Prototyp V2
Dependencies: PM2_Libary
main.cpp
- Committer:
- raomen
- Date:
- 2022-04-18
- Revision:
- 40:e32c57763d92
- Parent:
- 39:025d1bee1397
- Parent:
- 38:c2663f7dcccb
- Child:
- 41:4a4978d1a578
File content as of revision 40:e32c57763d92:
#include "mbed.h" #include "PM2_Libary.h" #include <cstdint> #include "math.h" //******************************************************************************************************************************************************************* // Defined Variables in mm coming from Hardware-team. Need to be updated float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E float dist_arm_ground = 51; // distance between pivotpoint arm and ground float height_stairs = 100; // height to top of stairs in mm float dist_grappleratt_grappler_uk = 33; // distance between pivotpoint Grappler and bottom edge //*********************************************************************************************************************************************************** // logical variable main task bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task // user button on nucleo board Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR) void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below void user_button_released_fcn(); // while loop gets executed every main_task_period_ms milliseconds int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor float ir_distance_mV = 0.0f; // define variable to store measurement from infrared distancesensor in mVolt AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors //motor pin declaration FastPWM pwm_M_right(PB_13); FastPWM pwm_M_left(PA_9); FastPWM pwm_M_arm(PA_10); //Encoder pin declaration EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels float counts_per_turn_arm = 20.0f * 78.125f * 10.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm float kn = 180.0f / 12.0f; // define motor constant in rpm per V float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°) float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 //motors for tracks PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here //Arm Motor PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here //float max_speed_rps = 0.5f; not sure if needed // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage) // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" //Platzhalter Variabeln für die Positionierung float PositionStair = 0.2; float PositionBackOff = -0.5; float degArmStart = 0.5; float degArmLift = -0.5; int ToNextFunction = 0; float max_speed_rps = 0.5f; int StartPosition(float deg) { positionController_M_Arm.setDesiredRotation(deg); return NULL; } int gripper_height_mm() { return NULL; } //Drives forward into the next step // calculatioin of acctual distance with wheels is needed int Drive(float dist) { float distance; distance=dist; positionController_M_right.setDesiredRotation(distance,max_speed_rps); positionController_M_left.setDesiredRotation(distance,max_speed_rps); return 0; } //only turns the arm until the robot is on the next step //not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position int LiftUp(float deg) { int8_t i = 0; //prov condition variable positionController_M_Arm.setDesiredRotation(deg); return 0; } //pow function is here so we dont have to use the math.h library //it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double double powerx(double base, double pow2) { double result = -1; double power = pow2; double basis = base; result = 1; //handling negative exponents if(power<0) { for(double i=1; i<=(power*(-1.0)); i++) { result *= basis; } result = 1.0/result; } //handling positive exponents else { for(double i=1; i<=power; i++) { result *= basis; } } return result; } double mapping(float adc_value_mV) { double distance = 0.0f; //distance in mm double infY =360 , supY = 2360; //Window for sensor values double voltage_mV = adc_value_mV; double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert if(voltage_mV > infY && voltage_mV < supY) { distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6; } return (distance); } int main(void) { // attach button fall and rise functions to user button object user_button.fall(&user_button_pressed_fcn); user_button.rise(&user_button_released_fcn); while (true) { enable_motors = 1; ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; switch (ToNextFunction) { case 1: StartPosition(degArmStart); printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); // ToNextFunction+=1; break; case 2: Drive(PositionStair); printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", positionController_M_right.getRotation(),positionController_M_left.getRotation()); // ToNextFunction+=1; break; case 3: LiftUp(degArmLift); // ToNextFunction+=1; printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); break; case 4: Drive(PositionBackOff); printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", positionController_M_right.getRotation(),positionController_M_left.getRotation()); // ToNextFunction+=1; break; case 5: LiftUp(degArmStart); printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation()); // ToNextFunction = 0; break; default: ; } } // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); return 0; } void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } void user_button_released_fcn() { // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); if (user_button_elapsed_time_ms > 200) { ToNextFunction += 1;} }