Prototyp V2
Dependencies: PM2_Libary
main.cpp
- Committer:
- raomen
- Date:
- 2022-05-02
- Branch:
- michi
- Revision:
- 84:40d64e0bb1ea
- Parent:
- 83:8cf96ccfac98
- Child:
- 85:fbcc3d8e945a
File content as of revision 84:40d64e0bb1ea:
#include "mbed.h" #include "PM2_Libary.h" #include <cstdint> #include <cstdio> #include "math.h" //******************************************************************************************************************************************************************* // Defined Variables in mm coming from Hardware-team. Need to be updated const float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4) const float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3) const float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6) const float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9) const float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5) const float gripper_area_height = 16 ; // Height of Grappler cutout to grapple Stair (8) const float dist_grappleratt_grappler_uk = 33; // distance between pivotpoint Grappler and bottom edge (?) const float height_stairs = 100; // height to top of next stairstep in mm //*********************************************************************************************************************************************************** // declaration of Input - Output pins // user button on nucleo board Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR) void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below void user_button_released_fcn(); // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor float ir_distance_mV = 0.0f; // define variable to store measurement from infrared distancesensor in mVolt AnalogIn ir_analog_in(PC_3); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors //motor pin declaration FastPWM pwm_M_right (PB_13); //motor pin decalaration for wheels right side FastPWM pwm_M_left (PA_9); //motor pin decalaration for wheels left side FastPWM pwm_M_arm (PA_10); //motor pin decalaration for arm //Encoder pin declaration EncoderCounter encoder_M_right (PA_6, PC_7); //encoder pin decalaration for wheels right side EncoderCounter encoder_M_left (PB_6, PB_7); //encoder pin decalaration for wheels left side EncoderCounter encoder_M_arm (PA_0, PA_1); //encoder pin decalaration for arm //*********************************************************************************************************************************************************** // Hardware controll Setup and functions (motors and sensors) // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack const float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels const float counts_per_turn_arm = 20.0f * 78.125f * 20.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm const float kn = 180.0f / 12.0f; // define motor constant in rpm per V const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°) const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 //motors for tracks PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here //Arm Motor PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here //*********************************************************************************************************************************************************** // calculations for basic movment and controll //placeholder variables for prototype testing const int drive_straight_mm = 200; // placeholder for testing drives amount forward const int drive_back_mm = -200; // placeholder for testing drives amount backwards int ToNextFunction = 0; // current state of the system (which function is beeing executed) // definition variables for calculations const float pi = 2 * acos(0.0); // definiton of pi const float end_pos_lift_deg = 180 + asin((dist_arm_ground-(dist_grappleratt_grappler_uk-gripper_area_height))/arm_length) * 180 / pi; // calculates the degree which the arm has to have when lift_up has been executed. const float start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E) // definition of rotation speeds for motors 0 = none 1.0 = max. const float max_speed_rps_wheel = 0.5f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage const float max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage // calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area) // PARAM: height_mm = height which OK Gripperarea has to reach. // RETURN: deg_arm = absolut Position in deg that the arm has to take. float calc_arm_deg_for_height(int height_mm) { float height_arm = height_mm - (dist_arm_ground - dist_grappleratt_grappler_uk + gripper_area_height); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.) float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach return deg_arm; } //calculates the deg which the wheels have to turn in order to cover specified distance in mm //RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm) float wheel_dist_to_deg(int distance) // distance has to be in mm. { float deg_wheel = distance * 360 /(wheel_diameter * pi); return deg_wheel; } // increments the Motor for defined degree from the current one // PARAM: deg_to_turn = degree to turn the Motor // PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation()) // RETURN: new_turn_rotation = new Rotation value in rotations float turn_relative_deg(float deg_to_turn, float current_rotation) { float new_turn_rotation = current_rotation + deg_to_turn/360.0; return new_turn_rotation; } // sets the Motor to a specified degree in one rotation // PARAM: end_deg = new position of the arm in degree 0 <= value >=360 // PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation()) // RETURN: new_partial_rotation = new deg value in rotations float turn_absolut_deg(float end_deg, float current_rotations) { int full_rotations; if(current_rotations > 0) { full_rotations = round(current_rotations - 0.5); } else if(current_rotations < 0) { full_rotations = round(current_rotations + 0.5); } else { full_rotations = 0; } float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360; return new_partial_rotation; } //*********************************************************************************************************************************************************** // important calculatet constant for Wall-E const double deg_up_from_horizon_to_stair = calc_arm_deg_for_height(height_stairs); // import functions from file mapping extern double powerx(double base, double pow2); extern double mapping (float adc_value_mV); //simple check if there is an object in proximity //returns 0 if there is NO object present //returns 1 if there is an object present //returns 2 if the distance isn't in the expected range uint8_t StepDetection(double distance) { double d_valueMM = distance; if(d_valueMM >= 4) return 0; else if(d_valueMM < 4) return 1; else if(d_valueMM <= 0 || d_valueMM > 100 ) return 2; else return 2; } // bring arm in starting position. Height of stairs. void set_arm_stair_height() { float deg = deg_up_from_horizon_to_stair + start_deg_arm; enable_motors = 1; positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg. enable_motors = 0; } //Drives forward into the next step //Prameter:distance in milimeter void drive_straight(float distance) { float deg_to_turn = wheel_dist_to_deg(distance); float relativ_turns_rightmotor = turn_relative_deg(deg_to_turn, positionController_M_right.getRotation()); float relativ_turns_leftmotor = turn_relative_deg(deg_to_turn, positionController_M_left.getRotation()); enable_motors = 1; positionController_M_right.setDesiredRotation(relativ_turns_rightmotor, max_speed_rps_wheel); positionController_M_left.setDesiredRotation(relativ_turns_leftmotor, max_speed_rps_wheel); enable_motors = 0; } //turns the arm until the robot is on the next step void lift_up() { float absolut_pos_arm = turn_absolut_deg(end_pos_lift_deg, positionController_M_Arm.getRotation()-1); enable_motors = 1; positionController_M_Arm.setDesiredRotation(absolut_pos_arm, max_speed_rps_arm); enable_motors = 0; } //*********************************************************************************************************************************************************** //Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will ???. void check_start() { } // while loop gets executed every main_task_period_ms milliseconds int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms //*********************************************************************************************************************************************************** int main(void) { // attach button fall and rise functions to user button object user_button.fall(&user_button_pressed_fcn); user_button.rise(&user_button_released_fcn); while (true) { ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; switch (ToNextFunction) { case 1: set_arm_stair_height(); break; case 2: drive_straight(drive_straight_mm); break; case 3: lift_up(); break; case 4: set_arm_stair_height(); case 5: drive_straight(drive_back_mm); ToNextFunction = 0; break; default: ; } } // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); return 0; } void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } void user_button_released_fcn() { // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); if (user_button_elapsed_time_ms > 200) { ToNextFunction += 1; } }