Prototyp V2
Dependencies: PM2_Libary
Diff: main.cpp
- Branch:
- michi
- Revision:
- 46:eba2263eb626
- Parent:
- 45:8050724fe19b
- Child:
- 47:8963ca9829b9
- Child:
- 50:058dc65d0fa4
diff -r 8050724fe19b -r eba2263eb626 main.cpp --- a/main.cpp Mon Apr 18 16:02:10 2022 +0200 +++ b/main.cpp Tue Apr 19 18:36:19 2022 +0200 @@ -6,15 +6,15 @@ #include "math.h" //******************************************************************************************************************************************************************* // Defined Variables in mm coming from Hardware-team. Need to be updated -float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4) -float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3) -float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6) -float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9) -float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5) -float gripper_area_height = 16 ; // Height of Grappler cutout to grapple Stair (8) -float dist_grappleratt_grappler_uk = 33; // distance between pivotpoint Grappler and bottom edge (?) +float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4) +float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3) +float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6) +float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9) +float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5) +float gripper_area_height = 16 ; // Height of Grappler cutout to grapple Stair (8) +float dist_grappleratt_grappler_uk = 33; // distance between pivotpoint Grappler and bottom edge (?) -float height_stairs = 100; // height to top of stairs in mm +float height_stairs = 100; // height to top of next stairstep in mm //*********************************************************************************************************************************************************** // declaration of Input - Output pins @@ -32,24 +32,25 @@ DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors //motor pin declaration -FastPWM pwm_M_right(PB_13); -FastPWM pwm_M_left(PA_9); -FastPWM pwm_M_arm(PA_10); +FastPWM pwm_M_right (PB_13); //motor pin decalaration for wheels right side +FastPWM pwm_M_left (PA_9); //motor pin decalaration for wheels left side +FastPWM pwm_M_arm (PA_10); //motor pin decalaration for arm //Encoder pin declaration -EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side -EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side -EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm +EncoderCounter encoder_M_right (PA_6, PC_7); //encoder pin decalaration for wheels right side +EncoderCounter encoder_M_left (PB_6, PB_7); //encoder pin decalaration for wheels left side +EncoderCounter encoder_M_arm (PA_0, PA_1); //encoder pin decalaration for arm //*********************************************************************************************************************************************************** // Hardware controll Setup and functions (motors and sensors) // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box -float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack -float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels -float counts_per_turn_arm = 20.0f * 78.125f * 10.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm -float kn = 180.0f / 12.0f; // define motor constant in rpm per V -float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°) -float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 +float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack +float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels +float counts_per_turn_arm = 20.0f * 78.125f * 10.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm +float kn = 180.0f / 12.0f; // define motor constant in rpm per V +float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°) +float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 + //motors for tracks PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here @@ -63,49 +64,51 @@ // logic functions for basic movement //Platzhalter Variabeln für die Positionierung -int drive_stright_mm = 100; -int PositionBackOff = -100; -float degArmStart = 0.0; -float degArmLift = -0.5; -int ToNextFunction = 0; // current state of the system (which function is beeing executed) -float max_speed_rps_wheel = 0.6f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage -float max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage -double start_deg_arm = asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length); //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E) -double current_deg_arm = start_deg_arm; // saves the current degree the arm has. +int drive_stright_mm = 100; // placeholder for testing drives amount forward +int drive_back_mm = -100; // placeholder for testing drives amount backwards +int ToNextFunction = 0; // current state of the system (which function is beeing executed) -// calculates the deg which the arm has to take to reach a certain height (the input height will be the height of OK Gripper area) +// definition important variables +float pi = 2 * acos(0.0); // definiton of pi +float max_speed_rps_wheel = 0.6f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage +float max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage +float start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E) +float current_deg_arm = start_deg_arm; // saves the current degree the arm has. + +// calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area) double calc_arm_deg_for_height(int height_mm) { - if ((height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height)) > arm_length) + if ((height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height)) > arm_length) //check if height is reachable { printf("Error in calc_arm_deg_for_height: desired height is bigger than Wall-E arm lenght."); // error message when desired height is not reachable. } - float height_arm = height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height); - float deg_arm_rad = asin(height_arm / arm_length); // deg in radians - float pi = 2 * acos(0.0); // definiton of pi - float deg_arm = deg_arm_rad * 180.0/pi; // deg in degrees - return deg_arm; + else + { + float height_arm = height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.) + float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach + return deg_arm; + } + return NULL; // <------ maybe error testing necessary (value deg_arm might not be returned) } -//calculates the deg which the wheels have to turn in order to cover specified distnace in mm +//calculates the deg which the wheels have to turn in order to cover specified distance in mm float wheel_dist_to_deg(int distance) // distance has to be in mm. { - float pi = 2 * acos(0.0); // definiton of pi float deg_wheel = distance * 360 /(wheel_diameter * pi); return deg_wheel; } -// bring arme in starting position height of stairs. +// bring arm in starting position. Height of stairs. int start_position() { - float deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position + double deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position float deg = deg_up_from_horizon + start_deg_arm; if ((0.0 > deg) || (deg > 360.0)) { - printf("**************Error in start_position: degree is out of bound for Start Position.***************"); // error when desired reaching point is out of reach. + printf("Error in start_position: degree is out of bound for Start Position."); // error when desired reaching point is out of reach. } positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg. - current_deg_arm = positionController_M_Arm.getRotation() / 360.0; + current_deg_arm = positionController_M_Arm.getRotation() * 360.0; return NULL; } @@ -113,18 +116,18 @@ // calculatioin of acctual distance with wheels is needed int drive_straight(float distance) { - double deg_to_turn = wheel_dist_to_deg(distance); + float deg_to_turn = wheel_dist_to_deg(distance); positionController_M_right.setDesiredRotation(deg_to_turn / 360.0, max_speed_rps_wheel); positionController_M_left.setDesiredRotation(deg_to_turn / 360.0, max_speed_rps_wheel); return NULL; } //only turns the arm until the robot is on the next step -//not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position -int lift_up(float deg) +int lift_up() { - int8_t i = 0; //prov condition variable - positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); + float position_lift_end_deg = asin((-dist_arm_ground - (dist_grappleratt_grappler_uk-gripper_area_height)) / arm_length) - 90; // calculates the degree which has to be reached in order to get on top of next step + + positionController_M_Arm.setDesiredRotation(0, max_speed_rps_arm); return NULL; } //*********************************************************************************************************************************************************** @@ -133,7 +136,7 @@ int check_start() { - return 0; + return NULL; } //pow function is here so we dont have to use the math.h library ************* unnecessary math.h is used any way *************** @@ -169,7 +172,7 @@ double distance = 0.0f; //distance in mm double infY =360 , supY = 2360; //Window for sensor values double voltage_mV = adc_value_mV; - double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert + double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren fuer polynomkurve -> von matlab exportiert if((voltage_mV > infY) && (voltage_mV < supY)) { distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6; @@ -177,9 +180,6 @@ return (distance); } -// logical variable main task -bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task - // while loop gets executed every main_task_period_ms milliseconds int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms @@ -187,9 +187,9 @@ int main(void) { -// attach button fall and rise functions to user button object -user_button.fall(&user_button_pressed_fcn); -user_button.rise(&user_button_released_fcn); + // attach button fall and rise functions to user button object + user_button.fall(&user_button_pressed_fcn); + user_button.rise(&user_button_released_fcn); while (true) { @@ -198,36 +198,38 @@ switch (ToNextFunction) { - case 0: + case 0: break; + case 1: start_position(); - printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); - // ToNextFunction+=1; - break; + printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); + break; + case 2: drive_straight(drive_stright_mm); printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", - positionController_M_right.getRotation(),positionController_M_left.getRotation()); - // ToNextFunction+=1; - break; + positionController_M_right.getRotation(),positionController_M_left.getRotation()); + break; + case 3: - lift_up(degArmLift); - // ToNextFunction+=1; - printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); - break; + lift_up(); + printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); + break; + case 4: - drive_straight(PositionBackOff); + drive_straight(drive_back_mm); printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", - positionController_M_right.getRotation(),positionController_M_left.getRotation()); - // ToNextFunction+=1; - break; + positionController_M_right.getRotation(),positionController_M_left.getRotation()); + break; + case 5: - lift_up(degArmStart); - printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); - // ToNextFunction = 0; - break; - default: ; + lift_up(); + printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); + ToNextFunction = 0; + break; + + default: ; } } // read timer and make the main thread sleep for the remaining time span (non blocking)