Prototyp V2

Dependencies:   PM2_Libary

main.cpp

Committer:
raomen
Date:
2022-04-18
Branch:
michi
Revision:
42:6e7ab1136354
Parent:
41:4a4978d1a578
Child:
43:7964411b4a6b

File content as of revision 42:6e7ab1136354:

#include "mbed.h"
#include "PM2_Libary.h"
#include <cmath>
#include <cstdint>
#include <cstdio>
#include "math.h"

//*******************************************************************************************************************************************************************
// Defined Variables in mm coming from Hardware-team. Need to be updated
float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4)
float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3)
float dist_arm_attach_distsensor = 20; // distance between pivot point arm  on body to start distancesensor on top in horizontal (6)
float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9)
float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5)
float gripper_area_height = 16 ; // Height of Grappler cutout to grapple Stair (8)
float dist_grappleratt_grappler_uk = 33; // distance between pivotpoint Grappler and bottom edge (?)

float height_stairs = 100; // height to top of stairs in mm

//***********************************************************************************************************************************************************
// declaration of Input - Output pins

// user button on nucleo board
Timer user_button_timer;            // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
InterruptIn user_button(PC_13);     // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
void user_button_pressed_fcn();     // custom functions which gets executed when user button gets pressed and released, definition below
void user_button_released_fcn();

// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
float ir_distance_mV = 0.0f;    // define variable to store measurement from infrared distancesensor in mVolt
AnalogIn ir_analog_in(PC_2);    // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1

// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
float   pwm_period_s = 0.00005f;    // define pwm period time in seconds and create FastPWM objects to command dc motors
//motor pin declaration
FastPWM pwm_M_right(PB_13);              
FastPWM pwm_M_left(PA_9);
FastPWM pwm_M_arm(PA_10);

//Encoder pin declaration
EncoderCounter  encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side
EncoderCounter  encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side
EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm
//***********************************************************************************************************************************************************
// Hardware controll functions and setup

// create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
float max_voltage = 12.0f;                  // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
float counts_per_turn_wheels = 20.0f * 78.125f;    // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
float counts_per_turn_arm = 20.0f * 78.125f * 10.0f;      // define counts per turn at gearbox end (counts/turn * gearratio) for arm
float kn = 180.0f / 12.0f;                  // define motor constant in rpm per V
float k_gear = 100.0f / 78.125f;            // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°)
float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1

//motors for tracks
PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
//Arm Motor
PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here

// PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
//PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
// LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
// LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"

//***********************************************************************************************************************************************************

//Platzhalter Variabeln für die Positionierung
float PositionStair    = 0.2;
float PositionBackOff  = -0.5;
float degArmStart      = 0.0;
float degArmLift       = -0.5;
int ToNextFunction = 0;  // current state of the system (which function is beeing executed)
float max_speed_rps = 0.5f;  // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage

// calculates the deg which the arm has to take to reach a certain height (the input height will be the height of OK Gripper area)
double calc_arm_deg_for_height(int height_mm)
{
    if ((height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height)) > arm_length)
    {
        printf("Error in calc_arm_deg_for_height: desireed height is bigger than Wall-E arm lenght."); // error message when desired height is not reachable. 
    }
    double height_arm = height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height);
    double deg_arm_rad = asin(height_mm / arm_length); // deg in radians
    double pi = 2 * acos(0.0); // definiton of pi
    double deg_arm = deg_arm_rad * 180/pi; // deg in degrees
    return deg_arm;
}

int start_position()
{
    float deg = calc_arm_deg_for_height(height_stairs);
    if ((0 > deg) && (deg > 360))
    {
        printf("degree is out of bound for Start Position.");
    }
    positionController_M_Arm.setDesiredRotation(deg);
    return NULL;
}

//Drives forward into the next step
// calculatioin of acctual distance with wheels is needed
int drive(float distance)
{
positionController_M_right.setDesiredRotation(distance,max_speed_rps);
positionController_M_left.setDesiredRotation(distance,max_speed_rps);
return 0;   
}

//only turns the arm until the robot is on the next step
//not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position
int lift_up(float deg)
{
    int8_t i = 0;         //prov condition variable
    positionController_M_Arm.setDesiredRotation(deg);
    return 0;
}

//pow function is here so we dont have to use the math.h library
//it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double
double powerx(double base, double pow2)
{
    double result = -1;
    double power = pow2;
    double basis = base;
    result = 1;
    //handling negative exponents
    if(power<0)
    {
        for(double i=1; i<=(power*(-1.0)); i++) 
        {
            result *= basis;
        }
        result = 1.0/result;
    }
    //handling positive exponents
    else
    {
        for(double i=1; i<=power; i++)
        {
        result *= basis;
        }
    }
    return result;
}

double mapping(float adc_value_mV)
{
    double distance = 0.0f; //distance in mm
    double infY =360 , supY = 2360; //Window for sensor values
    double voltage_mV = adc_value_mV;
    double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert
    if(voltage_mV > infY && voltage_mV < supY)
    {
        distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6;
    }
    return (distance);
}

// logical variable main task
bool do_execute_main_task = false;  // this variable will be toggled via the user button (blue button) to or not to execute the main task

// while loop gets executed every main_task_period_ms milliseconds
int main_task_period_ms = 30;   // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second
Timer main_task_timer;          // create Timer object which we use to run the main task every main task period time in ms



int main(void)
{
    // attach button fall and rise functions to user button object
user_button.fall(&user_button_pressed_fcn);
user_button.rise(&user_button_released_fcn);
  


    while (true)
    {
         enable_motors = 1;
         ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
        
        switch (ToNextFunction) 
        {
        case 1: start_position();
            printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
             //   ToNextFunction+=1;
            break;
        case 2: drive(PositionStair);
           printf("Case 2: Position Right(rot): %3.3f;    Position Left (rot): %3.3f\n",
           positionController_M_right.getRotation(),positionController_M_left.getRotation());
            // ToNextFunction+=1;
            break;
        case 3: lift_up(degArmLift);
            //  ToNextFunction+=1;
            printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
             break;
        case 4: drive(PositionBackOff);
            printf("Case 4: Position Right(rot): %3.3f;    Position Left (rot): %3.3f\n",
           positionController_M_right.getRotation(),positionController_M_left.getRotation());
            //   ToNextFunction+=1;
            break;
        case 5: lift_up(degArmStart);
                printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
            //  ToNextFunction = 0;
            break;  
            default:  ;
        } 
    }
       // read timer and make the main thread sleep for the remaining time span (non blocking)
        int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
        thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
    return 0;
}


void user_button_pressed_fcn()
{
    user_button_timer.start();
    user_button_timer.reset();
}

void user_button_released_fcn() {
    // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
    int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
    user_button_timer.stop();
    if (user_button_elapsed_time_ms > 200) {
       ToNextFunction += 1;}
       }