first commit
Dependencies: PM2_Libary
Diff: main.cpp
- Branch:
- lupo
- Revision:
- 37:05252c4a2d4e
- Parent:
- 36:a48b21a9635c
- Child:
- 38:8121e7a79c0b
--- a/main.cpp Wed Apr 13 09:40:06 2022 +0200 +++ b/main.cpp Mon May 02 14:35:00 2022 +0200 @@ -1,12 +1,21 @@ #include "mbed.h" #include "PM2_Libary.h" #include <cstdint> -#include "sensor.cpp" - +#include <cstdio> +#include "math.h" +//******************************************************************************************************************************************************************* +// Defined Variables in mm coming from Hardware-team. Need to be updated +const float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4) +const float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3) +const float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6) +const float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9) +const float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5) +const float gripper_area_height = 16 ; // Height of Grappler cutout to grapple Stair (8) +const float dist_grappleratt_grappler_uk = 33; // distance between pivotpoint Grappler and bottom edge (?) - -// logical variable main task -bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task +const float height_stairs = 100; // height to top of next stairstep in mm +//*********************************************************************************************************************************************************** +// declaration of Input - Output pins // user button on nucleo board Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) @@ -14,37 +23,42 @@ void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below void user_button_released_fcn(); -// while loop gets executed every main_task_period_ms milliseconds -int main_task_period_ms = 30; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second -Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms +// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor +// define variable to store measurement from infrared distancesensor in mm +float ir_distance_mm_L; +float ir_distance_mm_R; +float ir_distance_mm_Lookdown_B; +float ir_distance_mm_Lookdown_F; -// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor -float ir_distance_mV = 0.0f; // define variable to store measurement -AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 - - +AnalogIn ir_analog_in_Distance_L(PC_2); +AnalogIn ir_analog_in_Distance_R(PC_3); +AnalogIn ir_analog_in_Lookdown_B(PC_5); +AnalogIn ir_analog_in_Lookdown_F(PB_1); +// create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors +float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors -float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors //motor pin declaration -FastPWM pwm_M_right(PB_13); -FastPWM pwm_M_left(PA_9); -FastPWM pwm_M_arm(PA_10); +FastPWM pwm_M_right (PB_13); //motor pin decalaration for wheels right side +FastPWM pwm_M_left (PA_9); //motor pin decalaration for wheels left side +FastPWM pwm_M_arm (PA_10); //motor pin decalaration for arm //Encoder pin declaration -EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side -EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side -EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm +EncoderCounter encoder_M_right (PA_6, PC_7); //encoder pin decalaration for wheels right side +EncoderCounter encoder_M_left (PB_6, PB_7); //encoder pin decalaration for wheels left side +EncoderCounter encoder_M_arm (PA_0, PA_1); //encoder pin decalaration for arm +//*********************************************************************************************************************************************************** +// Hardware controll Setup and functions (motors and sensors) // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box -float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack -float counts_per_turn_wheels = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels -float counts_per_turn_arm = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm -float kn = 180.0f / 12.0f; // define motor constant in rpm per V -float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 -float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 +const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack +const float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels +const float counts_per_turn_arm = 20.0f * 78.125f * 20.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm +const float kn = 180.0f / 12.0f; // define motor constant in rpm per V +const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°) +const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 //motors for tracks PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here @@ -52,122 +66,283 @@ //Arm Motor PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here -//float max_speed_rps = 0.5f; not sure if needed // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here - +//*********************************************************************************************************************************************************** +// logic functions for basic movement -// LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage) -// LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" +//placeholder variables for prototype testing -//Platzhalter Variabeln für die Positionierung -float PositionStair = 0.2; -float PositionBackOff = -0.5; -float degArmStart = 0.5; -float degArmLift = -0.5; -int ToNextFunction = 0; -float max_speed_rps = 0.5f; +const int drive_stright_mm = 500; // placeholder for testing drives amount forward +const int drive_back_mm = -100; // placeholder for testing drives amount backwards +int ToNextFunction = 0; // current state of the system (which function is beeing executed) +int state=0; -int StartPosition(float deg){ +// definition important variables +const float pi = 2 * acos(0.0); // definiton of pi +const float max_speed_rps_wheel = 0.5f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage +const float max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage +float start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; ///calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E) +// import functions from file mapping +extern double powerx(double base, double pow2); +extern double mapping (float adc_value_mV); - positionController_M_Arm.setDesiredRotation(deg); +// calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area) +float calc_arm_deg_for_height(int height_mm) +{ + float deg_arm; + if ((height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height)) > arm_length) //check if height is reachable + { + printf("Error in calc_arm_deg_for_height: desired height is bigger than Wall-E arm lenght."); // error message when desired height is not reachable. + } + else + { + float height_arm = height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.) + deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach + } + return deg_arm; +} - return NULL; +//calculates position of arm when lift up has ended. +//RETURN: end_deg = degree which the motor has to turn in order to reach end lift position. +float calc_pos_end_lift() +{ + float end_deg; + end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-gripper_area_height))/arm_length) + start_deg_arm; + end_deg = end_deg * 180 / pi; + return end_deg; +} + +//calculates the deg which the wheels have to turn in order to cover specified distance in mm +//RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm) +float wheel_dist_to_deg(int distance) // distance has to be in mm. +{ + float deg_wheel = distance * 360 /(wheel_diameter * pi); + return deg_wheel; } -//Drives forward into the next step -int Drive(float dist){ + +// increments the Motor for defined degree from the current one +// PARAM: deg_to_turn = degree to turn the Motor +// PARAM: current_full_rotation = the current rotation of the Motor (Motor.getRotation()) +// RETURN: new Rotation value in rotations +float turn_relative_deg(float deg_to_turn, float current_full_rotation) +{ + float current_rotations = current_full_rotation; + float new_turn_rotation = current_rotations + deg_to_turn/360.0; + return new_turn_rotation; +} -float distance; +// sets the Motor to a specified degree in one rotation +// PARAM: end_deg = new position of the arm in degree 0 <= value >=360 +// PARAM: current_rotations = the current rotation of the Motor (Motor.getRotation()) +// RETURN: new_partial_rotation = new deg value in rotations +float turn_absolut_deg(float end_deg, float current_rotations) +{ + int full_rotations = current_rotations; + float new_partial_rotation = current_rotations - start_deg_arm/360; + return new_partial_rotation; +} -distance=dist; +// bring arm in starting position. Height of stairs. +int set_arm_stair_height() +{ + float diff; + double deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position + float deg = deg_up_from_horizon + start_deg_arm; + if ((0.0 > deg) || (deg > 360.0)) + { + printf("Error in start_position: degree is out of bound for Start Position."); // error when desired reaching point is out of reach. + return 2; + } + + enable_motors = 1; + positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg. + + diff = deg-(positionController_M_Arm.getRotation() * 360.0); + if (diff<=0.3){ + return 1; + } + else { + return NULL;} - positionController_M_right.setDesiredRotation(distance,max_speed_rps); - positionController_M_left.setDesiredRotation(distance,max_speed_rps); + enable_motors = 0; + +} + +//Drives forward into the next step +//Prameter:distance in milimeter +int drive_straight(float distance) +{ + float diff_R; + float diff_L; + float deg_to_turn = wheel_dist_to_deg(distance); + float relativ_turns_rightmotor = turn_relative_deg(deg_to_turn, positionController_M_right.getRotation()); + float relativ_turns_leftmotor = turn_relative_deg(deg_to_turn, positionController_M_left.getRotation()); + ; + positionController_M_right.setDesiredRotation(relativ_turns_rightmotor, max_speed_rps_wheel); + positionController_M_left.setDesiredRotation(relativ_turns_leftmotor, max_speed_rps_wheel); + enable_motors = 0; - return 0; + diff_R= fabs(relativ_turns_rightmotor-positionController_M_right.getRotation()); + diff_L= fabs(relativ_turns_leftmotor-positionController_M_left.getRotation()); + + printf("Case 2: Position Left(rot): %3.3f Position Right (rot): %3.3f Desired Rotation Left:%3.3f Desired Rotation Right;%3.3f Diff L:%3.3f Diff R:%3.3f \n", + positionController_M_left.getRotation(),positionController_M_right.getRotation(),relativ_turns_leftmotor, relativ_turns_rightmotor, diff_L, diff_R ); + if ((diff_R<=0.01) && (diff_L<=0.01)) + { + return 1; + } + else + { + return 0; + } } //only turns the arm until the robot is on the next step -//not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position -int LiftUp(float deg){ - - int8_t i = 0; //prov condition variable +int lift_up() +{ + float diff; + float position_lift_end_deg = asin((-dist_arm_ground - (dist_grappleratt_grappler_uk-gripper_area_height)) / arm_length) - 90; // calculates the degree which has to be reached in order to get on top of next step + float relativ_turns_arm = turn_absolut_deg(position_lift_end_deg, positionController_M_Arm.getRotation()); + + enable_motors = 1; + positionController_M_Arm.setDesiredRotation(relativ_turns_arm , max_speed_rps_arm); + enable_motors = 0; - positionController_M_Arm.setDesiredRotation(deg); - + diff=relativ_turns_arm-positionController_M_Arm.getRotation(); + if(diff<=0.01) + { return 1; + } + else + { return 0; + } - return 0; + +} +//*********************************************************************************************************************************************************** + +int NextStep (float){ + return 1; } +//simple check if there is an object in proximity +//returns 0 if there is NO object present +//returns 1 if there is an object present +//returns 2 if the distance isn't in the expected range + +uint8_t StepDetection(double distance){ + double d_valueMM = distance; + if(d_valueMM >= 4) return 0; + if(d_valueMM < 4) return 1; + if(d_valueMM <= 0 || d_valueMM > 100 ) return 2; + else return 2; + +} +//Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will show with armmovement. +void check_start() +{ + +} + +// while loop gets executed every main_task_period_ms milliseconds +int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second +Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms +//*********************************************************************************************************************************************************** + int main(void) { // attach button fall and rise functions to user button object -user_button.fall(&user_button_pressed_fcn); -user_button.rise(&user_button_released_fcn); - + user_button.fall(&user_button_pressed_fcn); + user_button.rise(&user_button_released_fcn); + + + while (true) + { + enable_motors = 1; + ir_distance_mm_L= mapping(ir_analog_in_Distance_L.read()*1.0e3f * 3.3f); + ir_distance_mm_R= mapping(ir_analog_in_Distance_R.read()*1.0e3f * 3.3f); + ir_distance_mm_Lookdown_B= mapping(ir_analog_in_Lookdown_B.read()*1.0e3f * 3.3f); + ir_distance_mm_Lookdown_F= mapping(ir_analog_in_Lookdown_F.read()*1.0e3f * 3.3f); - while (true){ - enable_motors = 1; + switch (ToNextFunction) + { - ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; - - // printf("test pow function 2 ^ 2 %lf\n",powerx(2,2)); - //printf("test mapping function %f\n", mapping(ir_distance_mV)); + case 1: + set_arm_stair_height(); + printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); + if (state==1){ + ToNextFunction += 1; + } + break; - //printf("IR sensor (mV): %3.3f\n", ir_distance_mV); - + case 2: + state=NextStep(ir_analog_in_Distance_L); + if (state==1){ + ToNextFunction = 0; + } - switch (ToNextFunction) { - case 1: StartPosition(degArmStart); - printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); - // ToNextFunction+=1; + case 3: + state=drive_straight(drive_stright_mm); + printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", + positionController_M_right.getRotation(),positionController_M_left.getRotation()); + if (state==1){ + ToNextFunction = 0; + } break; - case 2: Drive(PositionStair); - printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", - positionController_M_right.getRotation(),positionController_M_left.getRotation()); - // ToNextFunction+=1; - break; - case 3: LiftUp(degArmLift); - // ToNextFunction+=1; + + case 4: + state=lift_up(); printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); - break; - case 4: Drive(PositionBackOff); + if ((state==1)&&(StepDetection(ir_distance_mm_Lookdown_B))&&StepDetection(ir_distance_mm_Lookdown_F)){ + ToNextFunction += 1; + } + + + case 5: + state=drive_straight(drive_back_mm); printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", - positionController_M_right.getRotation(),positionController_M_left.getRotation()); - // ToNextFunction+=1; + positionController_M_right.getRotation(),positionController_M_left.getRotation()); + if ((state==1)&&(StepDetection(ir_distance_mm_Lookdown_B)!=1)){ + ToNextFunction += 1; + } break; - case 5: LiftUp(degArmStart); - printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); - // ToNextFunction = 0; + + case 6: + state=lift_up(); + printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); + if (state==1){ + ToNextFunction = 1; + } break; default: ; } - - - } // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); - return 0; + return 0; } + void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } -void user_button_released_fcn() { +void user_button_released_fcn() +{ // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); - if (user_button_elapsed_time_ms > 200) { - ToNextFunction += 1;} - } \ No newline at end of file + if (user_button_elapsed_time_ms > 200) + { + ToNextFunction = 3; + } +} \ No newline at end of file