())
-// RETURN: new_partial_rotation = new deg value in rotations
-float turn_absolut_deg(float end_deg, float current_rotations)
-{
-    int full_rotations = current_rotations;
-    float new_partial_rotation = current_rotations - start_deg_arm/360;
-    return new_partial_rotation;
+    double d_valueMM = mapping(sensor*1.0e3f*3.3f);   
+    if(d_valueMM >= 4) return 0;
+    else if( d_valueMM > 100 ) return  2;
+    else if((d_valueMM < 4)||(d_valueMM==0))  return 1;
+    
+    else return 5;
 }
 
 // bring arm in starting position. Height of stairs.
 int set_arm_stair_height()
+
 {
     float diff;
-    double deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position
-    float deg = deg_up_from_horizon + start_deg_arm;
-    if ((0.0 > deg) || (deg > 360.0))
-    {
-        printf("Error in start_position: degree is out of bound for Start Position."); // error when desired reaching point is out of reach.
-        return 2;
+    if (desired_pos==0) {
+    desired_pos=turn_relative_deg(startPos, positionController_M_Arm.getRotation());
     }
+    
+    
+    positionController_M_Arm.setDesiredRotation(desired_pos, max_speed_rps_arm); // command to turn motor to desired deg.
 
-    enable_motors = 1;
-    positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg.
+ 
+
+
 
-    diff = deg-(positionController_M_Arm.getRotation() * 360.0);
-    if (diff<=0.3){
+    diff =abs( desired_pos-(positionController_M_Arm.getRotation()));
+    printf("Set arm      Position ARM (rot): %3.3f Desired:%3.3f    State:%d     ToNextfunction:%d Diff:%3.3f\n",
+    positionController_M_Arm.getRotation(), desired_pos, state, ToNextFunction, diff);
+    if (diff<=0.009){
         return 1;
     }
     else {
-        return NULL;}
-
-
-    enable_motors = 0;
-
+        return NULL;
+}
 }
 
 //Drives forward into the next step 
@@ -177,21 +238,22 @@
 {
     float diff_R;
     float diff_L;
-    float deg_to_turn = wheel_dist_to_deg(distance);
-    float relativ_turns_rightmotor = turn_relative_deg(deg_to_turn, positionController_M_right.getRotation());
-    float relativ_turns_leftmotor = turn_relative_deg(deg_to_turn, positionController_M_left.getRotation());
 
-    ;
-    positionController_M_right.setDesiredRotation(relativ_turns_rightmotor, max_speed_rps_wheel);
-    positionController_M_left.setDesiredRotation(relativ_turns_leftmotor, max_speed_rps_wheel); 
-    enable_motors = 0;
+if (desired_pos==0) {
+          desired_pos= wheel_dist_to_deg(distance);
+    float relativ_turns_rightmotor = turn_relative_deg(desired_pos, positionController_M_right.getRotation());
+    float relativ_turns_leftmotor = turn_relative_deg(desired_pos, positionController_M_left.getRotation());
+}
+   
+    positionController_M_right.setDesiredRotation(desired_pos, max_speed_rps_wheel);
+    positionController_M_left.setDesiredRotation(desired_pos, max_speed_rps_wheel); 
 
-    diff_R= fabs(relativ_turns_rightmotor-positionController_M_right.getRotation());
-    diff_L= fabs(relativ_turns_leftmotor-positionController_M_left.getRotation());
 
-     printf("Case 2: Position Left(rot): %3.3f    Position Right (rot): %3.3f  Desired Rotation Left:%3.3f Desired Rotation Right;%3.3f Diff L:%3.3f Diff R:%3.3f \n",
-            positionController_M_left.getRotation(),positionController_M_right.getRotation(),relativ_turns_leftmotor, relativ_turns_rightmotor, diff_L, diff_R );
-    if ((diff_R<=0.01) && (diff_L<=0.01))
+    diff_R= abs(desired_pos-(positionController_M_right.getRotation()));
+    diff_L= abs(desired_pos-(positionController_M_left.getRotation()));
+    printf("Drive Straight Position Right(rot): %3.3f; Position Left (rot): %3.3f Desired: %3.3f Diff:%3.3f State:%d ToNextfunction:%d\n",
+            positionController_M_right.getRotation(),positionController_M_left.getRotation(),desired_pos,diff_L, state, ToNextFunction);
+    if ((diff_R<=0.03) && (diff_L<=0.03))
     {
         return 1;
     }
@@ -201,53 +263,30 @@
     }
 }
 
-//only turns the arm until the robot is on the next step
+//turns the arm until the robot is on the next step
 int lift_up()
 {
     float diff;
-    float position_lift_end_deg = asin((-dist_arm_ground - (dist_grappleratt_grappler_uk-gripper_area_height)) / arm_length) - 90; // calculates the degree which has to be reached in order to get on top of next step
-    float relativ_turns_arm = turn_absolut_deg(position_lift_end_deg, positionController_M_Arm.getRotation());
+    if (desired_pos==0) {
+    desired_pos = turn_relative_deg(liftPos,positionController_M_Arm.getRotation());
+    }
+    
+    
     
-    enable_motors = 1;
-    positionController_M_Arm.setDesiredRotation(relativ_turns_arm , max_speed_rps_arm);
-    enable_motors = 0;
-    
-    diff=relativ_turns_arm-positionController_M_Arm.getRotation();
-    if(diff<=0.01)
+    positionController_M_Arm.setDesiredRotation(desired_pos, max_speed_rps_arm);
+ 
+    diff=abs(desired_pos-positionController_M_Arm.getRotation());
+    printf("Lift Up:       Position ARM (rot): %3.3f Desired:%3.3f     State:%d  ToNextfunction:%d\n",positionController_M_Arm.getRotation(),desired_pos, state, ToNextFunction);
+    if(diff<=0.03)
     { return 1;
     }
     else 
     { return 0;
     }  
     
-    
 }
 //***********************************************************************************************************************************************************
 
-int NextStep (float){
-    return 1;
-}
-
-
-//simple check if there is an object in proximity
-//returns 0 if there is NO object present
-//returns 1 if there is an object present
-//returns 2 if the distance isn't in the expected range
-
-uint8_t StepDetection(double distance){
-    double d_valueMM = distance;
-    if(d_valueMM >= 4) return 0;
-    if(d_valueMM < 4)  return 1;
-    if(d_valueMM <= 0 || d_valueMM > 100 ) return 2;
-    else return 2;
-
-}
-//Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will show with armmovement.
-void check_start()
-{
-    
-}
-
 // while loop gets executed every main_task_period_ms milliseconds
 int main_task_period_ms = 30;   // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second
 Timer main_task_timer;          // create Timer object which we use to run the main task every main task period time in ms
@@ -258,74 +297,103 @@
     // attach button fall and rise functions to user button object
     user_button.fall(&user_button_pressed_fcn);
     user_button.rise(&user_button_released_fcn);
-
+    mechanical_button.mode(PullDown);
+  
 
     while (true)
     {
-        enable_motors = 1;
+
         ir_distance_mm_L= mapping(ir_analog_in_Distance_L.read()*1.0e3f * 3.3f);
-        ir_distance_mm_R= mapping(ir_analog_in_Distance_R.read()*1.0e3f * 3.3f);
-        ir_distance_mm_Lookdown_B= mapping(ir_analog_in_Lookdown_B.read()*1.0e3f * 3.3f);
-        ir_distance_mm_Lookdown_F= mapping(ir_analog_in_Lookdown_F.read()*1.0e3f * 3.3f);
+     
+    
+        if (ToNextFunction>=1||(mechanical_button.read()!=1))
+        {
+            enable_motors=1;
+        }
 
 
         switch (ToNextFunction) 
         {
+        
+            case 0: while  (mechanical_button.read()!=1) 
+            {
+            positionController_M_Arm.setDesiredRotation(-1,0.5);
+           
+            }
+            if (mechanical_button){
+                positionController_M_Arm.setDesiredRotation(positionController_M_Arm.getRotation());
 
-            case 1: 
-            set_arm_stair_height();
-            printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
-            if (state==1){
+            }
+          
+         
+            break;
+
+            case 1:  
+              
                     ToNextFunction += 1;
-            }
+                    state=0;
+            
+
             break;
 
             case 2:
-            state=NextStep(ir_analog_in_Distance_L);
-            if (state==1){
-                    ToNextFunction = 0;
-            }
+            state=nextStepDetection(ir_distance_mm_L,10);
+            printf("distance:%3.3f  Output:%d\n", ir_distance_mm_L, nextStepDetection(ir_distance_mm_L,10));
+             if (state==3){
+                    ToNextFunction +=1;
+                    state=0;
+             }
+            break;
 
             case 3: 
-            state=drive_straight(drive_stright_mm);
-            printf("Case 2: Position Right(rot): %3.3f;    Position Left (rot): %3.3f\n",
-            positionController_M_right.getRotation(),positionController_M_left.getRotation());
+            state=drive_straight(drive_straight_mm);
+           
             if (state==1){
-                    ToNextFunction = 0;
+                    ToNextFunction += 1;
+                    state=0;
+                    desired_pos=0;
+
             }
             break;
 
             case 4: 
             state=lift_up();
-            printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
-            if ((state==1)&&(StepDetection(ir_distance_mm_Lookdown_B))&&StepDetection(ir_distance_mm_Lookdown_F)){
+            
+            if (state==1){
                     ToNextFunction += 1;
+                	   state=0;
+                    desired_pos=0;
             }
-
+             break;
 
             case 5: 
             state=drive_straight(drive_back_mm);
-            printf("Case 4: Position Right(rot): %3.3f;    Position Left (rot): %3.3f\n",
-            positionController_M_right.getRotation(),positionController_M_left.getRotation());
-            if ((state==1)&&(StepDetection(ir_distance_mm_Lookdown_B)!=1)){
+            
+            if  ((state == 1) && (StepDetection_down(ir_analog_in_Lookdown_B) != 1)){
                     ToNextFunction += 1;
+                    state=0;
+                    desired_pos=0;
+
             }
             break;
 
             case 6: 
-            state=lift_up();
-            printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
+            state=set_arm_stair_height();
+           
              if (state==1){
-                    ToNextFunction = 1;
+                    ToNextFunction = 0;
+                    state=0;
+                    desired_pos=0;
             }
             break;  
+
             default:  ;
         } 
     }
-       // read timer and make the main thread sleep for the remaining time span (non blocking)
-        int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
-        thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
-        return 0;
+    // read timer and make the main thread sleep for the remaining time span (non blocking)
+    int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
+    thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
+    return 0;
 }
 
 
@@ -343,6 +411,6 @@
     user_button_timer.stop();
     if (user_button_elapsed_time_ms > 200) 
     {
-       ToNextFunction = 3;
+       ToNextFunction =1;
     }
 }
\ No newline at end of file