Takujyou_Ishii / Mbed 2 deprecated test_mpu6050

Dependencies:   mbed Madgwickfilter MPU6050

Revision:
4:fdba5e452d36
Parent:
3:9424c6493a75
Child:
5:f41d7b3be417
--- a/main.cpp	Fri Sep 08 18:01:40 2017 +0000
+++ b/main.cpp	Wed Jul 10 10:40:24 2019 +0000
@@ -2,167 +2,178 @@
 /* MPU6050 Basic Example Code
  by: Kris Winer
  date: May 1, 2014
- license: Beerware - Use this code however you'd like. If you 
+ license: Beerware - Use this code however you'd like. If you
  find it useful you can buy me a beer some time.
- 
+
  Demonstrate  MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
- parameterizing the register addresses. Added display functions to allow display to on breadboard monitor. 
+ parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
  No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
- 
+
  SDA and SCL should have external pull-up resistors (to 3.3V).
  10k resistors worked for me. They should be on the breakout
  board.
- 
+
  Hardware setup:
  MPU6050 Breakout --------- Arduino
  3.3V --------------------- 3.3V
  SDA ----------------------- A4
  SCL ----------------------- A5
  GND ---------------------- GND
- 
-  Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library. 
+
+  Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
  Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
  We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
  We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
  */
- 
+
 #include "mbed.h"
 #include "MPU6050.h"
 
 float sum = 0;
 uint32_t sumCount = 0;
 
-   MPU6050 mpu6050;
-   
-   Timer t;
+MPU6050 mpu6050;
+
+Timer t;
 
-   Serial pc(USBTX, USBRX); // tx, rx
-        
+Serial pc(USBTX, USBRX); // tx, rx
+
+void gyro_data();
+
+Ticker gyro_tick;
+
 int main()
 {
-  pc.baud(9600);  
+    pc.baud(9600);
+
+    //Set up I2C
+    i2c.frequency(400000);  // use fast (400 kHz) I2C
+
+    t.start();
+
+    // Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+    pc.printf("I AM 0x%x\n\r", whoami);
+    pc.printf("I SHOULD BE 0x68\n\r");
+
+    if (whoami == 0x68) { // WHO_AM_I should always be 0x68
+        pc.printf("MPU6050 is online...");
+        wait(1);
 
-  //Set up I2C
-  i2c.frequency(400000);  // use fast (400 kHz) I2C   
-  
-  t.start();          
-    
-  // Read the WHO_AM_I register, this is a good test of communication
-  uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
-  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
-  
-  if (whoami == 0x68) // WHO_AM_I should always be 0x68
-  {  
-    pc.printf("MPU6050 is online...");
-    wait(1);
-    
-    mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
-    pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
-    pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
-    pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
-    pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
-    pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
-    pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
-    wait(1);
+        mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+        pc.printf("x-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[0]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("y-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[1]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("z-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[2]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("x-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[3]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("y-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[4]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("z-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[5]);
+        pc.printf("% of factory value \n\r");
+        wait(1);
 
-    if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) 
-    {
-    mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
-    mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
-    mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+        if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
+            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+            mpu6050.initMPU6050();
+            pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
 
-    wait(2);
-       }
-    else
-    {
-    pc.printf("Device did not the pass self-test!\n\r");
- 
-      }
+            wait(2);
+        } else {
+            pc.printf("Device did not the pass self-test!\n\r");
+
+        }
+    } else {
+        pc.printf("Could not connect to MPU6050: \n\r");
+        pc.printf("%#x \n",  whoami);
+
+        while(1) ; // Loop forever if communication doesn't happen
     }
-    else
-    {
-    pc.printf("Could not connect to MPU6050: \n\r");
-    pc.printf("%#x \n",  whoami);
- 
-    while(1) ; // Loop forever if communication doesn't happen
-  }
+    gyro_tick.attach_us(&gyro_data,50000);
 
 
 
- while(1) {
-  
-  // If data ready bit set, all data registers have new data
-  if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
-    mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
-    mpu6050.getAres();
-    
-    // Now we'll calculate the accleration value into actual g's
-    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-    ay = (float)accelCount[1]*aRes - accelBias[1];   
-    az = (float)accelCount[2]*aRes - accelBias[2];  
-   
-    mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
-    mpu6050.getGres();
- 
-    // Calculate the gyro value into actual degrees per second
-    gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
-    gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
-    gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
+    while(1) {
+        pc.printf("a{x,y,z}={%7.3f,%7.3f,%7.3f},T=%7.3f,g{x,y,z}={%7.3f,%7.3f,%7.3f},",ax,ay,az,temperature,gx,gy,gz);
+        pc.printf("Yaw, Pitch, Roll: %9.4f %9.4f %9.4f", yaw, pitch, roll);
+        pc.printf("beta=%5.3f,zeta=%5.3f,",beta,zeta);
+        //pc.printf("ax=%5d,ay=%5d,az=%5d,temp=%5d,gx=%5d,gy=%5d,gz=%5d,",accelCount[0],accelCount[1],accelCount[2],tempCount,gyroCount[0],gyroCount[1],gyroCount[2]);
+        pc.printf("\r\n");
+    }
+
+}
+
+void gyro_data()
+{
+
+    // If data ready bit set, all data registers have new data
+    if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+        mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+        mpu6050.getAres();
 
-    tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
-    temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
-   }  
-   
+        // Now we'll calculate the accleration value into actual g's
+        ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+        ay = (float)accelCount[1]*aRes - accelBias[1];
+        az = (float)accelCount[2]*aRes - accelBias[2];
+
+        mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+        mpu6050.getGres();
+
+        // Calculate the gyro value into actual degrees per second
+        gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+        gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+        gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+
+        tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+        temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+    }
+
     Now = t.read_us();
     deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
     lastUpdate = Now;
-    
+
     sum += deltat;
     sumCount++;
-    
+
     if(lastUpdate - firstUpdate > 10000000.0f) {
-     beta = 0.04;  // decrease filter gain after stabilized
-     zeta = 0.015; // increasey bias drift gain after stabilized
+        beta = 0.04;  // decrease filter gain after stabilized
+        zeta = 0.015; // increasey bias drift gain after stabilized
     }
-    
-   // Pass gyro rate as rad/s
+
+    // Pass gyro rate as rad/s
     mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
 
     // Serial print and/or display at 0.5 s rate independent of data rates
     delt_t = t.read_ms() - count;
-    if (delt_t > 500) { // update LCD once per half-second independent of read rate
-
-    pc.printf("ax = %f", 1000*ax); 
-    pc.printf(" ay = %f", 1000*ay); 
-    pc.printf(" az = %f  mg\n\r", 1000*az); 
+    if (delt_t > 1) { // update LCD once per half-second independent of read rate*/
 
-    pc.printf("gx = %f", gx); 
-    pc.printf(" gy = %f", gy); 
-    pc.printf(" gz = %f  deg/s\n\r", gz); 
-    
-    pc.printf(" temperature = %f  C\n\r", temperature); 
-    
-    pc.printf("q0 = %f\n\r", q[0]);
-    pc.printf("q1 = %f\n\r", q[1]);
-    pc.printf("q2 = %f\n\r", q[2]);
-    pc.printf("q3 = %f\n\r", q[3]);      
     
-    
-  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-  // In this coordinate system, the positive z-axis is down toward Earth. 
-  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
-    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-    pitch *= 180.0f / PI;
-    yaw   *= 180.0f / PI; 
-    roll  *= 180.0f / PI;
+
+
+        // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+        // In this coordinate system, the positive z-axis is down toward Earth.
+        // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+        // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+        // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+        // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+        // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+        // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+        // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+        pitch *= 180.0f / PI;
+        yaw   *= 180.0f / PI;
+        roll  *= 180.0f / PI;
 
 //    pc.printf("Yaw, Pitch, Roll: \n\r");
 //    pc.printf("%f", yaw);
@@ -172,14 +183,12 @@
 //    pc.printf("%f\n\r", roll);
 //    pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
 
-     pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-     pc.printf("average rate = %f\n\r", (float) sumCount/sum);
- 
-    myled= !myled;
-    count = t.read_ms(); 
-    sum = 0;
-    sumCount = 0; 
-}
-}
- 
- }
\ No newline at end of file
+        //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+        //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+
+        myled= !myled;
+        count = t.read_ms();
+        sum = 0;
+        sumCount = 0;
+    }
+}
\ No newline at end of file