TUKS MCU Introductory course / TUKS-COURSE-2-LED
Revision:
1:d0dfbce63a89
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/HAL_L476/stm32l4xx_hal_adc.c	Fri Feb 24 21:13:56 2017 +0000
@@ -0,0 +1,3000 @@
+/**
+  ******************************************************************************
+  * @file    stm32l4xx_hal_adc.c
+  * @author  MCD Application conversion
+  * @version V1.5.1
+  * @date    31-May-2016
+  * @brief   This file provides firmware functions to manage the following 
+  *          functionalities of the Analog to Digital Convertor (ADC)
+  *          peripheral:
+  *           + Initialization and de-initialization functions
+  *             ++ Configuration of ADC
+  *           + Operation functions
+  *             ++ Start, stop, get result of regular conversions of regular 
+  *                using 3 possible modes: polling, interruption or DMA.
+  *           + Control functions
+  *             ++ Analog Watchdog configuration
+  *             ++ Channels configuration on regular group
+  *           + State functions
+  *             ++ ADC state machine management
+  *             ++ Interrupts and flags management
+  *     
+   @verbatim      
+  ==============================================================================
+                    ##### ADC specific features #####
+  ==============================================================================
+  [..] 
+  (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution.
+
+  (#) Interrupt generation at the end of regular conversion and in case of 
+      analog watchdog and overrun events.
+  
+  (#) Single and continuous conversion modes.
+  
+  (#) Scan mode for automatic conversion of channel 0 to channel 'n'.
+  
+  (#) Data alignment with in-built data coherency.
+  
+  (#) Channel-wise programmable sampling time.
+
+  (#) External trigger (timer or EXTI) with configurable polarity for  
+      regular groups.
+
+  (#) DMA request generation for transfer of regular group converted data.
+  
+  (#) Configurable delay between conversions in Dual interleaved mode.
+
+  (#) ADC channels selectable single/differential input.
+
+  (#) ADC offset on regular groups.
+
+  (#) ADC supply requirements: 1.62 V to 3.6 V.
+  
+  (#) ADC input range: from Vref_ (connected to Vssa) to Vref+ (connected to 
+      Vdda or to an external voltage reference).
+      
+
+
+                     ##### How to use this driver #####
+  ==============================================================================
+    [..]
+
+    (#) Enable the ADC interface 
+        As prerequisite, in HAL_ADC_MspInit(), ADC clock source must be  
+        configured at RCC top level.
+
+        Two different clock sources are available:
+        (++) - the ADC clock can be a specific clock source, coming from the system 
+        clock, the PLLSAI1 or the PLLSAI2 running up to 80MHz.
+        (++) - or the ADC clock can be derived from the AHB clock of the ADC bus 
+       interface, divided by a programmable factor
+
+
+        (++) For example, in case of PLLSAI2:
+            (+++) __HAL_RCC_ADC_CLK_ENABLE();
+            (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
+            (+++) where
+              (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC
+              (+++) PeriphClkInit.AdcClockSelection    = RCC_ADCCLKSOURCE_PLLSAI2
+
+                      
+    (#) ADC pins configuration
+         (++) Enable the clock for the ADC GPIOs using the following function:
+             __HAL_RCC_GPIOx_CLK_ENABLE();   
+         (++) Configure these ADC pins in analog mode using HAL_GPIO_Init();  
+  
+    (#) Configure the ADC parameters (conversion resolution, data alignment,  
+         continuous mode, ...) using the HAL_ADC_Init() function.
+         
+    (#) Optionally, perform an automatic ADC calibration to improve the
+        conversion accuracy using function HAL_ADCEx_Calibration_Start().
+
+    (#) Activate the ADC peripheral using one of the start functions: 
+        HAL_ADC_Start(), HAL_ADC_Start_IT(), HAL_ADC_Start_DMA(),
+        HAL_ADCEx_InjectedStart(), HAL_ADCEx_InjectedStart_IT() or 
+        HAL_ADCEx_MultiModeStart_DMA() when multimode feature is available.
+  
+   *** Channels to regular group configuration ***
+     ============================================
+     [..]    
+       (+) To configure the ADC regular group features, use 
+           HAL_ADC_Init() and HAL_ADC_ConfigChannel() functions.
+       (+) To activate the continuous mode, use the HAL_ADC_Init() function.   
+       (+) To read the ADC converted values, use the HAL_ADC_GetValue() function.
+  
+     *** DMA for regular configuration ***
+     ============================================================= 
+     [..]
+       (+) To enable the DMA mode for regular group, use the  
+           HAL_ADC_Start_DMA() function.
+       (+) To enable the generation of DMA requests continuously at the end of 
+           the last DMA transfer, resort to DMAContinuousRequests parameter of 
+           ADC handle initialization structure.
+  
+
+  
+    @endverbatim
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************  
+  */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l4xx_hal.h"
+
+/** @addtogroup STM32L4xx_HAL_Driver
+  * @{
+  */
+
+/** @defgroup ADC ADC
+  * @brief ADC HAL module driver
+  * @{
+  */ 
+
+#ifdef HAL_ADC_MODULE_ENABLED
+    
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/** @defgroup ADC_Private_Constants ADC Private Constants
+  * @{                                                         
+  */
+  
+#define ADC_CFGR_FIELDS_1  ((uint32_t)(ADC_CFGR_RES    | ADC_CFGR_ALIGN   |\
+                                       ADC_CFGR_CONT   | ADC_CFGR_OVRMOD  |\
+                                       ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\
+                                       ADC_CFGR_EXTEN  | ADC_CFGR_EXTSEL))   /*!< ADC_CFGR fields of parameters that can be updated 
+                                                                                  when no regular conversion is on-going */
+                                      
+#define ADC_CFGR2_FIELDS  ((uint32_t)(ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR  |\
+                                       ADC_CFGR2_OVSS | ADC_CFGR2_TROVS |\
+                                       ADC_CFGR2_ROVSM))                     /*!< ADC_CFGR2 fields of parameters that can be updated when no conversion
+                                                                                 (neither regular nor injected) is on-going  */
+
+#define ADC_CFGR_WD_FIELDS  ((uint32_t)(ADC_CFGR_AWD1SGL | ADC_CFGR_JAWD1EN | \
+                                        ADC_CFGR_AWD1EN | ADC_CFGR_AWD1CH))  /*!< ADC_CFGR fields of Analog Watchdog parameters that can be updated when no
+                                                                                  conversion (neither regular nor injected) is on-going  */
+  
+#define ADC_OFR_FIELDS  ((uint32_t)(ADC_OFR1_OFFSET1 | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1_EN)) /*!< ADC_OFR fields of parameters that can be updated when no conversion
+                                                                                                        (neither regular nor injected) is on-going */
+
+
+  
+/* Delay to wait before setting ADEN once ADCAL has been reset
+   must be at least 4 ADC clock cycles.
+   Assuming lowest ADC clock (140 KHz according to DS), this
+   4 ADC clock cycles duration is equal to
+   4 / 140,000 = 0.028 ms.
+   ADC_ENABLE_TIMEOUT set to 2 is a margin large enough to ensure
+   the 4 ADC clock cycles have elapsed while waiting for ADRDY
+   to become 1 */        
+  #define ADC_ENABLE_TIMEOUT              ((uint32_t)  2)    /*!< ADC enable time-out value  */
+  #define ADC_DISABLE_TIMEOUT             ((uint32_t)  2)    /*!< ADC disable time-out value */
+   
+    
+                                                                            
+/* Delay for ADC voltage regulator startup time                               */
+/*  Maximum delay is 10 microseconds                                          */
+/* (refer device RM, parameter Tadcvreg_stup).                                */
+#define ADC_STAB_DELAY_US               ((uint32_t) 10)     /*!< ADC voltage regulator startup time */
+  
+  
+/* Timeout to wait for current conversion on going to be completed.           */
+/* Timeout fixed to worst case, for 1 channel.                                */
+/*   - maximum sampling time (640.5 adc_clk)                                  */
+/*   - ADC resolution (Tsar 12 bits= 12.5 adc_clk)                            */
+/*   - ADC clock with prescaler 256                                           */
+/*     653 * 256 = 167168 clock cycles max                                    */
+/* Unit: cycles of CPU clock.                                                 */
+#define ADC_CONVERSION_TIME_MAX_CPU_CYCLES ((uint32_t) 167168)  /*!< ADC conversion completion time-out value */
+  
+  
+
+  
+/**
+  * @}
+  */  
+  
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup ADC_Exported_Functions ADC Exported Functions
+  * @{
+  */ 
+
+/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions
+ *  @brief    Initialization and Configuration functions 
+ *
+@verbatim    
+ ===============================================================================
+              ##### Initialization and de-initialization functions #####
+ ===============================================================================
+    [..]  This section provides functions allowing to:
+      (+) Initialize and configure the ADC. 
+      (+) De-initialize the ADC. 
+         
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Initialize the ADC peripheral and regular group according to  
+  *         parameters specified in structure "ADC_InitTypeDef".
+  * @note   As prerequisite, ADC clock must be configured at RCC top level
+  *         depending on possible clock sources: System/PLLSAI1/PLLSAI2 clocks 
+  *         or AHB clock.
+  * @note   Possibility to update parameters on the fly:
+  *         this function initializes the ADC MSP (HAL_ADC_MspInit()) only when
+  *         coming from ADC state reset. Following calls to this function can
+  *         be used to reconfigure some parameters of ADC_InitTypeDef  
+  *         structure on the fly, without modifying MSP configuration. If ADC  
+  *         MSP has to be modified again, HAL_ADC_DeInit() must be called
+  *         before HAL_ADC_Init().
+  *         The setting of these parameters is conditioned by ADC state.
+  *         For parameters constraints, see comments of structure 
+  *         "ADC_InitTypeDef".
+  * @note   This function configures the ADC within 2 scopes: scope of entire 
+  *         ADC and scope of regular group. For parameters details, see comments 
+  *         of structure "ADC_InitTypeDef".
+  * @note   Parameters related to common ADC registers (ADC clock mode) are set 
+  *         only if all ADCs are disabled.
+  *         If this is not the case, these common parameters setting are  
+  *         bypassed without error reporting: it can be the intended behaviour in
+  *         case of update of a parameter of ADC_InitTypeDef on the fly,
+  *         without  disabling the other ADCs.
+  * @param  hadc: ADC handle
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
+{
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+
+  ADC_Common_TypeDef *tmpADC_Common;
+  uint32_t tmpCFGR = 0;
+  __IO uint32_t wait_loop_index = 0;
+  
+  /* Check ADC handle */
+  if(hadc == NULL)
+  {
+    return HAL_ERROR;
+  }
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); 
+  assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
+  assert_param(IS_ADC_DFSDMCFG_MODE(hadc));  
+  assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); 
+  assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+  assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
+  assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
+  assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
+  assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode));
+  
+  if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
+  {
+    assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
+    assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
+    
+    if (hadc->Init.DiscontinuousConvMode == ENABLE)
+    { 
+      assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
+    }
+  }
+
+  
+  /* DISCEN and CONT bits can't be set at the same time */
+  assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE)));
+ 
+  
+  /* Actions performed only if ADC is coming from state reset:                */
+  /* - Initialization of ADC MSP                                              */
+  if (hadc->State == HAL_ADC_STATE_RESET)
+  {
+    /* Init the low level hardware */
+    HAL_ADC_MspInit(hadc);
+    
+    /* Set ADC error code to none */
+    ADC_CLEAR_ERRORCODE(hadc);
+    
+    /* Initialize Lock */
+    hadc->Lock = HAL_UNLOCKED;
+  }
+    
+    
+  /* - Exit from deep-power-down mode and ADC voltage regulator enable        */    
+  /*  Exit deep power down mode if still in that state */
+  if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_DEEPPWD))
+  {
+    /* Exit deep power down mode */ 
+    CLEAR_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD);
+    
+    /* System was in deep power down mode, calibration must
+     be relaunched or a previously saved calibration factor 
+     re-applied once the ADC voltage regulator is enabled */    
+  }
+  
+
+  if  (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN))
+  {  
+    /* Enable ADC internal voltage regulator */
+    SET_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN);
+    
+    /* Delay for ADC stabilization time */
+    /* Wait loop initialization and execution */
+    /* Note: Variable divided by 2 to compensate partially                    */
+    /*       CPU processing cycles.                                           */
+    wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / (1000000 * 2)));
+    while(wait_loop_index != 0)
+    {
+      wait_loop_index--;
+    }
+  }
+
+
+ 
+  
+  /* Verification that ADC voltage regulator is correctly enabled, whether    */
+  /* or not ADC is coming from state reset (if any potential problem of       */
+  /* clocking, voltage regulator would not be enabled).                       */
+  if (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN))  
+  {
+    /* Update ADC state machine to error */
+    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+    
+    /* Set ADC error code to ADC IP internal error */
+    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+    
+    tmp_status = HAL_ERROR;
+  }
+ 
+
+  /* Configuration of ADC parameters if previous preliminary actions are      */ 
+  /* correctly completed and if there is no conversion on going on regular    */
+  /* group (ADC may already be enabled at this point if HAL_ADC_Init() is     */
+  /* called to update a parameter on the fly).                                */
+  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) &&
+      (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)  )
+  {
+    
+    /* Initialize the ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
+    
+    /* Configuration of common ADC parameters                                 */
+    
+    /* Pointer to the common control register                                 */
+    tmpADC_Common = ADC_COMMON_REGISTER(hadc);
+    
+  
+    /* Parameters update conditioned to ADC state:                            */
+    /* Parameters that can be updated only when ADC is disabled:              */
+    /*  - clock configuration                                                 */
+    if ((ADC_IS_ENABLE(hadc) == RESET)   &&
+         (ADC_ANY_OTHER_ENABLED(hadc) == RESET) )         
+    {
+      /* Reset configuration of ADC common register CCR:                      */
+      /*                                                                      */
+      /*   - ADC clock mode and ACC prescaler (CKMODE and PRESC bits)are set  */
+      /*     according to adc->Init.ClockPrescaler. It selects the clock      */
+      /*    source and sets the clock division factor.                        */
+      /*                                                                      */
+      /* Some parameters of this register are not reset, since they are set   */
+      /* by other functions and must be kept in case of usage of this         */
+      /* function on the fly (update of a parameter of ADC_InitTypeDef        */
+      /* without needing to reconfigure all other ADC groups/channels         */
+      /* parameters):                                                         */
+      /*   - when multimode feature is available, multimode-related           */
+      /*     parameters: MDMA, DMACFG, DELAY, DUAL (set by API                */
+      /*     HAL_ADCEx_MultiModeConfigChannel() )                             */
+      /*   - internal measurement paths: Vbat, temperature sensor, Vref       */
+      /*     (set into HAL_ADC_ConfigChannel() or                             */
+      /*     HAL_ADCEx_InjectedConfigChannel() )                              */
+           
+      MODIFY_REG(tmpADC_Common->CCR, ADC_CCR_PRESC|ADC_CCR_CKMODE, hadc->Init.ClockPrescaler);
+    }
+      
+      
+    /* Configuration of ADC:                                                  */
+    /*  - resolution                               Init.Resolution            */
+    /*  - data alignment                           Init.DataAlign             */
+    /*  - external trigger to start conversion     Init.ExternalTrigConv      */
+    /*  - external trigger polarity                Init.ExternalTrigConvEdge  */
+    /*  - continuous conversion mode               Init.ContinuousConvMode    */
+    /*  - overrun                                  Init.Overrun               */
+    /*  - discontinuous mode                       Init.DiscontinuousConvMode */
+    /*  - discontinuous mode channel count         Init.NbrOfDiscConversion   */    
+    tmpCFGR  = ( ADC_CFGR_CONTINUOUS(hadc->Init.ContinuousConvMode)          |
+                 hadc->Init.Overrun                                          |
+                 hadc->Init.DataAlign                                        |
+                 hadc->Init.Resolution                                       |
+                ADC_CFGR_REG_DISCONTINUOUS(hadc->Init.DiscontinuousConvMode) |
+                ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion) );
+      
+    /* Enable external trigger if trigger selection is different of software  */
+    /* start.                                                                 */
+    /*  - external trigger to start conversion     Init.ExternalTrigConv      */
+    /*  - external trigger polarity                Init.ExternalTrigConvEdge  */    
+    /* Note:  parameter ExternalTrigConvEdge set to "trigger edge none" is    */
+    /*        equivalent to software start.                                   */
+    if ((hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
+    &&  (hadc->Init.ExternalTrigConvEdge != ADC_EXTERNALTRIGCONVEDGE_NONE))
+    {
+      tmpCFGR |= ( hadc->Init.ExternalTrigConv |  hadc->Init.ExternalTrigConvEdge);
+    }
+    
+     /* Update Configuration Register CFGR */
+     MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR); 
+     
+
+    /* Parameters update conditioned to ADC state:                            */
+    /* Parameters that can be updated when ADC is disabled or enabled without */
+    /* conversion on going on regular and injected groups:                    */
+    /*  - DMA continuous request          Init.DMAContinuousRequests          */
+    /*  - LowPowerAutoWait feature        Init.LowPowerAutoWait               */
+    /*  - Oversampling parameters         Init.Oversampling                     */    
+    if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET)
+    {
+      tmpCFGR = ( ADC_CFGR_DFSDM(hadc)                                 |
+                  ADC_CFGR_AUTOWAIT(hadc->Init.LowPowerAutoWait)       |
+                  ADC_CFGR_DMACONTREQ(hadc->Init.DMAContinuousRequests) );
+               
+      MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_2, tmpCFGR);                    
+    
+ 
+      if (hadc->Init.OversamplingMode == ENABLE)
+      {
+        assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio));
+        assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift));
+        assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode));
+        assert_param(IS_ADC_REGOVERSAMPLING_MODE(hadc->Init.Oversampling.OversamplingStopReset));
+        
+        if ((hadc->Init.ExternalTrigConv == ADC_SOFTWARE_START)
+        ||  (hadc->Init.ExternalTrigConvEdge == ADC_EXTERNALTRIGCONVEDGE_NONE))
+        {
+            /* Multi trigger is not applicable to software-triggered conversions */
+            assert_param((hadc->Init.Oversampling.TriggeredMode == ADC_TRIGGEREDMODE_SINGLE_TRIGGER));
+        }    
+    
+    
+       /* Configuration of Oversampler:                                       */
+       /*  - Oversampling Ratio                                               */
+       /*  - Right bit shift                                                  */
+       /*  - Triggered mode                                                   */
+       /*  - Oversampling mode (continued/resumed)                            */    
+       MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS, 
+                               ADC_CFGR2_ROVSE                     | 
+                               hadc->Init.Oversampling.Ratio         |
+                               hadc->Init.Oversampling.RightBitShift |
+                               hadc->Init.Oversampling.TriggeredMode |
+                               hadc->Init.Oversampling.OversamplingStopReset);
+      }  
+      else
+      {
+        /* Disable Regular OverSampling */
+        CLEAR_BIT( hadc->Instance->CFGR2, ADC_CFGR2_ROVSE);
+      }    
+ 
+    
+    }   /*  if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET) */
+    
+
+    
+    
+    /* Configuration of regular group sequencer:                              */
+    /* - if scan mode is disabled, regular channels sequence length is set to */
+    /*   0x00: 1 channel converted (channel on regular rank 1)                */
+    /*   Parameter "NbrOfConversion" is discarded.                            */
+    /*   Note: Scan mode is not present by hardware on this device, but       */
+    /*   emulated by software for alignment over all STM32 devices.           */
+    /* - if scan mode is enabled, regular channels sequence length is set to  */
+    /*   parameter "NbrOfConversion"                                          */
+
+    if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE)
+    {
+      /* Set number of ranks in regular group sequencer */     
+      MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, (hadc->Init.NbrOfConversion - (uint8_t)1));  
+    } 
+    else
+    {
+      CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L);
+    }
+    
+    
+    /* Initialize the ADC state */
+    /* Clear HAL_ADC_STATE_BUSY_INTERNAL bit, set HAL_ADC_STATE_READY bit */
+    ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY);
+  }
+  else
+  {
+    /* Update ADC state machine to error */
+    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+        
+    tmp_status = HAL_ERROR;
+  }  /*  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)  && (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)  ) */
+  
+  
+  /* Return function status */
+  return tmp_status;
+
+}
+
+/**
+  * @brief  Deinitialize the ADC peripheral registers to their default reset
+  *         values, with deinitialization of the ADC MSP.           
+  * @note   Keep in mind that all ADCs use the same clock: disabling
+  *         the clock will reset all ADCs.
+  * @note   By default, HAL_ADC_DeInit() sets DEEPPWD: this saves more power by
+  *         reducing the leakage currents and is particularly interesting before
+  *         entering STOP 1 or STOP 2 modes.         
+  * @param  hadc: ADC handle
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
+{  
+  /* Check ADC handle */
+  if(hadc == NULL)
+  {
+     return HAL_ERROR;
+  }
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Change ADC state */
+  SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
+  
+  /* Stop potential conversion on going, on regular and injected groups */
+  /* No check on ADC_ConversionStop() return status, if the conversion
+    stop failed, it is up to HAL_ADC_MspDeInit() to reset the ADC IP */
+  ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
+
+  
+  /* Disable ADC peripheral if conversions are effectively stopped            */
+  /* Flush register JSQR: reset the queue sequencer when injected             */
+  /* queue sequencer is enabled and ADC disabled.                             */
+  /* The software and hardware triggers of the injected sequence are both     */
+  /* internally disabled just after the completion of the last valid          */
+  /* injected sequence.                                                       */
+  SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM);
+    
+  /* Disable the ADC peripheral */
+  /* No check on ADC_Disable() return status, if the ADC disabling process
+    failed, it is up to HAL_ADC_MspDeInit() to reset the ADC IP */  
+  ADC_Disable(hadc);
+
+
+  /* ========== Reset ADC registers ========== */
+  /* Reset register IER */
+  __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3  | ADC_IT_AWD2 | ADC_IT_AWD1 |
+                              ADC_IT_JQOVF | ADC_IT_OVR  |
+                              ADC_IT_JEOS  | ADC_IT_JEOC |
+                              ADC_IT_EOS   | ADC_IT_EOC  |
+                              ADC_IT_EOSMP | ADC_IT_RDY                 ) );
+      
+  /* Reset register ISR */
+  __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3  | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 |
+                              ADC_FLAG_JQOVF | ADC_FLAG_OVR  |
+                              ADC_FLAG_JEOS  | ADC_FLAG_JEOC |
+                              ADC_FLAG_EOS   | ADC_FLAG_EOC  |
+                              ADC_FLAG_EOSMP | ADC_FLAG_RDY                   ) );
+  
+  /* Reset register CR */
+ /* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART, 
+    ADC_CR_ADCAL, ADC_CR_ADDIS and ADC_CR_ADEN are in access mode "read-set": 
+    no direct reset applicable. 
+    Update CR register to reset value where doable by software */
+  CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF);
+  SET_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD);    
+      
+  /* Reset register CFGR */
+  CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_FIELDS);
+  SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS);  
+  
+  /* Reset register CFGR2 */
+  CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSM  | ADC_CFGR2_TROVS   | ADC_CFGR2_OVSS |   
+                                  ADC_CFGR2_OVSR  | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE    );                                 
+  
+  /* Reset register SMPR1 */
+  CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_FIELDS);                                 
+  
+  /* Reset register SMPR2 */
+  CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 | 
+                             ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 | 
+                             ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10    );                                 
+  
+  /* Reset register TR1 */
+  CLEAR_BIT(hadc->Instance->TR1, ADC_TR1_HT1 | ADC_TR1_LT1);
+  
+  /* Reset register TR2 */
+  CLEAR_BIT(hadc->Instance->TR2, ADC_TR2_HT2 | ADC_TR2_LT2);    
+  
+  /* Reset register TR3 */
+  CLEAR_BIT(hadc->Instance->TR3, ADC_TR3_HT3 | ADC_TR3_LT3);      
+  
+  /* Reset register SQR1 */
+  CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 | 
+                            ADC_SQR1_SQ1 | ADC_SQR1_L);                              
+  
+  /* Reset register SQR2 */
+  CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 | 
+                            ADC_SQR2_SQ6 | ADC_SQR2_SQ5);                                
+  
+  /* Reset register SQR3 */
+  CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 | 
+                            ADC_SQR3_SQ11 | ADC_SQR3_SQ10);                                 
+  
+  /* Reset register SQR4 */
+  CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15); 
+  
+  /* Register JSQR was reset when the ADC was disabled */
+  
+  /* Reset register DR */
+  /* bits in access mode read only, no direct reset applicable*/
+    
+  /* Reset register OFR1 */
+  CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_OFFSET1_EN | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1); 
+  /* Reset register OFR2 */
+  CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_OFFSET2_EN | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2); 
+  /* Reset register OFR3 */
+  CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_OFFSET3_EN | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3); 
+  /* Reset register OFR4 */
+  CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_OFFSET4_EN | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4);
+  
+  /* Reset registers JDR1, JDR2, JDR3, JDR4 */
+  /* bits in access mode read only, no direct reset applicable*/
+  
+  /* Reset register AWD2CR */
+  CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH);
+  
+  /* Reset register AWD3CR */
+  CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH);
+  
+  /* Reset register DIFSEL */
+  CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL);
+  
+  /* Reset register CALFACT */
+  CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
+
+  
+  
+  
+  
+  
+  /* ========== Reset common ADC registers ========== */
+        
+  /* Software is allowed to change common parameters only when all the other
+     ADCs are disabled.   */
+  if ((ADC_IS_ENABLE(hadc) == RESET)   &&
+       (ADC_ANY_OTHER_ENABLED(hadc) == RESET) )
+  {
+    /* Reset configuration of ADC common register CCR:
+      - clock mode: CKMODE, PRESCEN
+      - multimode related parameters (when this feature is available): MDMA, 
+        DMACFG, DELAY, DUAL (set by HAL_ADCEx_MultiModeConfigChannel() API)
+      - internal measurement paths: Vbat, temperature sensor, Vref (set into
+        HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() )
+    */
+    ADC_CLEAR_COMMON_CONTROL_REGISTER(hadc);
+  }
+
+  /* DeInit the low level hardware. 
+  
+     For example:
+    __HAL_RCC_ADC_FORCE_RESET();
+    __HAL_RCC_ADC_RELEASE_RESET();
+    __HAL_RCC_ADC_CLK_DISABLE();
+    
+    Keep in mind that all ADCs use the same clock: disabling
+    the clock will reset all ADCs. 
+    
+  */ 
+  HAL_ADC_MspDeInit(hadc);
+    
+  /* Set ADC error code to none */
+  ADC_CLEAR_ERRORCODE(hadc);
+    
+  /* Reset injected channel configuration parameters */
+  hadc->InjectionConfig.ContextQueue = 0;
+  hadc->InjectionConfig.ChannelCount = 0; 
+    
+  /* Change ADC state */
+  hadc->State = HAL_ADC_STATE_RESET;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+
+  
+  /* Return function status */
+  return HAL_OK;
+
+}
+    
+/**
+  * @brief  Initialize the ADC MSP.
+  * @param  hadc: ADC handle
+  * @retval None
+  */
+__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+
+  /* NOTE : This function should not be modified. When the callback is needed,
+            function HAL_ADC_MspInit must be implemented in the user file.
+   */ 
+}
+
+/**
+  * @brief  DeInitialize the ADC MSP.
+  * @param  hadc: ADC handle
+  * @note   All ADCs use the same clock: disabling the clock will reset all ADCs.  
+  * @retval None
+  */
+__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+
+  /* NOTE : This function should not be modified. When the callback is needed,
+            function HAL_ADC_MspDeInit must be implemented in the user file.
+   */ 
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup ADC_Exported_Functions_Group2 Input and Output operation functions
+ *  @brief    IO operation functions 
+ *
+@verbatim   
+ ===============================================================================
+             ##### IO operation functions #####
+ ===============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) Start conversion of regular group.
+      (+) Stop conversion of regular group.
+      (+) Poll for conversion complete on regular group.
+      (+) Poll for conversion event.
+      (+) Get result of regular channel conversion.
+      (+) Start conversion of regular group and enable interruptions.
+      (+) Stop conversion of regular group and disable interruptions.
+      (+) Handle ADC interrupt request
+      (+) Start conversion of regular group and enable DMA transfer.
+      (+) Stop conversion of regular group and disable ADC DMA transfer.
+               
+@endverbatim
+  * @{
+  */
+  
+/**
+  * @brief  Enable ADC, start conversion of regular group.
+  * @note   Interruptions enabled in this function: None.
+  * @note   Case of multimode enabled (when multimode feature is available): 
+  *           if ADC is Slave, ADC is enabled but conversion is not started, 
+  *           if ADC is master, ADC is enabled and multimode conversion is started.
+  * @param  hadc: ADC handle
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
+{
+  ADC_TypeDef        *tmpADC_Master;
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+   
+  
+  /* if a regular conversion is already on-going (i.e. ADSTART is set),
+     don't restart the conversion. */
+  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc))
+  {
+    return HAL_BUSY;
+  }
+  else
+  {
+    /* Process locked */
+    __HAL_LOCK(hadc);
+    
+    /* Enable the ADC peripheral */
+    tmp_status = ADC_Enable(hadc);
+  
+    /* Start conversion if ADC is effectively enabled */
+    if (tmp_status == HAL_OK)
+    {
+      /* State machine update: Check if an injected conversion is ongoing */
+      if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+      {
+        /* Reset ADC error code fields related to regular conversions only */
+        CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR|HAL_ADC_ERROR_DMA));         
+      }
+      else
+      {  
+        /* Set ADC error code to none */
+        ADC_CLEAR_ERRORCODE(hadc); 
+      }
+      /* Clear HAL_ADC_STATE_READY and regular conversion results bits, set HAL_ADC_STATE_REG_BUSY bit */
+      ADC_STATE_CLR_SET(hadc->State, (HAL_ADC_STATE_READY|HAL_ADC_STATE_REG_EOC|HAL_ADC_STATE_REG_OVR|HAL_ADC_STATE_REG_EOSMP), HAL_ADC_STATE_REG_BUSY);
+
+      /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
+        - by default if ADC is Master or Independent or if multimode feature is not available
+        - if multimode setting is set to independent mode (no dual regular or injected conversions are configured) */
+      if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
+      {
+        CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+      }
+    
+      /* Clear regular group conversion flag and overrun flag                   */
+      /* (To ensure of no unknown state from potential previous ADC operations) */
+      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
+    
+      /* Enable conversion of regular group.                                  */
+      /* If software start has been selected, conversion starts immediately.  */
+      /* If external trigger has been selected, conversion starts at next     */
+      /* trigger event.                                                       */
+      /* Case of multimode enabled (when multimode feature is available):     */ 
+      /*  - if ADC is slave and dual regular conversions are enabled, ADC is  */
+      /*    enabled only (conversion is not started),                         */
+      /*  - if ADC is master, ADC is enabled and conversion is started.       */
+      if (ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(hadc))
+      {
+        /* Multimode feature is not available or ADC Instance is Independent or Master, 
+           or is not Slave ADC with dual regular conversions enabled. 
+           Then, set HAL_ADC_STATE_INJ_BUSY bit and reset HAL_ADC_STATE_INJ_EOC bit if JAUTO is set. */
+        if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != RESET)
+        {
+          ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
+        }
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);
+        /* Start ADC */
+        SET_BIT(hadc->Instance->CR, ADC_CR_ADSTART);
+      }
+      else
+      {
+        SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+        /* if Master ADC JAUTO bit is set, update Slave State in setting 
+           HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */
+        tmpADC_Master = ADC_MASTER_REGISTER(hadc); 
+        if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != RESET)
+        {
+          ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+           
+        }  /* if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != RESET) */
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);      
+      } /* if (ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(hadc)) */
+    }
+    else
+    {
+      /* Process unlocked */
+      __HAL_UNLOCK(hadc);    
+    }    
+  
+  /* Return function status */
+  return tmp_status;
+  }
+}
+
+/**  
+  * @brief  Stop ADC conversion of regular and injected groups, disable ADC peripheral.
+  * @param  hadc: ADC handle
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
+{ 
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* 1. Stop potential regular and injected on-going conversions */
+  tmp_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
+  
+  /* Disable ADC peripheral if conversions are effectively stopped */
+  if (tmp_status == HAL_OK)
+  {
+    /* 2. Disable the ADC peripheral */
+    tmp_status = ADC_Disable(hadc);
+    
+    /* Check if ADC is effectively disabled */
+    if (tmp_status == HAL_OK)
+    {
+      /* Change ADC state */
+      /* Clear HAL_ADC_STATE_REG_BUSY and HAL_ADC_STATE_INJ_BUSY bits, set HAL_ADC_STATE_READY bit */
+      ADC_STATE_CLR_SET(hadc->State, (HAL_ADC_STATE_REG_BUSY|HAL_ADC_STATE_INJ_BUSY), HAL_ADC_STATE_READY);
+    }
+  }
+
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return tmp_status;
+}
+
+
+
+/**
+  * @brief  Wait for regular group conversion to be completed.
+  * @param  hadc: ADC handle
+  * @param  Timeout: Timeout value in millisecond.
+  * @note   Depending on hadc->Init.EOCSelection, EOS or EOC is 
+  *         checked and cleared depending on AUTDLY bit status. 
+  * @note   HAL_ADC_PollForConversion() returns HAL_ERROR if EOC is polled in a
+  *         DMA-managed conversions configuration: indeed, EOC is immediately 
+  *         reset by the DMA reading the DR register when the converted data is
+  *         available. Therefore, EOC is set for a too short period to be 
+  *         reliably polled.                    
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
+{
+  uint32_t           tickstart;
+  uint32_t           tmp_Flag_End   = 0x00;
+  ADC_TypeDef        *tmpADC_Master;
+  uint32_t           tmp_cfgr       = 0x00;
+  uint32_t           tmp_eos_raised = 0x01; /* by default, assume that EOS is set, 
+                                               tmp_eos_raised will be corrected
+                                               accordingly during API execution */ 
+ 
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+  /* If end of sequence selected */
+  if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
+  {
+    tmp_Flag_End = ADC_FLAG_EOS;
+  }
+  else /* end of conversion selected */
+  {
+    /* Check that the ADC is not in a DMA-based configuration. Otherwise,
+       returns an error.  */
+       
+    /* Check whether dual regular conversions are disabled or unavailable. */
+    if (ADC_IS_DUAL_REGULAR_CONVERSION_ENABLE(hadc) == RESET)  
+    {
+      /* Check DMAEN bit in handle ADC CFGR register */
+      if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN) != RESET)
+      {
+        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+        return HAL_ERROR;
+      } 
+    }
+    else
+    {
+      /* Else need to check Common register CCR MDMA bit field. */
+      if (ADC_MULTIMODE_DMA_ENABLED())
+      {
+        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); 
+        return HAL_ERROR;          
+      }
+    }  
+    
+    /* no DMA transfer detected, polling ADC_FLAG_EOC is possible */         
+    tmp_Flag_End = ADC_FLAG_EOC;
+  }
+    
+  /* Get timeout */
+  tickstart = HAL_GetTick();  
+     
+  /* Wait until End of Conversion or Sequence flag is raised */
+  while (HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_End))
+  {
+    /* Check if timeout is disabled (set to infinite wait) */
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
+      { 
+        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);       
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+  
+  /* Next, to clear the polled flag as well as to update the handle State,
+     EOS is checked and the relevant configuration register is retrieved. */
+  /*   1. Check whether or not EOS is set */
+  if (HAL_IS_BIT_CLR(hadc->Instance->ISR, ADC_FLAG_EOS))
+  {
+    tmp_eos_raised = 0;   
+  }
+  /*  2. Check whether or not hadc is the handle of a Slave ADC with dual
+   regular conversions enabled. */
+   if (ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(hadc)) 
+  {
+    /* Retrieve handle ADC CFGR register */
+    tmp_cfgr = READ_REG(hadc->Instance->CFGR);  
+  }
+  else
+  {
+    /* Retrieve Master ADC CFGR register */
+    tmpADC_Master = ADC_MASTER_REGISTER(hadc);
+    tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
+  }        
+
+  /* Clear polled flag */                         
+  if (tmp_Flag_End == ADC_FLAG_EOS)
+  {
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS);  
+  }
+  else
+  {               
+
+    /* Clear end of conversion EOC flag of regular group if low power feature */
+    /* "LowPowerAutoWait " is disabled, to not interfere with this feature    */
+    /* until data register is read using function HAL_ADC_GetValue().         */
+    /* For regular groups, no new conversion will start before EOC is cleared.*/
+    /* Note that 1. reading DR clears EOC.                                    */ 
+    /*           2. in multimode with dual regular conversions enabled (when  */
+    /*              multimode feature is available), Master AUTDLY bit is     */
+    /*              checked.                                                  */
+    if (READ_BIT (tmp_cfgr, ADC_CFGR_AUTDLY) == RESET)
+    {
+      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
+    }
+  }
+
+  
+  /* Update ADC state machine */
+  SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+  /* If 1. EOS is set
+        2. conversions are software-triggered
+        3. CONT bit is reset (that of handle ADC or Master ADC if applicable)          
+     Then regular conversions are over and HAL_ADC_STATE_REG_BUSY can be reset.
+        4. additionally, if no injected conversions are on-going, HAL_ADC_STATE_READY
+          can be set */
+  if ((tmp_eos_raised)
+   && (ADC_IS_SOFTWARE_START_REGULAR(hadc))
+   && (READ_BIT (tmp_cfgr, ADC_CFGR_CONT) == RESET))
+   {
+     CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);   
+     /* If no injected conversion on-going, set HAL_ADC_STATE_READY bit */
+     if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+     { 
+       SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+     }
+   }                       
+
+  
+  /* Return API HAL status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Poll for ADC event.
+  * @param  hadc: ADC handle
+  * @param  EventType: the ADC event type.
+  *          This parameter can be one of the following values:
+  *            @arg @ref ADC_EOSMP_EVENT  ADC End of Sampling event            
+  *            @arg @ref ADC_AWD_EVENT    ADC Analog watchdog 1 event
+  *            @arg @ref ADC_AWD2_EVENT   ADC Analog watchdog 2 event
+  *            @arg @ref ADC_AWD3_EVENT   ADC Analog watchdog 3 event
+  *            @arg @ref ADC_OVR_EVENT    ADC Overrun event
+  *            @arg @ref ADC_JQOVF_EVENT  ADC Injected context queue overflow event
+  * @param  Timeout: Timeout value in millisecond.
+  * @note   The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR.
+  *         Indeed, the latter is reset only if hadc->Init.Overrun field is set  
+  *         to ADC_OVR_DATA_OVERWRITTEN. Otherwise, DR may be potentially overwritten 
+  *         by a new converted data as soon as OVR is cleared.
+  *         To reset OVR flag once the preserved data is retrieved, the user can resort
+  *         to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
+{
+  uint32_t tickstart; 
+
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  assert_param(IS_ADC_EVENT_TYPE(EventType));
+  
+  tickstart = HAL_GetTick();   
+      
+  /* Check selected event flag */
+  while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
+  {
+    /* Check if timeout is disabled (set to infinite wait) */
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
+      {
+        /* Update ADC state machine to timeout */
+        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+        
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);
+        
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+
+  
+  switch(EventType)
+  {
+  /* End Of Sampling event */
+  case ADC_EOSMP_EVENT:
+    /* Change ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
+     
+    /* Clear the End Of Sampling flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);
+       
+    break;  
+  
+  /* Analog watchdog (level out of window) event                              */
+  /* Note: In case of several analog watchdog enabled, if needed to know      */
+  /* which one triggered and on which ADCx, test ADC state of Analog Watchdog */
+  /* flags HAL_ADC_STATE_AWD/2/3 function.                                    */
+  /* For example: "if (HAL_ADC_GetState(hadc1) == HAL_ADC_STATE_AWD) "        */
+  /*              "if (HAL_ADC_GetState(hadc1) == HAL_ADC_STATE_AWD2)"        */
+  /*              "if (HAL_ADC_GetState(hadc1) == HAL_ADC_STATE_AWD3)"        */
+  case ADC_AWD_EVENT:
+    /* Change ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+     
+    /* Clear ADC analog watchdog flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
+       
+    break;
+  
+  /* Check analog watchdog 2 flag */
+  case ADC_AWD2_EVENT:
+    /* Change ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
+      
+    /* Clear ADC analog watchdog flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
+      
+    break;
+  
+  /* Check analog watchdog 3 flag */
+  case ADC_AWD3_EVENT:
+    /* Change ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
+      
+    /* Clear ADC analog watchdog flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
+      
+    break;
+  
+  /* Injected context queue overflow event */
+  case ADC_JQOVF_EVENT:
+    /* Change ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
+      
+    /* Set ADC error code to Injected context queue overflow */
+    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
+    
+    /* Clear ADC Injected context queue overflow flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
+    
+    break;
+     
+  /* Overrun event */
+  default: /* Case ADC_OVR_EVENT */
+    /* If overrun is set to overwrite previous data, overrun event is not     */
+    /* considered as an error.                                                */
+    /* (cf ref manual "Managing conversions without using the DMA and without */
+    /* overrun ")                                                             */
+    if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
+    {
+      /* Change ADC state */
+      SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
+        
+      /* Set ADC error code to overrun */
+      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
+    }
+    else
+    {
+      /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN
+         otherwise, DR is potentially overwritten by new converted data as soon
+         as OVR is cleared. */
+      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
+    }
+    break;
+  }
+  
+  /* Return API HAL status */
+  return HAL_OK;
+}
+
+
+/**
+  * @brief  Enable ADC, start conversion of regular group with interruption.
+  * @note   Interruptions enabled in this function according to initialization
+  *         setting : EOC (end of conversion), EOS (end of sequence), 
+  *         OVR overrun.
+  *         Each of these interruptions has its dedicated callback function.
+  * @note   Case of multimode enabled (when multimode feature is available): 
+  *         HAL_ADC_Start_IT() must be called for ADC Slave first, then for
+  *         ADC Master. 
+  *         For ADC Slave, ADC is enabled only (conversion is not started).  
+  *         For ADC Master, ADC is enabled and multimode conversion is started.
+  * @note   To guarantee a proper reset of all interruptions once all the needed
+  *         conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure 
+  *         a correct stop of the IT-based conversions.  
+  * @note   By default, HAL_ADC_Start_IT() doesn't enable the End Of Sampling 
+  *         interruption. If required (e.g. in case of oversampling with trigger
+  *         mode), the user must    
+  *          1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP)             
+  *          2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP)     
+  *          before calling HAL_ADC_Start_IT().    
+  * @param  hadc: ADC handle
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
+{
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+  ADC_TypeDef        *tmpADC_Master;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* if a regular conversion is already on-going (i.e. ADSTART is set),
+     don't restart the conversion. */
+  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc))
+  {
+    return HAL_BUSY;
+  }
+  else
+  {  
+    /* Process locked */
+    __HAL_LOCK(hadc);
+ 
+    /* Enable the ADC peripheral */
+    tmp_status = ADC_Enable(hadc);
+ 
+    /* Start conversion if ADC is effectively enabled */
+    if (tmp_status == HAL_OK)
+    {
+      /* State machine update: Check if an injected conversion is ongoing */
+      if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+      {
+        /* Reset ADC error code fields related to regular conversions only */
+        CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR|HAL_ADC_ERROR_DMA));         
+      }
+      else
+      {
+        /* Set ADC error code to none */
+        ADC_CLEAR_ERRORCODE(hadc); 
+      } 
+      /* Clear HAL_ADC_STATE_READY and regular conversion results bits, set HAL_ADC_STATE_REG_BUSY bit */
+      ADC_STATE_CLR_SET(hadc->State, (HAL_ADC_STATE_READY|HAL_ADC_STATE_REG_EOC|HAL_ADC_STATE_REG_OVR|HAL_ADC_STATE_REG_EOSMP), HAL_ADC_STATE_REG_BUSY);
+      
+      /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
+        - by default if ADC is Master or Independent or if multimode feature is not available
+        - if MultiMode setting is set to independent mode (no dual regular or injected conversions are configured) */
+      if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
+      {
+        CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+      }      
+  
+      /* Clear regular group conversion flag and overrun flag */
+      /* (To ensure of no unknown state from potential previous ADC operations) */
+      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
+   
+      /* By default, disable all interruptions before enabling the desired ones */
+      __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
+  
+      /* Enable required interruptions */  
+      switch(hadc->Init.EOCSelection)
+      {
+        case ADC_EOC_SEQ_CONV: 
+          __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS);
+         break;
+        /* case ADC_EOC_SINGLE_CONV */
+        default:
+         __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC);
+         break;
+      }
+   
+      /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is
+         ADC_IT_OVR enabled; otherwise data overwrite is considered as normal
+         behavior and no CPU time is lost for a non-processed interruption */
+      if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
+      {
+        __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);  
+      }   
+      
+      /* Enable conversion of regular group.                                  */
+      /* If software start has been selected, conversion starts immediately.  */
+      /* If external trigger has been selected, conversion starts at next     */
+      /* trigger event.                                                       */
+      /* Case of multimode enabled (when multimode feature is available):     */ 
+      /*  - if ADC is slave and dual regular conversions are enabled, ADC is  */
+      /*    enabled only (conversion is not started),                         */
+      /*  - if ADC is master, ADC is enabled and conversion is started.       */
+      if (ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(hadc)   )
+      {
+        /* Multimode feature is not available or ADC Instance is Independent or Master, 
+           or is not Slave ADC with dual regular conversions enabled.         
+           Then set HAL_ADC_STATE_INJ_BUSY and reset HAL_ADC_STATE_INJ_EOC if JAUTO is set. */
+        if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != RESET)
+        {
+          ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+          
+          /* Enable as well injected interruptions in case 
+           HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This
+           allows to start regular and injected conversions when JAUTO is
+           set with a single call to HAL_ADC_Start_IT() */
+          switch(hadc->Init.EOCSelection)
+          {
+            case ADC_EOC_SEQ_CONV: 
+              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
+              __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
+            break;
+            /* case ADC_EOC_SINGLE_CONV */
+            default:
+              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);      
+              __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
+            break;
+          }  
+        } /*  if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != RESET) */
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);           
+        /* Start ADC */     
+        SET_BIT(hadc->Instance->CR, ADC_CR_ADSTART);
+      }
+      else
+      {
+        /* hadc is the handle of a Slave ADC with dual regular conversions
+           enabled. Therefore, ADC_CR_ADSTART is NOT set */
+        SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+        /* if Master ADC JAUTO bit is set, Slave injected interruptions
+           are enabled nevertheless (for same reason as above) */
+        tmpADC_Master = ADC_MASTER_REGISTER(hadc); 
+        if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != RESET)
+        {
+          /* First, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit 
+             and in resetting HAL_ADC_STATE_INJ_EOC bit */
+          ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+          /* Next, set Slave injected interruptions */
+          switch(hadc->Init.EOCSelection)
+          {
+            case ADC_EOC_SEQ_CONV: 
+              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
+              __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
+            break;
+            /* case ADC_EOC_SINGLE_CONV */
+            default:
+              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);      
+              __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
+            break;
+          }         
+        }  /* if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != RESET) */
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);         
+      } /*  if (ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(hadc)   ) */     
+    }  /*  if (tmp_status == HAL_OK) */
+    else
+    {
+      /* Process unlocked */
+      __HAL_UNLOCK(hadc);    
+    }
+ 
+    /* Return function status */
+    return tmp_status;
+ 
+  }  
+}
+
+
+
+/**  
+  * @brief  Stop ADC conversion of regular groups when interruptions are enabled.
+  * @note   Stop as well injected conversions and disable ADC peripheral.
+  * @param  hadc: ADC handle
+  * @retval HAL status.
+  */  
+HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
+{
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* 1. Stop potential regular and injected on-going conversions */
+  tmp_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
+  
+  /* Disable ADC peripheral if conversions are effectively stopped */
+  if (tmp_status == HAL_OK)
+  {
+    /* Disable all interrupts */
+    __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
+    
+    /* 2. Disable the ADC peripheral */
+    tmp_status = ADC_Disable(hadc);
+    
+    /* Check if ADC is effectively disabled */
+    if (tmp_status == HAL_OK)
+    {
+      /* Change ADC state */
+      /* Clear HAL_ADC_STATE_REG_BUSY and HAL_ADC_STATE_INJ_BUSY bits, set HAL_ADC_STATE_READY bit */
+      ADC_STATE_CLR_SET(hadc->State, (HAL_ADC_STATE_REG_BUSY|HAL_ADC_STATE_INJ_BUSY), HAL_ADC_STATE_READY); 
+    }
+  }
+
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return tmp_status;
+}
+
+
+/**
+  * @brief  Enable ADC, start conversion of regular group and transfer result through DMA.
+  * @note   Interruptions enabled in this function:
+  *         overrun (if applicable), DMA half transfer, DMA transfer complete. 
+  *         Each of these interruptions has its dedicated callback function.
+  * @note   Case of multimode enabled (when multimode feature is available): HAL_ADC_Start_DMA() 
+  *         is designed for single-ADC mode only. For multimode, the dedicated 
+  *         HAL_ADCEx_MultiModeStart_DMA() function must be used.
+  * @param  hadc: ADC handle
+  * @param  pData: Destination Buffer address.
+  * @param  Length: Length of data to be transferred from ADC peripheral to memory (in bytes)
+  * @retval None
+  */
+HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
+{
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc))
+  {
+    return HAL_BUSY;
+  }
+  else
+  {
+    
+    /* Process locked */
+    __HAL_LOCK(hadc);
+  
+    /* Ensure that dual regular conversions are not enabled or unavailable.   */
+    /* Otherwise, dedicated API HAL_ADCEx_MultiModeStart_DMA() must be used.  */
+    if (ADC_IS_DUAL_REGULAR_CONVERSION_ENABLE(hadc) == RESET)
+    {
+      /* Enable the ADC peripheral */
+      tmp_status = ADC_Enable(hadc);
+    
+      /* Start conversion if ADC is effectively enabled */
+      if (tmp_status == HAL_OK)
+      {
+        /* State machine update: Check if an injected conversion is ongoing */
+        if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+        {
+          /* Reset ADC error code fields related to regular conversions only */
+          CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR|HAL_ADC_ERROR_DMA));             
+        }
+        else
+        {
+          /* Set ADC error code to none */
+          ADC_CLEAR_ERRORCODE(hadc);          
+        }
+        /* Clear HAL_ADC_STATE_READY and regular conversion results bits, set HAL_ADC_STATE_REG_BUSY bit */
+        ADC_STATE_CLR_SET(hadc->State, (HAL_ADC_STATE_READY|HAL_ADC_STATE_REG_EOC|HAL_ADC_STATE_REG_OVR|HAL_ADC_STATE_REG_EOSMP), HAL_ADC_STATE_REG_BUSY);
+
+       /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
+        - by default if ADC is Master or Independent or if multimode feature is not available
+        - if multimode setting is set to independent mode (no dual regular or injected conversions are configured) */
+        if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
+        {
+          CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+        }
+      
+        /* Set the DMA transfer complete callback */
+        hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
+
+        /* Set the DMA half transfer complete callback */
+        hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
+      
+        /* Set the DMA error callback */
+        hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
+
+            
+        /* Manage ADC and DMA start: ADC overrun interruption, DMA start,     */
+        /* ADC start (in case of SW start):                                   */
+      
+        /* Clear regular group conversion flag and overrun flag               */
+        /* (To ensure of no unknown state from potential previous ADC         */
+        /* operations)                                                        */
+        __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
+      
+        /* With DMA, overrun event is always considered as an error even if 
+           hadc->Init.Overrun is set to ADC_OVR_DATA_OVERWRITTEN. Therefore,  
+           ADC_IT_OVR is enabled.  */         
+        __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);  
+     
+      
+        /* Enable ADC DMA mode */
+        SET_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN);
+      
+        /* Start the DMA channel */
+        HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
+               
+        /* Enable conversion of regular group.                                  */
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);          
+        /* If software start has been selected, conversion starts immediately.  */
+        /* If external trigger has been selected, conversion will start at next */
+        /* trigger event.                                                       */
+        SET_BIT(hadc->Instance->CR, ADC_CR_ADSTART);
+      
+      }  
+      else
+      {
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);      
+      }  /* if (tmp_status == HAL_OK) */
+    }
+    else
+    {
+      tmp_status = HAL_ERROR;
+      /* Process unlocked */
+      __HAL_UNLOCK(hadc);      
+    } /* if (ADC_IS_DUAL_REGULAR_CONVERSION_ENABLE(hadc) == RESET) */
+  
+
+  
+  /* Return function status */
+  return tmp_status;
+  } /* if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc)) */
+}
+
+
+/**
+  * @brief  Stop ADC conversion of regular groups and disable ADC DMA transfer. 
+  * @note   Stop as well injected conversions and disable ADC peripheral.
+  * @note   Case of multimode enabled (when multimode feature is available): 
+  *         HAL_ADC_Stop_DMA() function is dedicated to single-ADC mode only. 
+  *         For multimode, the dedicated HAL_ADCEx_MultiModeStop_DMA() API must be used.
+  * @param  hadc: ADC handle
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
+{  
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* 1. Stop potential regular conversion on going */
+  tmp_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
+  
+  /* Disable ADC peripheral if conversions are effectively stopped */
+  if (tmp_status == HAL_OK)
+  {
+    /* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */
+    CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN); 
+    
+    /* Disable the DMA channel (in case of DMA in circular mode or stop while */
+    /* while DMA transfer is on going)                                        */
+    tmp_status = HAL_DMA_Abort(hadc->DMA_Handle);   
+    
+    /* Check if DMA channel effectively disabled */
+    if (tmp_status != HAL_OK)
+    {
+      /* Update ADC state machine to error */
+      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);  
+    }
+    
+    /* Disable ADC overrun interrupt */
+    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
+    
+    /* 2. Disable the ADC peripheral */
+    /* Update "tmp_status" only if DMA channel disabling passed, to keep in */
+    /* memory a potential failing status.                                     */
+    if (tmp_status == HAL_OK)
+    {
+      tmp_status = ADC_Disable(hadc);
+    }
+    else
+    {
+      ADC_Disable(hadc);
+    }
+
+    /* Check if ADC is effectively disabled */
+    if (tmp_status == HAL_OK)
+    {
+      /* Change ADC state */
+      /* Clear HAL_ADC_STATE_REG_BUSY and HAL_ADC_STATE_INJ_BUSY bits, set HAL_ADC_STATE_READY bit */
+      ADC_STATE_CLR_SET(hadc->State, (HAL_ADC_STATE_REG_BUSY|HAL_ADC_STATE_INJ_BUSY), HAL_ADC_STATE_READY);     
+    }
+    
+  }
+
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return tmp_status;
+}
+
+
+/**
+  * @brief  Get ADC regular group conversion result.
+  * @param  hadc: ADC handle
+  * @note   Reading DR register automatically clears EOC flag. To reset EOS flag, 
+  *         the user must resort to the macro 
+  *         __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS)  
+  * @retval Converted value
+  */
+uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
+{
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Return ADC converted value */ 
+  return hadc->Instance->DR;
+}
+
+
+/**
+  * @brief  Handle ADC interrupt request.  
+  * @param  hadc: ADC handle
+  * @retval None
+  */
+void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
+{
+  uint32_t overrun_error = 0; /* flag set if overrun occurrence has to be considered as an error */
+  ADC_TypeDef        *tmpADC_Master;  
+  uint32_t tmp_isr      = hadc->Instance->ISR;
+  uint32_t tmp_ier      = hadc->Instance->IER;
+  uint32_t tmp_cfgr     = 0x0;
+  uint32_t tmp_cfgr_jqm = 0x0;       
+  
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
+  
+  
+  /* ====== Check End of Sampling flag for regular group ===== */
+  if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP))
+  {
+    /* Update state machine on end of sampling status if not in error state */
+    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
+    {
+      /* Change ADC state */
+      SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
+    }
+        
+    /* End Of Sampling callback */
+      HAL_ADCEx_EndOfSamplingCallback(hadc);
+    
+    /* Clear regular group conversion flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP );
+  }  
+  
+  /* ====== Check End of Conversion or Sequence flags for regular group ===== */
+  if( (((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) ||
+      (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS))  )
+  {
+    /* Update state machine on conversion status if not in error state */
+    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
+    {
+      /* Change ADC state */    
+      SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); 
+    }
+    
+    /* Disable interruption if no further conversion upcoming by regular      */
+    /* external trigger or by continuous mode,                                */
+    /* and if scan sequence if completed.                                     */
+    if(ADC_IS_SOFTWARE_START_REGULAR(hadc))
+    {
+      if (ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(hadc))
+      {
+        /* check CONT bit directly in handle ADC CFGR register */
+        tmp_cfgr = READ_REG(hadc->Instance->CFGR); 
+      }
+      else
+      {
+        /* else need to check Master ADC CONT bit */
+        tmpADC_Master = ADC_MASTER_REGISTER(hadc);
+        tmp_cfgr = READ_REG(tmpADC_Master->CFGR); 
+      }
+      
+      /* Carry on if continuous mode is disabled */
+      if (READ_BIT (tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT)
+      {
+        /* If End of Sequence is reached, disable interrupts */
+        if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
+        {
+          /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit           */
+          /* ADSTART==0 (no conversion on going)                                */
+          if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
+          {
+            /* Disable ADC end of sequence conversion interrupt */
+            /* Note: if Overrun interrupt was enabled with EOC or EOS interrupt */
+            /* in HAL_Start_IT(), it isn't disabled here because it can be used */
+            /* by overrun IRQ process below.                                    */
+            __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
+            /* Clear HAL_ADC_STATE_REG_BUSY bit */
+             CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); 
+             /* If no injected conversion on-going, set HAL_ADC_STATE_READY bit */
+             if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+             { 
+               SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+             }           
+          }
+          else
+          {
+            /* Change ADC state to error state */
+            SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+            
+            /* Set ADC error code to ADC IP internal error */
+            SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+          }
+        }
+      } /* if (READ_BIT (tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT) */
+    }   /* if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   */
+    
+    /* Conversion complete callback */
+    /* Note:  HAL_ADC_ConvCpltCallback can resort to 
+              if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) or
+              if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOC)) to determine whether 
+              interruption has been triggered by end of conversion or end of 
+              sequence.    */
+      HAL_ADC_ConvCpltCallback(hadc);
+
+    
+    /* Clear regular group conversion flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) );
+  }
+  
+  
+  /* ========== Check End of Conversion flag for injected group ========== */
+  if( (((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) ||
+      (((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS))  )      
+  {
+    /* Update state machine on conversion status if not in error state */
+    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
+    {
+      /* Change ADC state */
+      SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
+    }
+    
+
+    /* Check whether interruptions can be disabled only if
+        - injected conversions are software-triggered when injected queue management is disabled
+        OR
+        - auto-injection is enabled, continuous mode is disabled (CONT = 0)
+          and regular conversions are software-triggered */
+          /* If End of Sequence is reached, disable interrupts */
+    if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS))
+    {
+          
+      /* First, retrieve proper registers to check */
+      /* 1a. Are injected conversions that of a dual Slave ? */      
+      if (ADC_INDEPENDENT_OR_NONMULTIMODEINJECTED_SLAVE(hadc))
+      {
+        /* hadc is not the handle of a Slave ADC with dual injected conversions enabled:
+           check JQM bit directly in ADC CFGR register */
+        tmp_cfgr_jqm = READ_REG(hadc->Instance->CFGR); 
+      }
+      else
+      {
+        /* hadc is the handle of a Slave ADC with dual injected conversions enabled:
+           need to check JQM bit of Master ADC CFGR register */
+          tmpADC_Master = ADC_MASTER_REGISTER(hadc);
+          tmp_cfgr_jqm = READ_REG(tmpADC_Master->CFGR); 
+      }
+      /* 1b. Is hadc the handle of a Slave ADC with regular conversions enabled? */ 
+      if (ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(hadc))
+      {
+        /* hadc is not the handle of a Slave ADC with dual regular conversions enabled:
+           check JAUTO and CONT bits directly in ADC CFGR register */        
+          tmp_cfgr = READ_REG(hadc->Instance->CFGR); 
+      }
+      else
+      {
+        /* hadc is not the handle of a Slave ADC with dual regular conversions enabled:
+           check JAUTO and CONT bits of Master ADC CFGR register */  
+        tmpADC_Master = ADC_MASTER_REGISTER(hadc);
+        tmp_cfgr = READ_REG(tmpADC_Master->CFGR); 
+      }
+      
+      /* Secondly, check whether JEOC and JEOS interruptions can be disabled */                                                 
+      if ((ADC_IS_SOFTWARE_START_INJECTED(hadc) && (READ_BIT(tmp_cfgr_jqm, ADC_CFGR_JQM) != ADC_CFGR_JQM))  
+         && (!((READ_BIT(tmp_cfgr, (ADC_CFGR_JAUTO|ADC_CFGR_CONT)) == (ADC_CFGR_JAUTO|ADC_CFGR_CONT)) &&    
+             (ADC_IS_SOFTWARE_START_REGULAR(hadc))))    )
+      {
+        /* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit         */
+        /* JADSTART==0 (no conversion on going)                               */
+        if (ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET)
+        {
+          /* Disable ADC end of sequence conversion interrupt  */
+          __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS);
+          /* Clear HAL_ADC_STATE_INJ_BUSY bit */
+           CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);   
+           /* If no regular conversion on-going, set HAL_ADC_STATE_READY bit */                   
+          if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
+          { 
+            SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+          }           
+        }
+        else
+        {
+          /* Change ADC state to error state */
+          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+          
+          /* Set ADC error code to ADC IP internal error */
+          SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+        }
+      }
+    } /* if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS)) */
+    
+    /* Injected Conversion complete callback */
+    /* Note:  HAL_ADCEx_InjectedConvCpltCallback can resort to 
+              if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) or
+              if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOC)) to determine whether 
+              interruption has been triggered by end of conversion or end of 
+              sequence.    */    
+    HAL_ADCEx_InjectedConvCpltCallback(hadc);
+    
+    /* Clear injected group conversion flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS);
+  }
+  
+   
+  /* ========== Check Analog watchdog flags =================================================== */
+  
+  /* ========== Check Analog watchdog 1 flags ========== */
+  if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1))      
+  {
+    /* Change ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+    
+    /* Level out of window 1 callback */
+    HAL_ADC_LevelOutOfWindowCallback(hadc);
+    /* Clear ADC Analog watchdog flag */ 
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
+  }
+  
+  /* ========== Check Analog watchdog 2 flags ========== */
+  if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2))      
+  {
+    /* Change ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
+    
+    /* Level out of window 2 callback */
+    HAL_ADCEx_LevelOutOfWindow2Callback(hadc);
+    /* Clear ADC Analog watchdog flag */ 
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
+  } 
+  
+  /* ========== Check Analog watchdog 3 flags ========== */
+  if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3))      
+  {
+    /* Change ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
+    
+    /* Level out of window 3 callback */
+    HAL_ADCEx_LevelOutOfWindow3Callback(hadc);
+    /* Clear ADC Analog watchdog flag */ 
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
+  } 
+  
+  
+  /* ========== Check Overrun flag ========== */
+  if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR)) 
+  {
+    /* If overrun is set to overwrite previous data (default setting),        */
+    /* overrun event is not considered as an error.                           */
+    /* (cf ref manual "Managing conversions without using the DMA and without */
+    /* overrun ")                                                             */
+    /* Exception for usage with DMA overrun event always considered as an     */
+    /* error.                                                                 */
+    
+    if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
+    {
+      overrun_error = 1;
+    }
+    else
+    {
+      /* check DMA configuration, depending on multimode set or not,
+        or whether or not multimode feature is available */
+      if (ADC_IS_DUAL_CONVERSION_ENABLE(hadc) == RESET)
+      {
+        /* Multimode not set or feature not available or ADC independent */
+        if (HAL_IS_BIT_SET(hadc->Instance->CFGR, ADC_CFGR_DMAEN))
+        {
+          overrun_error = 1;  
+        }      
+      }
+      else
+      {
+        /* Multimode (when feature is available) is enabled, 
+           Common Control Register MDMA bits must be checked. */
+        if (ADC_MULTIMODE_DMA_ENABLED())
+        {
+          overrun_error = 1;  
+        }
+      }
+    }
+        
+    if (overrun_error == 1)
+    {
+      /* Change ADC state to error state */
+      SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
+      
+      /* Set ADC error code to overrun */
+      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
+      
+      /* Error callback */ 
+      HAL_ADC_ErrorCallback(hadc);
+    }
+
+    /* Clear the Overrun flag, to be done AFTER HAL_ADC_ErrorCallback() since
+       old data is preserved until OVR is reset */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);  
+
+  }
+  
+  
+  /* ========== Check Injected context queue overflow flag ========== */
+  if (((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF)) 
+  {
+    /* Change ADC state to overrun state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
+        
+    /* Set ADC error code to Injected context queue overflow */
+    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
+    
+    /* Clear the Injected context queue overflow flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
+    
+    /* Error callback */ 
+    HAL_ADCEx_InjectedQueueOverflowCallback(hadc);
+  }
+  
+}
+
+/**
+  * @brief  Conversion complete callback in non-blocking mode.
+  * @param  hadc: ADC handle
+  * @retval None
+  */
+__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+
+  /* NOTE : This function should not be modified. When the callback is needed,
+            function HAL_ADC_ConvCpltCallback must be implemented in the user file.
+   */
+}
+
+/**
+  * @brief  Conversion DMA half-transfer callback in non-blocking mode.
+  * @param  hadc: ADC handle
+  * @retval None
+  */
+__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+
+  /* NOTE : This function should not be modified. When the callback is needed,
+            function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
+  */
+}
+
+/**
+  * @brief  Analog watchdog 1 callback in non-blocking mode.        
+  * @param  hadc: ADC handle
+  * @retval None
+  */
+__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+
+  /* NOTE : This function should not be modified. When the callback is needed,
+            function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file.
+  */
+}
+
+/**
+  * @brief  ADC error callback in non-blocking mode
+  *        (ADC conversion with interruption or transfer by DMA).
+  * @param  hadc: ADC handle
+  * @retval None
+  */
+__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+
+  /* NOTE : This function should not be modified. When the callback is needed,
+            function HAL_ADC_ErrorCallback must be implemented in the user file.
+  */
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
+ *  @brief    Peripheral Control functions 
+ *
+@verbatim   
+ ===============================================================================
+             ##### Peripheral Control functions #####
+ ===============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) Configure channels on regular group
+      (+) Configure the analog watchdog
+      
+@endverbatim
+  * @{
+  */
+
+
+/**
+  * @brief  Configure the selected channel to be linked to the regular group.
+  * @note   In case of usage of internal measurement channels (Vbat / VrefInt /
+  *         TempSensor), the recommended sampling time is provided by the
+  *         datasheet.  
+  *         These internal paths can be disabled using function 
+  *         HAL_ADC_DeInit().
+  * @note   Possibility to update parameters on the fly:
+  *         HAL_ADC_ConfigChannel() initializes channel into regular group, 
+  *         consecutive calls to this function can be used to reconfigure some 
+  *         parameters of structure "ADC_ChannelConfTypeDef" on the fly, without 
+  *         resetting the ADC.
+  *         The setting of these parameters is conditioned to ADC state.
+  *         For parameters constraints, see comments of structure 
+  *         "ADC_ChannelConfTypeDef".
+  * @param  hadc: ADC handle
+  * @param  sConfig: Structure ADC channel for regular group.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
+{
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+                                                                                                                     
+  ADC_Common_TypeDef *tmpADC_Common;
+  uint32_t tmpOffsetShifted;
+  __IO uint32_t wait_loop_index = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
+  assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
+  assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfig->SingleDiff));
+  assert_param(IS_ADC_OFFSET_NUMBER(sConfig->OffsetNumber));
+  assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset));
+
+  /* if ROVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is  
+     ignored (considered as reset) */
+  assert_param(!((sConfig->OffsetNumber != ADC_OFFSET_NONE) && (hadc->Init.OversamplingMode == ENABLE)));  
+  
+  /* Verification of channel number */
+  if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED)
+  {
+     assert_param(IS_ADC_CHANNEL(hadc, sConfig->Channel));
+  }
+  else
+  {
+    assert_param(IS_ADC_DIFF_CHANNEL(hadc, sConfig->Channel));
+  }
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+
+  /* Parameters update conditioned to ADC state:                              */
+  /* Parameters that can be updated when ADC is disabled or enabled without   */
+  /* conversion on going on regular group:                                    */
+  /*  - Channel number                                                        */
+  /*  - Channel rank                                                          */
+  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
+  {
+    
+      /* Regular sequence configuration */
+      /* Clear the old SQx bits then set the new ones for the selected rank */
+      /* For Rank 1 to 4 */
+      if (sConfig->Rank < 5)
+      {      
+        MODIFY_REG(hadc->Instance->SQR1, 
+                  ADC_SQR1_RK(ADC_SQR2_SQ5, sConfig->Rank), 
+                  ADC_SQR1_RK(sConfig->Channel, sConfig->Rank));      
+      }
+      /* For Rank 5 to 9 */
+      else if (sConfig->Rank < 10)
+      {
+        MODIFY_REG(hadc->Instance->SQR2, 
+                  ADC_SQR2_RK(ADC_SQR2_SQ5, sConfig->Rank), 
+                  ADC_SQR2_RK(sConfig->Channel, sConfig->Rank));       
+      }
+      /* For Rank 10 to 14 */
+      else if (sConfig->Rank < 15)
+      {
+        MODIFY_REG(hadc->Instance->SQR3, 
+                  ADC_SQR3_RK(ADC_SQR3_SQ10, sConfig->Rank), 
+                  ADC_SQR3_RK(sConfig->Channel, sConfig->Rank));        
+      }
+      /* For Rank 15 to 16 */
+      else
+      {   
+        MODIFY_REG(hadc->Instance->SQR4, 
+                  ADC_SQR4_RK(ADC_SQR4_SQ15, sConfig->Rank), 
+                  ADC_SQR4_RK(sConfig->Channel, sConfig->Rank));         
+      }
+      
+      
+      /* Parameters update conditioned to ADC state:                              */
+      /* Parameters that can be updated when ADC is disabled or enabled without   */
+      /* conversion on going on regular group:                                    */
+      /*  - Channel sampling time                                                 */
+      /*  - Channel offset                                                        */
+      if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET)
+      {
+       
+        /* Channel sampling time configuration */
+        /* Clear the old sample time then set the new one for the selected channel */    
+        /* For channels 10 to 18 */
+        if (sConfig->Channel >= ADC_CHANNEL_10)
+        {
+          ADC_SMPR2_SETTING(hadc, sConfig->SamplingTime, sConfig->Channel);                
+        }
+        else /* For channels 0 to 9 */
+        {
+          ADC_SMPR1_SETTING(hadc, sConfig->SamplingTime, sConfig->Channel);                       
+        }
+      
+  
+       /* Configure the offset: offset enable/disable, channel, offset value */
+  
+       /* Shift the offset with respect to the selected ADC resolution. */
+       /* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */
+       tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, sConfig->Offset);
+      
+       switch (sConfig->OffsetNumber)
+       {
+        /* Configure offset register i when applicable:                         */
+        /* - Enable offset                                                      */
+        /* - Set channel number                                                 */
+        /* - Set offset value                                                   */    
+       case ADC_OFFSET_1:                                
+          MODIFY_REG(hadc->Instance->OFR1, 
+                  ADC_OFR_FIELDS, 
+                  ADC_OFR1_OFFSET1_EN | ADC_OFR_CHANNEL(sConfig->Channel) | tmpOffsetShifted);                                   
+         break;
+      
+       case ADC_OFFSET_2:
+         MODIFY_REG(hadc->Instance->OFR2, 
+                  ADC_OFR_FIELDS, 
+                  ADC_OFR2_OFFSET2_EN | ADC_OFR_CHANNEL(sConfig->Channel) | tmpOffsetShifted);                                  
+         break;
+          
+       case ADC_OFFSET_3:
+         MODIFY_REG(hadc->Instance->OFR3, 
+                  ADC_OFR_FIELDS, 
+                  ADC_OFR3_OFFSET3_EN | ADC_OFR_CHANNEL(sConfig->Channel) | tmpOffsetShifted);                                  
+         break;
+      
+       case ADC_OFFSET_4:
+         MODIFY_REG(hadc->Instance->OFR4, 
+                  ADC_OFR_FIELDS, 
+                  ADC_OFR4_OFFSET4_EN | ADC_OFR_CHANNEL(sConfig->Channel) | tmpOffsetShifted);                                  
+         break;
+      
+       /* Case ADC_OFFSET_NONE */
+       default :
+       /* Scan OFR1, OFR2, OFR3, OFR4 to check if the selected channel is enabled. 
+          If this is the case, offset OFRx is disabled since 
+          sConfig->OffsetNumber = ADC_OFFSET_NONE. */
+         if (((hadc->Instance->OFR1) & ADC_OFR1_OFFSET1_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
+         {
+           CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_OFFSET1_EN);
+         }
+         if (((hadc->Instance->OFR2) & ADC_OFR2_OFFSET2_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
+         {
+           CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_OFFSET2_EN); 
+         }
+         if (((hadc->Instance->OFR3) & ADC_OFR3_OFFSET3_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
+         {
+           CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_OFFSET3_EN); 
+         }
+         if (((hadc->Instance->OFR4) & ADC_OFR4_OFFSET4_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
+         {
+           CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_OFFSET4_EN);
+         }
+         break;
+      }  /*  switch (sConfig->OffsetNumber) */
+  
+    }  /* if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET) */
+   
+  
+  
+    /* Parameters update conditioned to ADC state:                              */
+    /* Parameters that can be updated only when ADC is disabled:                */
+    /*  - Single or differential mode                                           */
+    /*  - Internal measurement channels: Vbat/VrefInt/TempSensor                */
+    if (ADC_IS_ENABLE(hadc) == RESET)
+    {
+      /* Configuration of differential mode */
+      if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED)
+      {
+        /* Disable differential mode (default mode: single-ended) */
+        CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_CHANNEL(sConfig->Channel));
+      }
+      else
+      {
+        /* Enable differential mode */
+        SET_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_CHANNEL(sConfig->Channel));
+        
+        /* Sampling time configuration of channel ADC_IN+1 (negative input)     */
+        /* Clear the old sample time then set the new one for the selected      */
+        /* channel.                                                             */        
+        /* Starting from channel 9, SMPR2 register must be configured           */
+        if (sConfig->Channel >= ADC_CHANNEL_9)
+        {
+          ADC_SMPR2_SETTING(hadc, sConfig->SamplingTime, sConfig->Channel+1);                                
+        }
+        else /* For channels 0 to 8, SMPR1 must be configured */
+        {
+          ADC_SMPR1_SETTING(hadc, sConfig->SamplingTime, sConfig->Channel+1);      
+        }
+      }
+    
+    
+      
+      /* Management of internal measurement channels: Vbat/VrefInt/TempSensor.  */
+      /* If internal channel selected, enable dedicated internal buffers and    */
+      /*  paths.                                                                */
+      /* Note: these internal measurement paths can be disabled using           */
+      /* HAL_ADC_DeInit().                                                      */
+         
+      /* Configuration of common ADC parameters                                 */
+      tmpADC_Common = ADC_COMMON_REGISTER(hadc);
+    
+  
+      /* If the requested internal measurement path has already been enabled,   */
+      /* bypass the configuration processing.                                   */
+      if (( (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) &&
+            (HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_TSEN))            ) ||
+          ( (sConfig->Channel == ADC_CHANNEL_VBAT)       &&
+            (HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_VBATEN))          ) ||
+          ( (sConfig->Channel == ADC_CHANNEL_VREFINT)    &&
+            (HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_VREFEN)))
+         )
+      {
+        /* Configuration of common ADC parameters (continuation)                */
+  
+        /* Software is allowed to change common parameters only when all ADCs   */
+        /* of the common group are disabled.                                    */
+        if ((ADC_IS_ENABLE(hadc) == RESET)   &&
+           (ADC_ANY_OTHER_ENABLED(hadc) == RESET) )              
+        {
+          if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)
+          {
+            if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc)) 
+            {
+              SET_BIT(tmpADC_Common->CCR, ADC_CCR_TSEN);
+            
+              /* Delay for temperature sensor stabilization time */
+              /* Wait loop initialization and execution */
+              /* Note: Variable divided by 2 to compensate partially          */
+              /*       CPU processing cycles.                                 */
+              wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / (1000000 * 2)));
+              while(wait_loop_index != 0)
+              {
+                wait_loop_index--;
+              }
+            }
+          }
+          else if (sConfig->Channel == ADC_CHANNEL_VBAT)
+          {
+            if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc))
+            {
+              SET_BIT(tmpADC_Common->CCR, ADC_CCR_VBATEN);
+            }
+          }
+          else if (sConfig->Channel == ADC_CHANNEL_VREFINT)
+          { 
+            if (ADC_VREFINT_INSTANCE(hadc))
+            {
+              SET_BIT(tmpADC_Common->CCR, ADC_CCR_VREFEN);
+            }        
+          }
+        }
+        /* If the requested internal measurement path has already been          */
+        /* enabled and other ADC of the common group are enabled, internal      */
+        /* measurement paths cannot be enabled.                                 */
+        else  
+        {
+          /* Update ADC state machine to error */
+          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+          
+          tmp_status = HAL_ERROR;
+        }
+      }
+  
+    } /* if (ADC_IS_ENABLE(hadc) == RESET) */
+
+  } /* if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) */
+  
+  /* If a conversion is on going on regular group, no update on regular       */
+  /* channel could be done on neither of the channel configuration structure  */
+  /* parameters.                                                              */
+  else
+  {
+    /* Update ADC state machine to error */
+    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+    
+    tmp_status = HAL_ERROR;
+  }
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+
+  /* Return function status */
+  return tmp_status;
+}
+  
+
+
+/**
+  * @brief  Configure the analog watchdog.
+  * @note   Possibility to update parameters on the fly:
+  *         This function initializes the selected analog watchdog, successive  
+  *         calls to this function can be used to reconfigure some parameters 
+  *         of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting 
+  *         the ADC, e.g. to set several channels to monitor simultaneously. 
+  *         The setting of these parameters is conditioned to ADC state.
+  *         For parameters constraints, see comments of structure 
+  *         "ADC_AnalogWDGConfTypeDef".
+  * @param  hadc: ADC handle
+  * @param  AnalogWDGConfig: Structure of ADC analog watchdog configuration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
+{
+  HAL_StatusTypeDef tmp_status = HAL_OK;
+
+  
+  uint32_t tmpAWDHighThresholdShifted;
+  uint32_t tmpAWDLowThresholdShifted;
+  
+  uint32_t tmpADCFlagAWD2orAWD3;
+  uint32_t tmpADCITAWD2orAWD3;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber));
+  assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
+  assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
+  
+  if((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG)     ||
+     (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC)   ||
+     (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC)  )
+  {
+    assert_param(IS_ADC_CHANNEL(hadc, AnalogWDGConfig->Channel));
+  }
+  
+
+  /* Verify if threshold is within the selected ADC resolution */
+  assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
+  assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
+
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* Parameters update conditioned to ADC state:                              */
+  /* Parameters that can be updated when ADC is disabled or enabled without   */
+  /* conversion on going on regular and injected groups:                      */
+  /*  - Analog watchdog channels                                              */
+  /*  - Analog watchdog thresholds                                            */
+  if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET)
+  {
+  
+    /* Analog watchdogs configuration */
+    if(AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1)
+    {
+      /* Configuration of analog watchdog:                                    */
+      /*  - Set the analog watchdog enable mode: regular and/or injected      */
+      /*    groups, one or overall group of channels.                         */
+      /*  - Set the Analog watchdog channel (is not used if watchdog          */
+      /*    mode "all channels": ADC_CFGR_AWD1SGL=0).                         */
+                                
+        MODIFY_REG(hadc->Instance->CFGR,  ADC_CFGR_WD_FIELDS, 
+              AnalogWDGConfig->WatchdogMode | ADC_CFGR_SET_AWD1CH(AnalogWDGConfig->Channel) );                                  
+
+      /* Shift the offset with respect to the selected ADC resolution:         */
+      /* Thresholds have to be left-aligned on bit 11, the LSB (right bits)   */
+      /* are set to 0                                                         */ 
+      tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
+      tmpAWDLowThresholdShifted  = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
+      
+      /* Set the high and low thresholds */                                
+      MODIFY_REG(hadc->Instance->TR1,  ADC_TR1_HT1 | ADC_TR1_LT1, 
+              ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) | tmpAWDLowThresholdShifted );                                  
+      
+      /* Clear the ADC Analog watchdog flag (in case left enabled by          */
+      /* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler() */
+      /* or HAL_ADC_PollForEvent().                                           */
+      __HAL_ADC_CLEAR_FLAG(hadc, ADC_IT_AWD1);
+      
+      /* Configure ADC Analog watchdog interrupt */
+      if(AnalogWDGConfig->ITMode == ENABLE)
+      {
+        /* Enable the ADC Analog watchdog interrupt */
+        __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD1);
+      }
+      else
+      {
+        /* Disable the ADC Analog watchdog interrupt */
+        __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD1);
+      }
+      
+      /* Update state, clear previous result related to AWD1 */
+      CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+    }
+    /* Case of ADC_ANALOGWATCHDOG_2 and ADC_ANALOGWATCHDOG_3 */
+    else
+    {
+    /* Shift the threshold with respect to the selected ADC resolution         */
+    /* have to be left-aligned on bit 7, the LSB (right bits) are set to 0    */
+      tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
+      tmpAWDLowThresholdShifted  = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
+
+      if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
+      {
+        /* Set the Analog watchdog channel or group of channels. This also    */
+        /* enables the watchdog.                                              */
+        /* Note: Conditional register reset, because several channels can be */
+        /*       set by successive calls of this function.                    */
+        if (AnalogWDGConfig->WatchdogMode != ADC_ANALOGWATCHDOG_NONE) 
+        {
+          SET_BIT(hadc->Instance->AWD2CR, ADC_CFGR_SET_AWD23CR(AnalogWDGConfig->Channel));
+        }
+        else
+        {
+          CLEAR_BIT(hadc->Instance->AWD2CR,  ADC_AWD2CR_AWD2CH);
+        }
+        
+        /* Set the high and low thresholds */
+        MODIFY_REG(hadc->Instance->TR2,  ADC_TR2_HT2 | ADC_TR2_LT2, 
+              ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) | tmpAWDLowThresholdShifted );                                      
+        
+        /* Set temporary variable to flag and IT of AWD2 or AWD3 for further  */
+        /* settings.                                                          */
+        tmpADCFlagAWD2orAWD3 = ADC_FLAG_AWD2;
+        tmpADCITAWD2orAWD3 = ADC_IT_AWD2;
+        
+        /* Update state, clear previous result related to AWD2 */
+        CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2);
+      }
+      /* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */
+      else
+      {
+        /* Set the Analog watchdog channel or group of channels. This also    */
+        /* enables the watchdog.                                              */
+        /* Note: Conditional register reset, because several channels can be */
+        /*       set by successive calls of this function.                    */
+        if (AnalogWDGConfig->WatchdogMode != ADC_ANALOGWATCHDOG_NONE) 
+        {
+          SET_BIT(hadc->Instance->AWD3CR, ADC_CFGR_SET_AWD23CR(AnalogWDGConfig->Channel));
+        }
+        else
+        {
+          CLEAR_BIT(hadc->Instance->AWD3CR,  ADC_AWD3CR_AWD3CH);
+        }
+        
+        /* Set the high and low thresholds */
+        MODIFY_REG(hadc->Instance->TR3,  ADC_TR3_HT3 | ADC_TR3_LT3, 
+              ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) | tmpAWDLowThresholdShifted );                                    
+        
+        /* Set temporary variable to flag and IT of AWD2 or AWD3 for further  */
+        /* settings.                                                          */
+        tmpADCFlagAWD2orAWD3 = ADC_FLAG_AWD3;
+        tmpADCITAWD2orAWD3 = ADC_IT_AWD3;
+        
+        /* Update state, clear previous result related to AWD3 */
+        CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3);
+      }
+
+      /* Clear the ADC Analog watchdog flag (in case left enabled by          */
+      /* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler() */
+      /* or HAL_ADC_PollForEvent().                                           */
+      __HAL_ADC_CLEAR_FLAG(hadc, tmpADCFlagAWD2orAWD3);
+
+      /* Configure ADC Analog watchdog interrupt */
+      if(AnalogWDGConfig->ITMode == ENABLE)
+      {
+        __HAL_ADC_ENABLE_IT(hadc, tmpADCITAWD2orAWD3);
+      }
+      else
+      {
+        __HAL_ADC_DISABLE_IT(hadc, tmpADCITAWD2orAWD3);
+      }
+    }
+  
+  }
+  /* If a conversion is on going on regular or injected groups, no update     */
+  /* could be done on neither of the AWD configuration structure parameters.  */
+  else
+  {
+    /* Update ADC state machine to error */
+    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+    
+    tmp_status = HAL_ERROR;
+  }
+  
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+
+  /* Return function status */
+  return tmp_status;
+}
+
+
+/**
+  * @}
+  */
+
+/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
+ *  @brief   ADC Peripheral State functions 
+ *
+@verbatim   
+ ===============================================================================
+            ##### Peripheral state and errors functions #####
+ ===============================================================================
+    [..]
+    This subsection provides functions to get in run-time the status of the  
+    peripheral.
+      (+) Check the ADC state
+      (+) Check the ADC error code
+         
+@endverbatim
+  * @{
+  */
+  
+/**
+  * @brief  Return the ADC handle state.
+  * @param  hadc: ADC handle
+  * @retval HAL state  (uint32_t bit-map)
+  */
+uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
+{
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Return ADC handle state */
+  return hadc->State;
+}
+
+
+/**
+  * @brief  Return the ADC error code.
+  * @param  hadc: ADC handle
+  * @retval ADC Error Code (uint32_t bit-map)
+  */
+uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
+{
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  return hadc->ErrorCode;
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+
+
+/** @defgroup ADC_Private_Functions ADC Private Functions
+  * @{
+  */
+
+/**
+  * @brief  Stop ADC conversion.
+  * @param  hadc: ADC handle
+  * @param  ConversionGroup: ADC group regular and/or injected.
+  *          This parameter can be one of the following values:
+  *            @arg @ref ADC_REGULAR_GROUP           ADC regular conversion type.
+  *            @arg @ref ADC_INJECTED_GROUP          ADC injected conversion type.
+  *            @arg @ref ADC_REGULAR_INJECTED_GROUP  ADC regular and injected conversion type.
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc, uint32_t ConversionGroup)
+{
+  uint32_t tmp_ADC_CR_ADSTART_JADSTART = 0;
+  uint32_t tickstart = 0;
+  uint32_t Conversion_Timeout_CPU_cycles = 0;
+
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup));
+    
+  /* Verification if ADC is not already stopped (on regular and injected      */
+  /* groups) to bypass this function if not needed.                           */
+  if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc))
+  {
+    /* Particular case of continuous auto-injection mode combined with        */
+    /* auto-delay mode.                                                       */
+    /* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not   */
+    /* injected group stop ADC_CR_JADSTP).                                    */
+    /* Procedure to be followed: Wait until JEOS=1, clear JEOS, set ADSTP=1   */
+    /* (see reference manual).                                                */
+    if ((HAL_IS_BIT_SET(hadc->Instance->CFGR, ADC_CFGR_JAUTO)) 
+         && (hadc->Init.ContinuousConvMode==ENABLE) 
+         && (hadc->Init.LowPowerAutoWait==ENABLE))
+    {
+      /* Use stop of regular group */
+      ConversionGroup = ADC_REGULAR_GROUP;
+      
+      /* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */
+      while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == RESET)
+      {
+        if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES *4))
+        {
+          /* Update ADC state machine to error */
+          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+          
+          /* Set ADC error code to ADC IP internal error */
+          SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+          
+          return HAL_ERROR;
+        }
+        Conversion_Timeout_CPU_cycles ++;
+      }
+
+      /* Clear JEOS */
+      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS);
+    }
+    
+    /* Stop potential conversion on going on regular group */
+    if (ConversionGroup != ADC_INJECTED_GROUP)
+    {
+      /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */
+      if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) && 
+          HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS)     )
+      {
+        /* Stop conversions on regular group */
+        SET_BIT(hadc->Instance->CR, ADC_CR_ADSTP);
+      }
+    }
+
+    /* Stop potential conversion on going on injected group */
+    if (ConversionGroup != ADC_REGULAR_GROUP)
+    {
+      /* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 */
+      if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_JADSTART) && 
+          HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS)      )
+      {
+        /* Stop conversions on injected group */
+        SET_BIT(hadc->Instance->CR, ADC_CR_JADSTP);
+      }   
+    }
+
+    /* Selection of start and stop bits with respect to the regular or injected group */
+    switch(ConversionGroup)
+    {
+    case ADC_REGULAR_INJECTED_GROUP:
+        tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART);
+        break;
+    case ADC_INJECTED_GROUP:
+        tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART;
+        break;
+    /* Case ADC_REGULAR_GROUP only*/
+    default:
+        tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART;
+        break;
+    }
+    
+    /* Wait for conversion effectively stopped */
+
+    
+    tickstart = HAL_GetTick();
+      
+    while((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != RESET)
+    {
+      if((HAL_GetTick()-tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
+      {
+        /* Update ADC state machine to error */
+        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+        
+        /* Set ADC error code to ADC IP internal error */
+        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+        
+        return HAL_ERROR;
+      }
+    }
+    
+  } /* if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc)) */
+   
+  /* Return HAL status */
+  return HAL_OK;
+}
+
+
+
+/**
+  * @brief  Enable the selected ADC.
+  * @note   Prerequisite condition to use this function: ADC must be disabled
+  *         and voltage regulator must be enabled (done into HAL_ADC_Init()).
+  * @param  hadc: ADC handle
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc)
+{
+  uint32_t tickstart = 0;
+  
+  /* ADC enable and wait for ADC ready (in case of ADC is disabled or         */
+  /* enabling phase not yet completed: flag ADC ready not set yet).           */
+  /* Timeout implemented not to be stuck if ADC cannot be enabled (possible   */
+  /* causes: ADC clock not running, ...).                                     */
+  if (ADC_IS_ENABLE(hadc) == RESET)
+  {
+    /* Check if conditions to enable the ADC are fulfilled */
+    if (ADC_ENABLING_CONDITIONS(hadc) == RESET)
+    {
+      /* Update ADC state machine to error */
+      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+      
+      /* Set ADC error code to ADC IP internal error */
+      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+      
+      return HAL_ERROR;
+    }
+    
+    /* Enable the ADC peripheral */
+    ADC_ENABLE(hadc);
+    
+    
+    /* Wait for ADC effectively enabled */
+    tickstart = HAL_GetTick();  
+    
+    while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET)
+    {
+      /*  If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit 
+          has been cleared (after a calibration), ADEN bit is reset by the 
+          calibration logic.
+			    The workaround is to continue setting ADEN until ADRDY is becomes 1.
+          Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this
+          4 ADC clock cycle duration */
+      ADC_ENABLE(hadc);
+
+      if((HAL_GetTick()-tickstart) > ADC_ENABLE_TIMEOUT)
+      {  
+        /* Update ADC state machine to error */
+        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+        
+        /* Set ADC error code to ADC IP internal error */
+       SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+      
+        return HAL_ERROR;
+      }
+    } 
+  }
+   
+  /* Return HAL status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Disable the selected ADC.
+  * @note   Prerequisite condition to use this function: ADC conversions must be
+  *         stopped.
+  * @param  hadc: ADC handle
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc)
+{
+  uint32_t tickstart = 0;
+  
+  /* Verification if ADC is not already disabled:                             */
+  /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already  */
+  /* disabled.                                                                */
+  if (ADC_IS_ENABLE(hadc) != RESET )
+  {
+    /* Check if conditions to disable the ADC are fulfilled */
+    if (ADC_DISABLING_CONDITIONS(hadc) != RESET)
+    {
+      /* Disable the ADC peripheral */
+      ADC_DISABLE(hadc);
+    }
+    else
+    {
+      /* Update ADC state machine to error */
+      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+      
+      /* Set ADC error code to ADC IP internal error */
+      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+      
+      return HAL_ERROR;
+    }
+     
+    /* Wait for ADC effectively disabled */
+    tickstart = HAL_GetTick();
+    
+    while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN))
+    {
+      if((HAL_GetTick()-tickstart) > ADC_DISABLE_TIMEOUT)
+      { 
+        /* Update ADC state machine to error */
+        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+        
+        /* Set ADC error code to ADC IP internal error */
+        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+        
+        return HAL_ERROR;
+      }
+    }
+  }
+  
+  /* Return HAL status */
+  return HAL_OK;
+}
+
+
+/**
+  * @brief  DMA transfer complete callback. 
+  * @param  hdma: pointer to DMA handle.
+  * @retval None
+  */
+void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
+{
+  /* Retrieve ADC handle corresponding to current DMA handle */
+  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+ 
+  /* Update state machine on conversion status if not in error state */
+  if (HAL_IS_BIT_CLR(hadc->State, (HAL_ADC_STATE_ERROR_INTERNAL|HAL_ADC_STATE_ERROR_DMA)))
+  {
+    /* Update ADC state machine */
+    SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+    /* Is it the end of the regular sequence ? */
+    if (HAL_IS_BIT_SET(hadc->Instance->ISR, ADC_FLAG_EOS))
+    {
+      /* Are conversions software-triggered ? */
+      if(ADC_IS_SOFTWARE_START_REGULAR(hadc))
+      {
+        /* Is CONT bit set ? */
+        if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_CONT) == RESET)
+        {
+          /* CONT bit is not set, no more conversions expected */
+          CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+          if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+          { 
+            SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+          }
+        }
+      }
+    }
+    else
+    {
+      /* DMA End of Transfer interrupt was triggered but conversions sequence
+         is not over. If DMACFG is set to 0, conversions are stopped. */
+      if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMACFG) == RESET)
+      {
+        /* DMACFG bit is not set, conversions are stopped. */
+        CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+        if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+        { 
+          SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+        }
+      }
+    }
+    
+    /* Conversion complete callback */
+    HAL_ADC_ConvCpltCallback(hadc);   
+  }
+  else /* DMA or internal error occurred (or both) */
+  {
+    /* In case of internal error, */
+    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
+    {
+      /* call Error Callback function */
+      HAL_ADC_ErrorCallback(hadc);
+    }
+  
+  }
+  
+
+}
+
+/**
+  * @brief  DMA half transfer complete callback. 
+  * @param  hdma: pointer to DMA handle.
+  * @retval None
+  */
+void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)   
+{
+  /* Retrieve ADC handle corresponding to current DMA handle */
+  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* Half conversion callback */
+  HAL_ADC_ConvHalfCpltCallback(hadc); 
+}
+
+/**
+  * @brief  DMA error callback.
+  * @param  hdma: pointer to DMA handle.
+  * @retval None
+  */
+void ADC_DMAError(DMA_HandleTypeDef *hdma)   
+{
+  /* Retrieve ADC handle corresponding to current DMA handle */
+  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* Change ADC state */
+  SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
+  
+  /* Set ADC error code to DMA error */
+  SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
+  
+  /* Error callback */
+  HAL_ADC_ErrorCallback(hadc); 
+}
+
+
+/**
+  * @}
+  */
+
+
+#endif /* HAL_ADC_MODULE_ENABLED */
+/**
+  * @}
+  */ 
+
+/**
+  * @}
+  */ 
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/