Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed Madgwickfilter MPU6050
Diff: main.cpp
- Revision:
- 4:fdba5e452d36
- Parent:
- 3:9424c6493a75
- Child:
- 5:f41d7b3be417
--- a/main.cpp Fri Sep 08 18:01:40 2017 +0000
+++ b/main.cpp Wed Jul 10 10:40:24 2019 +0000
@@ -2,167 +2,178 @@
/* MPU6050 Basic Example Code
by: Kris Winer
date: May 1, 2014
- license: Beerware - Use this code however you'd like. If you
+ license: Beerware - Use this code however you'd like. If you
find it useful you can buy me a beer some time.
-
+
Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
- parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
+ parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
-
+
SDA and SCL should have external pull-up resistors (to 3.3V).
10k resistors worked for me. They should be on the breakout
board.
-
+
Hardware setup:
MPU6050 Breakout --------- Arduino
3.3V --------------------- 3.3V
SDA ----------------------- A4
SCL ----------------------- A5
GND ---------------------- GND
-
- Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
+
+ Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
*/
-
+
#include "mbed.h"
#include "MPU6050.h"
float sum = 0;
uint32_t sumCount = 0;
- MPU6050 mpu6050;
-
- Timer t;
+MPU6050 mpu6050;
+
+Timer t;
- Serial pc(USBTX, USBRX); // tx, rx
-
+Serial pc(USBTX, USBRX); // tx, rx
+
+void gyro_data();
+
+Ticker gyro_tick;
+
int main()
{
- pc.baud(9600);
+ pc.baud(9600);
+
+ //Set up I2C
+ i2c.frequency(400000); // use fast (400 kHz) I2C
+
+ t.start();
+
+ // Read the WHO_AM_I register, this is a good test of communication
+ uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
+ pc.printf("I AM 0x%x\n\r", whoami);
+ pc.printf("I SHOULD BE 0x68\n\r");
+
+ if (whoami == 0x68) { // WHO_AM_I should always be 0x68
+ pc.printf("MPU6050 is online...");
+ wait(1);
- //Set up I2C
- i2c.frequency(400000); // use fast (400 kHz) I2C
-
- t.start();
-
- // Read the WHO_AM_I register, this is a good test of communication
- uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
- pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
-
- if (whoami == 0x68) // WHO_AM_I should always be 0x68
- {
- pc.printf("MPU6050 is online...");
- wait(1);
-
- mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
- pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
- pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
- pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
- pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
- pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
- pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
- wait(1);
+ mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+ pc.printf("x-axis self test: acceleration trim within : ");
+ pc.printf("%f", SelfTest[0]);
+ pc.printf("% of factory value \n\r");
+ pc.printf("y-axis self test: acceleration trim within : ");
+ pc.printf("%f", SelfTest[1]);
+ pc.printf("% of factory value \n\r");
+ pc.printf("z-axis self test: acceleration trim within : ");
+ pc.printf("%f", SelfTest[2]);
+ pc.printf("% of factory value \n\r");
+ pc.printf("x-axis self test: gyration trim within : ");
+ pc.printf("%f", SelfTest[3]);
+ pc.printf("% of factory value \n\r");
+ pc.printf("y-axis self test: gyration trim within : ");
+ pc.printf("%f", SelfTest[4]);
+ pc.printf("% of factory value \n\r");
+ pc.printf("z-axis self test: gyration trim within : ");
+ pc.printf("%f", SelfTest[5]);
+ pc.printf("% of factory value \n\r");
+ wait(1);
- if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
- {
- mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
- mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
- mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+ if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
+ mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+ mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+ mpu6050.initMPU6050();
+ pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
- wait(2);
- }
- else
- {
- pc.printf("Device did not the pass self-test!\n\r");
-
- }
+ wait(2);
+ } else {
+ pc.printf("Device did not the pass self-test!\n\r");
+
+ }
+ } else {
+ pc.printf("Could not connect to MPU6050: \n\r");
+ pc.printf("%#x \n", whoami);
+
+ while(1) ; // Loop forever if communication doesn't happen
}
- else
- {
- pc.printf("Could not connect to MPU6050: \n\r");
- pc.printf("%#x \n", whoami);
-
- while(1) ; // Loop forever if communication doesn't happen
- }
+ gyro_tick.attach_us(&gyro_data,50000);
- while(1) {
-
- // If data ready bit set, all data registers have new data
- if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
- mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
- mpu6050.getAres();
-
- // Now we'll calculate the accleration value into actual g's
- ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
- ay = (float)accelCount[1]*aRes - accelBias[1];
- az = (float)accelCount[2]*aRes - accelBias[2];
-
- mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
- mpu6050.getGres();
-
- // Calculate the gyro value into actual degrees per second
- gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
- gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
- gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+ while(1) {
+ pc.printf("a{x,y,z}={%7.3f,%7.3f,%7.3f},T=%7.3f,g{x,y,z}={%7.3f,%7.3f,%7.3f},",ax,ay,az,temperature,gx,gy,gz);
+ pc.printf("Yaw, Pitch, Roll: %9.4f %9.4f %9.4f", yaw, pitch, roll);
+ pc.printf("beta=%5.3f,zeta=%5.3f,",beta,zeta);
+ //pc.printf("ax=%5d,ay=%5d,az=%5d,temp=%5d,gx=%5d,gy=%5d,gz=%5d,",accelCount[0],accelCount[1],accelCount[2],tempCount,gyroCount[0],gyroCount[1],gyroCount[2]);
+ pc.printf("\r\n");
+ }
+
+}
+
+void gyro_data()
+{
+
+ // If data ready bit set, all data registers have new data
+ if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
+ mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
+ mpu6050.getAres();
- tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
- temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
- }
-
+ // Now we'll calculate the accleration value into actual g's
+ ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
+ ay = (float)accelCount[1]*aRes - accelBias[1];
+ az = (float)accelCount[2]*aRes - accelBias[2];
+
+ mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
+ mpu6050.getGres();
+
+ // Calculate the gyro value into actual degrees per second
+ gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
+ gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+ gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+
+ tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
+ temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+ }
+
Now = t.read_us();
deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
lastUpdate = Now;
-
+
sum += deltat;
sumCount++;
-
+
if(lastUpdate - firstUpdate > 10000000.0f) {
- beta = 0.04; // decrease filter gain after stabilized
- zeta = 0.015; // increasey bias drift gain after stabilized
+ beta = 0.04; // decrease filter gain after stabilized
+ zeta = 0.015; // increasey bias drift gain after stabilized
}
-
- // Pass gyro rate as rad/s
+
+ // Pass gyro rate as rad/s
mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
// Serial print and/or display at 0.5 s rate independent of data rates
delt_t = t.read_ms() - count;
- if (delt_t > 500) { // update LCD once per half-second independent of read rate
-
- pc.printf("ax = %f", 1000*ax);
- pc.printf(" ay = %f", 1000*ay);
- pc.printf(" az = %f mg\n\r", 1000*az);
+ if (delt_t > 1) { // update LCD once per half-second independent of read rate*/
- pc.printf("gx = %f", gx);
- pc.printf(" gy = %f", gy);
- pc.printf(" gz = %f deg/s\n\r", gz);
-
- pc.printf(" temperature = %f C\n\r", temperature);
-
- pc.printf("q0 = %f\n\r", q[0]);
- pc.printf("q1 = %f\n\r", q[1]);
- pc.printf("q2 = %f\n\r", q[2]);
- pc.printf("q3 = %f\n\r", q[3]);
-
- // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
- // In this coordinate system, the positive z-axis is down toward Earth.
- // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
- // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
- // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
- // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
- // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
- // applied in the correct order which for this configuration is yaw, pitch, and then roll.
- // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
- yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
- pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
- roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
- pitch *= 180.0f / PI;
- yaw *= 180.0f / PI;
- roll *= 180.0f / PI;
+
+
+ // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+ // In this coordinate system, the positive z-axis is down toward Earth.
+ // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+ // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+ // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+ // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+ // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+ // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+ // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+ yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+ pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+ roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+ pitch *= 180.0f / PI;
+ yaw *= 180.0f / PI;
+ roll *= 180.0f / PI;
// pc.printf("Yaw, Pitch, Roll: \n\r");
// pc.printf("%f", yaw);
@@ -172,14 +183,12 @@
// pc.printf("%f\n\r", roll);
// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
- pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
- pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-
- myled= !myled;
- count = t.read_ms();
- sum = 0;
- sumCount = 0;
-}
-}
-
- }
\ No newline at end of file
+ //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+ //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+
+ myled= !myled;
+ count = t.read_ms();
+ sum = 0;
+ sumCount = 0;
+ }
+}
\ No newline at end of file