Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed Madgwickfilter MPU6050
Diff: main.cpp
- Revision:
- 5:f41d7b3be417
- Parent:
- 4:fdba5e452d36
- Child:
- 6:94c4a0e7bf48
--- a/main.cpp Wed Jul 10 10:40:24 2019 +0000
+++ b/main.cpp Wed Jul 17 06:56:36 2019 +0000
@@ -1,194 +1,27 @@
-
-/* MPU6050 Basic Example Code
- by: Kris Winer
- date: May 1, 2014
- license: Beerware - Use this code however you'd like. If you
- find it useful you can buy me a beer some time.
-
- Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
- parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
- No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
-
- SDA and SCL should have external pull-up resistors (to 3.3V).
- 10k resistors worked for me. They should be on the breakout
- board.
-
- Hardware setup:
- MPU6050 Breakout --------- Arduino
- 3.3V --------------------- 3.3V
- SDA ----------------------- A4
- SCL ----------------------- A5
- GND ---------------------- GND
-
- Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
- Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
- We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
- We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
- */
-
#include "mbed.h"
#include "MPU6050.h"
-
-float sum = 0;
-uint32_t sumCount = 0;
-
-MPU6050 mpu6050;
-
-Timer t;
-
-Serial pc(USBTX, USBRX); // tx, rx
-
-void gyro_data();
-
-Ticker gyro_tick;
+#include "madgwickfilter.h"
+MPU6050 mpu6050(p28,p27);
+Madgwickfilter filter;
+const double PI = 3.14159265358979323846f;
+const double kRad2Deg = 180.0/PI;
int main()
{
- pc.baud(9600);
-
- //Set up I2C
- i2c.frequency(400000); // use fast (400 kHz) I2C
-
- t.start();
-
- // Read the WHO_AM_I register, this is a good test of communication
- uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
- pc.printf("I AM 0x%x\n\r", whoami);
- pc.printf("I SHOULD BE 0x68\n\r");
-
- if (whoami == 0x68) { // WHO_AM_I should always be 0x68
- pc.printf("MPU6050 is online...");
- wait(1);
-
- mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
- pc.printf("x-axis self test: acceleration trim within : ");
- pc.printf("%f", SelfTest[0]);
- pc.printf("% of factory value \n\r");
- pc.printf("y-axis self test: acceleration trim within : ");
- pc.printf("%f", SelfTest[1]);
- pc.printf("% of factory value \n\r");
- pc.printf("z-axis self test: acceleration trim within : ");
- pc.printf("%f", SelfTest[2]);
- pc.printf("% of factory value \n\r");
- pc.printf("x-axis self test: gyration trim within : ");
- pc.printf("%f", SelfTest[3]);
- pc.printf("% of factory value \n\r");
- pc.printf("y-axis self test: gyration trim within : ");
- pc.printf("%f", SelfTest[4]);
- pc.printf("% of factory value \n\r");
- pc.printf("z-axis self test: gyration trim within : ");
- pc.printf("%f", SelfTest[5]);
- pc.printf("% of factory value \n\r");
- wait(1);
-
- if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
- mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
- mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
- mpu6050.initMPU6050();
- pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-
- wait(2);
- } else {
- pc.printf("Device did not the pass self-test!\n\r");
-
- }
- } else {
- pc.printf("Could not connect to MPU6050: \n\r");
- pc.printf("%#x \n", whoami);
-
- while(1) ; // Loop forever if communication doesn't happen
- }
- gyro_tick.attach_us(&gyro_data,50000);
-
-
-
+ mpu6050.init();
while(1) {
- pc.printf("a{x,y,z}={%7.3f,%7.3f,%7.3f},T=%7.3f,g{x,y,z}={%7.3f,%7.3f,%7.3f},",ax,ay,az,temperature,gx,gy,gz);
- pc.printf("Yaw, Pitch, Roll: %9.4f %9.4f %9.4f", yaw, pitch, roll);
- pc.printf("beta=%5.3f,zeta=%5.3f,",beta,zeta);
- //pc.printf("ax=%5d,ay=%5d,az=%5d,temp=%5d,gx=%5d,gy=%5d,gz=%5d,",accelCount[0],accelCount[1],accelCount[2],tempCount,gyroCount[0],gyroCount[1],gyroCount[2]);
- pc.printf("\r\n");
- }
-
-}
-
-void gyro_data()
-{
+ //ジャイロから値取得
+ mpu6050.CalMPU6050();
+ double accel_x = mpu6050.GetAccelX();
+ double accel_y = mpu6050.GetAccelY();
+ double accel_z = mpu6050.GetAccelZ();
+ double omega_x = mpu6050.GetXRadPerSec();
+ double omega_y = mpu6050.GetYRadPerSec();
+ double omega_z = mpu6050.GetZRadPerSec();
+ //madgwickフィルターをかけ、yaw, pitch, rollを計算
+ filter.Update(accel_x, accel_y, accel_z, omega_x, omega_y, omega_z);
- // If data ready bit set, all data registers have new data
- if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
- mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
- mpu6050.getAres();
-
- // Now we'll calculate the accleration value into actual g's
- ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
- ay = (float)accelCount[1]*aRes - accelBias[1];
- az = (float)accelCount[2]*aRes - accelBias[2];
-
- mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
- mpu6050.getGres();
-
- // Calculate the gyro value into actual degrees per second
- gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
- gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
- gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
-
- tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
- temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
- }
-
- Now = t.read_us();
- deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
- lastUpdate = Now;
-
- sum += deltat;
- sumCount++;
-
- if(lastUpdate - firstUpdate > 10000000.0f) {
- beta = 0.04; // decrease filter gain after stabilized
- zeta = 0.015; // increasey bias drift gain after stabilized
+ printf("Yaw, Pitch, Roll[deg]: %9.4f %9.4f %9.4f\r\n",
+ filter.getYaw()*kRad2Deg, filter.getPitch()*kRad2Deg, filter.getRoll()*kRad2Deg);
}
-
- // Pass gyro rate as rad/s
- mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
-
- // Serial print and/or display at 0.5 s rate independent of data rates
- delt_t = t.read_ms() - count;
- if (delt_t > 1) { // update LCD once per half-second independent of read rate*/
-
-
-
-
- // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
- // In this coordinate system, the positive z-axis is down toward Earth.
- // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
- // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
- // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
- // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
- // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
- // applied in the correct order which for this configuration is yaw, pitch, and then roll.
- // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
- yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
- pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
- roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
- pitch *= 180.0f / PI;
- yaw *= 180.0f / PI;
- roll *= 180.0f / PI;
-
-// pc.printf("Yaw, Pitch, Roll: \n\r");
-// pc.printf("%f", yaw);
-// pc.printf(", ");
-// pc.printf("%f", pitch);
-// pc.printf(", ");
-// pc.printf("%f\n\r", roll);
-// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
-
- //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
- //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-
- myled= !myled;
- count = t.read_ms();
- sum = 0;
- sumCount = 0;
- }
-}
\ No newline at end of file
+}