
Prototyp V2
Dependencies: PM2_Libary
Diff: main.cpp
- Branch:
- michi
- Revision:
- 80:4eae727a13b5
- Parent:
- 79:368cbf09cf6a
- Child:
- 81:909670edc2a2
--- a/main.cpp Wed Apr 27 11:10:52 2022 +0200 +++ b/main.cpp Wed Apr 27 16:57:11 2022 +0200 @@ -60,10 +60,10 @@ // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here //*********************************************************************************************************************************************************** -// logic functions for basic movement +// calculations for basic movment and controll //placeholder variables for prototype testing -const int drive_stright_mm = 100; // placeholder for testing drives amount forward +const int drive_straight_mm = 100; // placeholder for testing drives amount forward const int drive_back_mm = -100; // placeholder for testing drives amount backwards int ToNextFunction = 0; // current state of the system (which function is beeing executed) @@ -73,11 +73,6 @@ const float max_speed_rps_arm = 0.3f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage float start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E) - -// import functions from file mapping -extern double powerx(double base, double pow2); -extern double mapping (float adc_value_mV); - // calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area) // PARAM: height_mm = height which OK Gripperarea has to reach. // RETURN: deg_arm = absolut Position in deg that the arm has to take. @@ -90,7 +85,7 @@ } else { - float height_arm = height_mm - dist_arm_ground - (dist_grappleratt_grappler_uk - gripper_area_height); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.) + float height_arm = height_mm - (dist_arm_ground - dist_grappleratt_grappler_uk + gripper_area_height); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.) deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach } return deg_arm; @@ -101,8 +96,8 @@ float calc_pos_end_lift() { float end_deg; - end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-gripper_area_height))/arm_length) + start_deg_arm; - end_deg = end_deg * 180 / pi; + end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-gripper_area_height))/arm_length); + end_deg = 180 + (end_deg * 180 / pi); return end_deg; } @@ -116,21 +111,48 @@ // increments the Motor for defined degree from the current one // PARAM: deg_to_turn = degree to turn the Motor -// PARAM: current_full_rotation = the current rotation of the Motor (Motor.getRotation()) -// RETURN: new Rotation value in rotations -float turn_relative_deg(float deg_to_turn, float current_full_rotation) +// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation()) +// RETURN: new_turn_rotation = new Rotation value in rotations +float turn_relative_deg(float deg_to_turn, float current_rotation) { - float current_rotations = current_full_rotation; - float new_turn_rotation = current_rotations - deg_to_turn/360.0; + float new_turn_rotation = current_rotation + deg_to_turn/360.0; return new_turn_rotation; } +// sets the Motor to a specified degree in one rotation +// PARAM: end_deg = new position of the arm in degree 0 <= value >=360 +// PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation()) +// RETURN: new_partial_rotation = new deg value in rotations +float turn_absolut_deg(float end_deg, float current_rotations) +{ + int full_rotations; + if(current_rotations > 0) + { + full_rotations = round(current_rotations - 0.5); + } + else if(current_rotations < 0) + { + full_rotations = round(current_rotations + 0.5); + } + else + { + full_rotations = 0; + } + float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360; + return new_partial_rotation; +} +//*********************************************************************************************************************************************************** + +// import functions from file mapping +extern double powerx(double base, double pow2); +extern double mapping (float adc_value_mV); //simple check if there is an object in proximity //returns 0 if there is NO object present //returns 1 if there is an object present //returns 2 if the distance isn't in the expected range -uint8_t StepDetection(double distance){ +uint8_t StepDetection(double distance) +{ double d_valueMM = distance; if(d_valueMM >= 4) return 0; else if(d_valueMM < 4) return 1; @@ -138,32 +160,12 @@ else return 2; } -/*Example implementation - * distanceCM = mapping(analogIn.read()*3.3e3f); - * stepDetected = StepDetection(distanceCM); - */ - - -// sets the Motor to a specified degree in one rotation -// PARAM: end_deg = new position of the arm in degree 0 <= value >=360 -// PARAM: current_rotations = the current rotation of the Motor (Motor.getRotation()) -// RETURN: new_partial_rotation = new deg value in rotations -float turn_absolut_deg(float end_deg, float current_rotations) -{ - int full_rotations = current_rotations; - float new_partial_rotation = current_rotations - start_deg_arm/360; - return new_partial_rotation; -} // bring arm in starting position. Height of stairs. void set_arm_stair_height() { double deg_up_from_horizon = calc_arm_deg_for_height(height_stairs); //deg which arm motor has to turn to in order to grab stair. starting from horizontal position float deg = deg_up_from_horizon + start_deg_arm; - if ((0.0 > deg) || (deg > 360.0)) - { - printf("Error in set_arm_stair_height: degree is out of bound for Start Position."); // error when desired reaching point is out of reach. - } enable_motors = 1; positionController_M_Arm.setDesiredRotation(deg / 360.0, max_speed_rps_arm); // command to turn motor to desired deg. @@ -197,7 +199,7 @@ } //*********************************************************************************************************************************************************** -//Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will show with armmovement. +//Function which checks if sensors and motors have been wired correctly and the expectet results will happen. otherwise Wall-E will ???. void check_start() { @@ -228,7 +230,7 @@ break; case 2: - drive_straight(drive_stright_mm); + drive_straight(drive_straight_mm); printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n", positionController_M_right.getRotation(),positionController_M_left.getRotation()); break; @@ -248,10 +250,10 @@ default: ; } } - // read timer and make the main thread sleep for the remaining time span (non blocking) - int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); - thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); - return 0; + // read timer and make the main thread sleep for the remaining time span (non blocking) + int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); + thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); + return 0; }