Implement new controller

Dependencies:   mbed-rtos mbed QEI BNO055 MPU6050_DMP_Nucleo-I2Cdev virgo3_imuHandler_Orion_PCB MAX17048 Servo

Fork of Orion_newPCB_test by Team Virgo v3

orion_main.cpp

Committer:
harrynguyen
Date:
2018-02-08
Revision:
21:7cd86bea7f83
Child:
23:6806c3bacf58

File content as of revision 21:7cd86bea7f83:

/**
 * @author Akash Vibhute
 * < akash . roboticist [at] gmail . com >
 *
 * @section LICENSE
 *
 * Copyright (c) 2015 Akash Vibhute
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * @section DESCRIPTION
 *
 * Virgo_v3 robot controller v1.0 with Virgo_v3 PCB [AV22032015]
 * Robot controller software for SUTD Virgo version 3 robot
 *
 */

/**
 * Header file for including all necessary functions for robot and defining any
 * custom functions written in the main file.
 */
#include "main.h"
#include "globalExterns.h"

/**
 * Functions, Threads & General Definitions
 */
//*****************************************************************************
//** Drivetrain **
motorDriver drive;  //motor drive train
odometer odometry;  //odometer function
pidControl PID_L, PID_R; //pidcontroller for left and right motors

Timer motorControl_t;
float rpm_cmd[2]; //drive motor rpm command
float rpm_compensated[2]; //rpm command compensated by acc limit
float targetAcceleration = 300.0; //RPM/s acceleration
float pwm_cmd[2]; //drive motor pwm command

/* THREAD */
void odometry_thread(void const *n);
void motorControl_thread(void const *n);
/*   **   */
//-------------

//** Localization **
IMU_BNO055 imu; //Bosch BNO055 IMU wrapper class. For Invensense IMU use IMU_MPU6050 imu;    //MPU9150 / MPU6050 wrapper class
float imuTime;
Localization localization;  //localization function

/* FUNCTION */
bool imuInit_function();
/*   **   */

/* THREAD */
void imu_thread(void const *n);
/*   **   */
//-------------

//** Communications **
nRF24NetworkHandler comm;  //nRF24 radio and network layer handler function
uint8_t dataSend_flag; //flag to indicate data is ready to be transmitted
uint8_t comm_status[3]; //[2] comm status, [0] decoded tx status, [1] rx status,

cmdParser wirelessCmd;

/* THREAD */
void comm_thread(void const *n);
/*   **   */
//-------------

//** Power Monitor **
BattGuage  battery; //Battery fuel gauge wrapper

/* THREAD */

/*   **   */
//-------------

//** Trajectory tracking **
purePursuit purePursuit;
kinematics kinematics;

float purePursuit_velocity, purePursuit_omega, purePursuit_gamma;
//waypoints tored in format: x_coordinate,y_coordinate,speed_%,heading_toFace
uint8_t totalWaypoints = 5;
//kite pattern 200cm long, 100cm wide
int16_t waypoints_set[][4] = { {0,0,90,0},
    {100,100,90,0},
    {0,200,90,0},
    {-100,100,90,0},
    {0,0,90,0},
    {0,0,90,0},
    {0,0,90,0}
};

float waypointZone = 300.0; //diameter around desired waypoint, if robot reaches within that zone then waypoint is reached.
uint8_t waypointReached_flag = 0; //indicates if the desired waypoint has been reached
uint8_t waypointSetFinish_flag = 0; //indicates if the desired waypoint set is over and the robot needs to stop.
float target_waypoint[2] = {0.0, 0.0}; //coordinates in millimeters for pure-pursuit's use. initialize with 0,0 this is necessary to prevent comparison to a garbage value
float target_velocity =0.0; //target velocity in mm/s
float distanceToWaypoint; //distance from robot to waypoint
uint8_t waypoint_index=0;
uint8_t go_cmd=0; //make robot run a waypoint set

/* THREAD */
void purePursuit_thread(void const *n);
void waypointCmd_thread(void const *n);
/*   **   */
//-------------

//** Attitude control **
attitudeControl attitudeControl;
pidAttitudeControl pidPitchControl;
pidAttitudeControl pidRollControl;

float pidAttCntrl_correction[2]; //0-pitch control , 1- roll control

/* THREAD */

/*   **   */
//-------------

//** Camera **
camera camera;  //camera driver
uint8_t cameraFlag; //flag to enable camera: 0 - off, 1 - frequency controlled, 2 - permanantly on

/* THREAD */
void cameraControl_thread(void const *n);
/*   **   */
//-------------

//** Robot data recorder **
RDR virgoRDR;
uint8_t recordFlag; //flag to enable / disable recording: 0 - off, 1 - frequency controlled

/* THREAD */

/*   **   */
//-------------

//** Declarations of misc functions **
Serial Debug(uart_TX, uart_RX); //Debug serial port
DigitalOut debugLED(debug_LED); //led for Debugging and heartbeat indication

/* THREAD */
void heartbeat_thread(void const *n); //heartbeat loop as an individual thread
void print_thread(void const *n); //Debug printing thread
/*   **   */
//-------------
//-----------------------------------------------------------------------------


int main()
{
    Debug.baud(PC_BAUDRATE);

    debugLED =1;

    //wait_ms(5000);

    Debug.printf("** Starting Virgo v3 Routines *************\n\n");

    //** start Hearbeat loop as a thread **
    Thread Heartbeat_function(heartbeat_thread, NULL, osPriorityNormal);
    Debug.printf("* Hearbeat loop started *\n");

    //** start IMU funtion as Thread **
    Thread IMU_function(imu_thread, NULL, osPriorityHigh);
    Debug.printf("* IMU routine started *\n");

    //** start OdometryUpdate function as Thread **
    Thread Odometry_function(odometry_thread, NULL, osPriorityNormal, 1024);
    Debug.printf("* Odometry routine started *\n");

    //** start MotorControl function as Thread **
    Thread MotorControl_function(motorControl_thread, NULL, osPriorityNormal);
    Debug.printf("* Motor control routine started *\n");

    //** start PurePursuit controller as Thread **
    Thread PurePursuitUpdate_function(purePursuit_thread, NULL, osPriorityNormal);
    Debug.printf("* PurePursuit controller routine started *\n");

    //** start Waypoint commander function as Thread **
    Thread WaypointCmdUpdate_function(waypointCmd_thread, NULL, osPriorityNormal);
    Debug.printf("* Waypoint commander routine started *\n");

    //** start comm loop as a thread **
    Thread Comm_function(comm_thread, NULL, osPriorityNormal, 1024);
    Debug.printf("* Communications loop started *\n");

    //** start camera control loop as a thread **
    Thread CameraControl_function(cameraControl_thread, NULL, osPriorityNormal);
    Debug.printf("* Camera control loop started *\n");

    //** Start data recorder as Thread **
    //Thread dataRecorder_function(dataRecorder_thread, NULL, osPriorityNormal);
    //Debug.printf("* Data Recorder routine started *\n");

    //** start Debug print loop as a thread **
    Thread PrintLoop_function(print_thread, NULL, osPriorityNormal, 1024);
    Debug.printf("* Print loop started *\n\n\n");

    Debug.printf(" ***** \e[5mWAIT UNTIL IMU IS STABILIZED\e[0;m *****\n");

    while(1) {

    }
}

/**
 * heartbeat loop as an individual thread
 */
void heartbeat_thread(void const *n)
{
    while(true) {
        if(imu.imu_stabilized[0] ==1) {
            debugLED = !debugLED;
            Thread::wait(Hearbeat_RateMS-50);
            debugLED = !debugLED;
            Thread::wait(50);
        } else
            debugLED = 1;
    }
}

/**
 * imu initialization function
 */
bool imuInit_function()
{
    return (imu.imuInit());
}

/**
 * imu update loop as an individual thread
 */
void imu_thread(void const *n)
{
    bool init_status = imuInit_function();
    Thread::wait(100);

    while(init_status) {
        imu.imuUpdate();

        //Usage:
        //imu.Pose[0, 1, 2]; //euler x, y, z
        //imu.AngVel[0, 1, 2]; //AngVel x, y, z
        //imu.LinAcc[0, 1, 2]; //LinAcc x, y, z
        //imu.Quat[0, 1, 2, 3]; //Quaternion w, x, y, z

        imuTime = imu.time_s;

        Thread::wait(imu_UpdatePeriodMS);
    }
}

/**
 * odometry update loop as an individual thread
 */
void odometry_thread(void const *n)
{
    odometry.init();
    Thread::wait(50);

    while(true) {
        odometry.update();

        //Usage:
        //odometer.revolutions[0, 1]; //revolutions left, right
        //odometer.rpm[0, 1]; //rpm left, right

        localization.updatePosition(DEG_TO_RAD(imu.Pose[2]), odometry.revolutions);

        //Usage:
        //localization.position[0, 1] //x, y

        Thread::wait(odometry_UpdatePeriodMS);
    }
}

/**/
float rpm_smc = 500;
float ref_dtheta = 0;
float ref_theta = 0;

float ref_dgamma = 0;
float ref_gamma = 0;

float ref_beta = DEG_TO_RAD(0.0);
float ref_dbeta = 0;

float u1, u2;
/**/
/**
 * motor control loop as an individual thread
 */
void motorControl_thread(void const *n)
{
    motorControl_t.start();

    float pitch_th, pitch_om, yaw_th, yaw_om;
    float wheelTh_l, wheelTh_r, wheelOm_l, wheelOm_r;
    float W_l, W_r;

    while(true) {

        //if((imu.imu_stabilized[1] ==1) && (go_cmd == 1)) {
        if(imu.imu_stabilized[1] ==1) {

            pitch_th = DEG_TO_RAD(imu.Pose[0]);
            if(pitch_th < -1*M_PI)   pitch_th += 2*M_PI;
            if(pitch_th > M_PI)   pitch_th -= 2*M_PI;
            if(pitch_th < -1*M_PI)   pitch_th += 2*M_PI;
            
            
            pitch_om = DEG_TO_RAD(imu.AngVel[0]);

            yaw_th = DEG_TO_RAD(imu.Pose[2]);
            
            yaw_om = DEG_TO_RAD(imu.AngVel[2]);

            wheelTh_l = odometry.revolutions[0]*(-2*M_PI);
            wheelTh_r = odometry.revolutions[1]*(-2*M_PI);

            wheelOm_l = (odometry.rpm[0]/60)*(-2*M_PI);
            wheelOm_r = (odometry.rpm[1]/60)*(-2*M_PI);

            //ref_dtheta = rpm_smc*(-2*M_PI/60.0); //*generalFunctions::abs_f(sin(2*M_PI*imuTime/(15*2)));
            //ref_theta = ref_dtheta * imuTime;
            //ref_gamma = DEG_TO_RAD(30.0) ;//* sin(2*M_PI*imuTime/(30*2));
            
            ref_dtheta = (purePursuit_velocity * (60.0 / (M_PI * wheel_dia)))*(-2*M_PI/60.0);
            ref_gamma = purePursuit_gamma;
            ref_dgamma = purePursuit_omega;

            attitudeControl.GenWheelVelocities(&W_l, &W_r, 0, motorControl_t.read(),
                                               pitch_th, pitch_om, yaw_th , yaw_om,
                                               wheelTh_l, wheelTh_r, wheelOm_l, wheelOm_r,
                                               0, ref_dbeta, ref_beta,
                                               0, ref_dtheta, ref_theta,
                                               0, ref_dgamma, ref_gamma,
                                               &u1, &u2);



            if(waypointSetFinish_flag == 0) {
//                rpm_cmd[0]=W_l*60/(2*M_PI)*(-1.0);
//                rpm_cmd[1]=W_r*60/(2*M_PI)*(-1.0);
                rpm_cmd[0]=-800;
                rpm_cmd[1]=-800;

                if( (generalFunctions::abs_f(rpm_cmd[0]) < 500.0) && (generalFunctions::abs_f(rpm_cmd[0]) > 100.0) )
                    rpm_cmd[0] = 475.0*generalFunctions::sign_f(rpm_cmd[0]);
                else if(generalFunctions::abs_f(rpm_cmd[0]) <= 100.0)
                    rpm_cmd[0] = 0;

                if( (generalFunctions::abs_f(rpm_cmd[1]) < 500.0) && (generalFunctions::abs_f(rpm_cmd[1]) > 100.0) )
                    rpm_cmd[1] = 475.0*generalFunctions::sign_f(rpm_cmd[1]);
                else if(generalFunctions::abs_f(rpm_cmd[1]) <= 100.0)
                    rpm_cmd[1] = 0;

                rpm_compensated[0]=PID_L.processAcc(rpm_cmd[0], targetAcceleration, motorControl_t.read());
                rpm_compensated[1]=PID_R.processAcc(rpm_cmd[1], targetAcceleration, motorControl_t.read());
                
                //rpm_compensated[0]= rpm_cmd[0];
                //rpm_compensated[1]= rpm_cmd[1];

            } else {
                rpm_cmd[0]=0;
                rpm_cmd[1]=0;
                
                rpm_compensated[0]=PID_L.processAcc(rpm_cmd[0], 225.0, motorControl_t.read());
                rpm_compensated[1]=PID_R.processAcc(rpm_cmd[1], 225.0, motorControl_t.read());
            }

            pwm_cmd[0]=PID_L.calcOutput(rpm_compensated[0], odometry.rpm[0], motorControl_t.read());
            pwm_cmd[1]=PID_R.calcOutput(rpm_compensated[1], odometry.rpm[1], motorControl_t.read());

            drive.setPWM_L(pwm_cmd[0]);
            drive.setPWM_R(pwm_cmd[1]);
            
            
        }

        motorControl_t.reset();

        Thread::wait(motorControl_UpdatePeriodMS);
    }
}

/**
 * purepursuit loop as an individual thread
 */
void purePursuit_thread(void const *n)
{
    while(true) {
        if(imu.imu_stabilized[0] ==1) {
            //purePursuit.GenVGW(&purePursuit_velocity, &purePursuit_gamma, &purePursuit_omega, target_waypoint, 400.0, localization.position, DEG_TO_RAD(imu.Pose[2]));
            purePursuit.GenVGW(&purePursuit_velocity, &purePursuit_gamma, &purePursuit_omega, target_waypoint, target_velocity, localization.position, DEG_TO_RAD(imu.Pose[2]));

            if(purePursuit.robotFrame_targetDistance <= waypointZone)
                waypointReached_flag = 1;
            else
                waypointReached_flag = 0;
        }
        Thread::wait(imu_UpdatePeriodMS);
    }
}

/**
 * waypoint tracking loop as individual thread
 */
void waypointCmd_thread(void const *n)
{
    while(true) {
        //if((imu.imu_stabilized[0] ==1) && (go_cmd == 1)) {
        if(imu.imu_stabilized[0] ==1) {
            if(waypoint_index > totalWaypoints) {
                target_velocity = 0.0; //stop the robot
                waypointSetFinish_flag = 1;
            }

            if(waypointReached_flag == 1 && waypointSetFinish_flag == 0) {
                target_waypoint[0] = waypoints_set[waypoint_index][0] * 10.0; //convert coordinate from centimeters to millimeters
                target_waypoint[1] = waypoints_set[waypoint_index][1] * 10.0; //convert coordinate from centimeters to millimeters
                target_velocity = waypoints_set[waypoint_index][2] * (driveTrain_maxV/100.0); //convert speed from percentage to mm/s
                waypoint_index++;
            }
        }
        Thread::wait(100); //waypoint update doesnt need to be very fast, 10Hz is more than sufficient
    }
}

/**
 * nRF network communications as an individual thread
 */
void comm_thread(void const *n)
{
    comm.init(); //initialize communications unit
    Thread::wait(1000); //wait for a bit for radio to complete setup
    dataSend_flag=0;

    float data[2];
    wirelessCmd.sendData(0x00, RE_CurrentPose, 0, 0);
    //wirelessCmd.sendCmd(0x00, getCurrentPosition, 0);

    while(true) {
        dataSend_flag =1;

        if((dataSend_flag == 1) && (comm.tx_ready == 1)) {

            comm.DataOut.addr = 0; //send to node address

            comm.DataOut.parameter[0] = 1; //parameter def 0
            comm.DataOut.parameter[1] = 2; //parameter def 1

            comm.DataOut.dataLen = 20; //length of data to be sent

            comm.DataOut.data[0] = imuTime;                             //timestamp
            comm.DataOut.data[1] = imu.Pose[0];                         //euler x / pitch angle
            comm.DataOut.data[2] = imu.Pose[1];                         //euler x / roll angle
            comm.DataOut.data[3] = imu.Pose[2];                         //euler z / yaw angle
            comm.DataOut.data[4] = imu.AngVel[0];                       //euler x / pitch velocity
            comm.DataOut.data[5] = imu.AngVel[1];                       //euler y / roll velocity
            comm.DataOut.data[6] = imu.AngVel[2];                       //euler z / yaw velocity
            comm.DataOut.data[7] = imu.LinAcc[0];                       //x acc
            comm.DataOut.data[8] = imu.LinAcc[1];                       //y acc
            comm.DataOut.data[9] = imu.LinAcc[2];                       //z acc
            comm.DataOut.data[10] = localization.position[0];           //localization position x
            comm.DataOut.data[11] = localization.position[1];           //localization position y
            comm.DataOut.data[12] = odometry.revolutions[0] * 2*M_PI;   //left wheel position
            comm.DataOut.data[13] = odometry.revolutions[1] * 2*M_PI;   //right wheel position
            comm.DataOut.data[14] = odometry.rpm[0] * 2*M_PI / 60;      //left wheel velocity
            comm.DataOut.data[15] = odometry.rpm[1] * 2*M_PI / 60;      //right wheel velocity
            comm.DataOut.data[16] = pwm_cmd[0] * 100.0;                 //left wheel PWM %
            comm.DataOut.data[17] = pwm_cmd[1] * 100.0;                 //right wheel PWM %
            comm.DataOut.data[18] = rpm_compensated[0] * 2*M_PI / 60;   //compensated left wheel velocity command
            comm.DataOut.data[19] = rpm_compensated[1] * 2*M_PI / 60;   //compensated right wheel velocity command


            comm_status[2] = comm.send();
            comm_status[0] = (comm_status[2] & 0b0001);
            comm_status[1] = (comm_status[2] & 0b0010) >> 1;

            if(comm_status[0] == 1) dataSend_flag = 0; //if send succeeded, set dataSend_flag to 0
        }

        else {
            comm_status[2] = comm.update();

            comm_status[0] = (comm_status[2] & 0b0001);
            comm_status[1] = (comm_status[2] & 0b0010) >> 1;

            if(comm_status[1] == 1) {
                //wirelessCmd.parseCmd(comm.DataIn.addr, comm.DataIn.parameter, comm.DataIn.data, comm.DataIn.dataLen);
                if(go_cmd == 0) {
                    if(comm.DataIn.parameter[1] == 0x10) go_cmd=1;
                }
            }


        }

        comm_status[0] = (comm_status[2] & 0b0001);
        comm_status[1] = (comm_status[2] & 0b0010) >> 1;

        Thread::wait(1); //slow down loop a bit so that CPU usage doesnt shoot up unnecessarily
    }
}


/**
 * CameraControl loop as an individual thread
 */
void cameraControl_thread(void const *n)
{
    cameraFlag=2;
    camera.setFrequency(camera_CaptureTimeS*1.0, camera_cycleMinutes*60.0);

    while(true) {
        if(cameraFlag == 0) {
            camera.setState(0);
        }

        if(cameraFlag == 1) {
            camera.updateState();
            camera.setState(camera.camFlag);
        }

        if(cameraFlag == 2) {
            camera.setState(1);
        }

        Thread::wait(100); //proocess thread every 100ms
    }
}

/**
 * Data recorder loop as an individual thread
 */
void dataRecorder_thread(void const *n)
{
    virgoRDR.set_size(2);

    while(0) {
        if(recordFlag == 1) {
            virgoRDR.record(imuTime, 0);
            virgoRDR.record(imu.Pose[0], 1);
            virgoRDR.record(imu.Pose[1], 2);
            virgoRDR.record(imu.Pose[2], 3);
            virgoRDR.record(imu.AngVel[0], 4);
            virgoRDR.record(imu.AngVel[1], 5);
            virgoRDR.record(imu.AngVel[2], 6);
            virgoRDR.record(localization.position[0], 7);
            virgoRDR.record(localization.position[1], 8);
            virgoRDR.record(odometry.revolutions[0] * 2*M_PI, 9);
            virgoRDR.record(odometry.revolutions[1] * 2*M_PI, 10);
            virgoRDR.record(odometry.rpm[0], 11);
            virgoRDR.record(odometry.rpm[1], 12);
            virgoRDR.record(rpm_cmd[0], 13);
            virgoRDR.record(rpm_cmd[1], 14);

            virgoRDR.increment_row();

            //virgoRDR.size(); //to find number of rows in data recorder
            //virgoRDR.current_row(); //current row being recorded to
            //data[row][col]; //access stored data
        }

        Thread::wait(DataRecorder_PeriodMS); //proocess thread every 100ms
    }
}

/**
 * Debug data print loop as an individual thread
 */
#define print_lines 15 //number of info lines being printed on screen
void print_thread(void const *n)
{
    //clear 14 lines while going up, these are the initilization lines printed on screen
    for(int l=14; l>0; l--) {
        Debug.printf("\e[1A"); //go up 1 line
        Debug.printf("\e[K"); //clear line
    }

    Debug.printf("************ VIRGO v3: Status Monitor *************\n\n");
    for(int l=print_lines; l>0; l--) Debug.printf("\n");
    Debug.printf("\n===================================================");
    Debug.printf("\e[1A"); //go up 1 line

    while(true) {
        //move cursor up # of lines printed to create a static display and clear the first line
        for(int l=print_lines; l>0; l--) Debug.printf("\e[1A");
        Debug.printf("\e[K");

        Debug.printf("Elapsed time: %.2f s\n\e[K", imuTime); //
        Debug.printf("Position: %.2f , %.2f\n\e[K", localization.position[0], localization.position[1]); //
        Debug.printf("Orientation (X-Y-Z): (%.2f , %.2f , %.2f)\n\e[K", imu.Pose[0], imu.Pose[1], imu.Pose[2]);
        Debug.printf("Calib Status : %d, %d \n\e[K", imu.imu_stabilized[0], imu.imu_stabilized[1]);
        Debug.printf("Calib Status (M-A-G-S-O): (%d , %d , %d , %d , %d)\n\e[K", imu.calib_stat[0], imu.calib_stat[1], imu.calib_stat[2], imu.calib_stat[3], imu.calib_stat[4]);

        //Debug.printf("Battery Status: %3.2f%%, %1.2fV\n\e[K", battery.getSOC(), battery.getVcell());

        Debug.printf("Waypoint Tracking: waypointReached %d, waypointSetFinish %d waypointIndex %d\n\e[K", waypointReached_flag, waypointSetFinish_flag, waypoint_index);
        Debug.printf("Waypoint Tracking: distanceToWaypoint %.1f, purePursuit_headingE %.1f \n\e[K", purePursuit.robotFrame_targetDistance, RAD_TO_DEG(purePursuit.purePursuit_headingE));
        Debug.printf("Waypoint being tracked (X,Y): %.2f, %.2f\n\e[K", target_waypoint[0], target_waypoint[1]);

        Debug.printf("SMC: ref_beta %.2f, ref_dbeta %.3f\n\e[K", RAD_TO_DEG(ref_beta), RAD_TO_DEG(ref_dbeta));
        Debug.printf("SMC: ref_gamma %.2f, ref_dgamma %.3f\n\e[K", RAD_TO_DEG(ref_gamma), RAD_TO_DEG(ref_dgamma));
        Debug.printf("SMC: ref_theta %.2f, ref_dtheta %.3f\n\e[K", RAD_TO_DEG(ref_theta), RAD_TO_DEG(ref_dtheta));
        Debug.printf("SMC: u1*tc %.2f rpm, u2*tc %.2f rpm\n\e[K", u1*0.005*60/(2*M_PI), u2*0.005*60/(2*M_PI));

        Debug.printf("Compensated RPM (L,R): %.1f, %.1f\n\e[K", rpm_compensated[0], rpm_compensated[1]);
        //Debug.printf("Computed PWM (L,R): %.1f, %.1f\n\e[K", pwm_cmd[0]*100.0, pwm_cmd[1]*100.0);
        Debug.printf("Measured RPM (L,R): %.1f, %.1f\n\e[K", odometry.rpm[0], odometry.rpm[1]);
        //Debug.printf("Measured Revolutions (L,R): %.1f, %.1f\n\e[K", odometry.revolutions[0], odometry.revolutions[1]);

        //Debug.printf("PID_L: P %0.3f, I %0.3f, D %0.3f, Ff %0.3f, Summ %0.3f\n\e[K", PID_L.PIDFf_terms[0], PID_L.PIDFf_terms[1], PID_L.PIDFf_terms[2], PID_L.PIDFf_terms[3], PID_L.Summ_term);
        //Debug.printf("PID_R: P %0.3f, I %0.3f, D %0.3f, Ff %0.3f, Summ %0.3f\n\e[K", PID_R.PIDFf_terms[0], PID_R.PIDFf_terms[1], PID_R.PIDFf_terms[2], PID_R.PIDFf_terms[3], PID_R.Summ_term);

        Debug.printf("Comm Status: Tx %d, Rx %d, Overall %d, comm.tx_ready %d\n\e[K", comm_status[0], comm_status[1], comm_status[2], comm.tx_ready);
        //Debug.printf("Comm Status: %d\n\e[K", comm_status[0]);
        
        Thread::wait(PrintLoop_PeriodMS);
    }
}