Callum and Adel's changes on 12/02/19
Dependencies: Crypto
main.cpp
- Committer:
- adehadd
- Date:
- 2019-03-14
- Revision:
- 20:c60f4785b556
- Parent:
- 19:805c87360b55
- Child:
- 21:b296db05483d
File content as of revision 20:c60f4785b556:
#include "SHA256.h" #include "mbed.h" // #include <iostream> // #include "rtos.h" /*TODO: Change Indx newCmd MAXCMDLENGTH */ //Photointerrupter input pins #define I1pin D3 #define I2pin D6 #define I3pin D5 //Incremental encoder input pins #define CHApin D12 #define CHBpin D11 //Motor Drive output pins //Mask in output byte #define L1Lpin D1 //0x01 #define L1Hpin A3 //0x02 #define L2Lpin D0 //0x04 #define L2Hpin A6 //0x08 #define L3Lpin D10 //0x10 #define L3Hpin D2 //0x20 #define PWMpin D9 //Motor current sense #define MCSPpin A1 #define MCSNpin A0 //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Drive state to output table const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed //Phase lead to make motor spin const int8_t lead = 2; //2 for forwards, -2 for backwards //Status LED DigitalOut led1(LED1); //Photointerrupter inputs InterruptIn I1(I1pin); InterruptIn I2(I2pin); InterruptIn I3(I3pin); //Motor Drive outputs DigitalOut L1L(L1Lpin); DigitalOut L1H(L1Hpin); DigitalOut L2L(L2Lpin); DigitalOut L2H(L2Hpin); DigitalOut L3L(L3Lpin); DigitalOut L3H(L3Hpin); /*//Declare and start threads class T_{ // protected: public: Thread *p_comm_in; Thread *p_comm_out; Thread *p_motor_ctrl; T_(){ //(priority, stack size, Thread comm_in(osPriorityAboveNormal, 1024); Thread comm_out(osPriorityAboveNormal, 1024); Thread motor_ctrl(osPriorityAboveNormal, 1024); p_comm_in = &comm_in; p_comm_out = &comm_out; p_motor_ctrl = &motor_ctrl; } ~T_(){ if (p_comm_in->get_state() == 2) p_comm_in->terminate(); if (p_comm_out->get_state() == 2) p_comm_out->terminate(); if (p_motor_ctrl->get_state() == 2) p_motor_ctrl->terminate(); } };*/ class Comm /*: public T_*/{ public: Thread t_comm_in; Thread t_comm_out; // Thread *p_motor_ctrl; bool _RUN; RawSerial pc; // Queue<void, 8> inCharQ; // Input Character Queue static const char MsgChar[11]; uint8_t MAXCMDLENGTH; volatile uint8_t cmdIndx; volatile uint8_t inCharQIdx; volatile uint32_t motorPower; // motor toque volatile float targetVel; volatile float targetRot; enum msgType {motorState, posIn, velIn, posOut, velOut, hashRate, keyAdded, nonceMatch, torque, rotations, error}; typedef struct { msgType type; uint32_t message; } msg; Mail<msg, 32> mailStack; void serialISR(){ if (pc.readable()) { char newChar = pc.getc(); // inCharQ.put((void*)newChar); // void* = pointer to an unknown type that cannot be dereferenced if (inCharQIdx == (MAXCMDLENGTH)) { inCharQ[MAXCMDLENGTH] = '\0'; // force the string to have an end character putMessage(error, 1); inCharQIdx = 0; // reset buffer index // pc.putc('\r'); // carriage return moves to the start of the line // for (int i = 0; i < MAXCMDLENGTH; ++i) // { // inCharQ[i] = ' '; // pc.putc(' '); // } // pc.putc('\r'); // carriage return moves to the start of the line } else{ if(newChar != '\r'){ //While the command is not over, inCharQ[inCharQIdx] = newChar; //save input character and inCharQIdx++; //advance index pc.putc(newChar); } else{ inCharQ[inCharQIdx] = '\0'; //When the command is finally over, strncpy(newCmd, inCharQ, MAXCMDLENGTH); // Will copy 18 characters from inCharQ to newCmd cmdParser(); //parse the command for decoding. for (int i = 0; i < MAXCMDLENGTH; ++i) // reset buffer inCharQ[i] = ' '; inCharQIdx = 0; // reset index } } } } /*void commInFn() { // if (_RUN) while (_RUN) { osEvent newEvent = inCharQ.get(); uint8_t newChar = (uint8_t)(newEvent.value.p); // size_t to type cast the 64bit pointer properly pc.putc(newChar); if(cmdIndx >= MAXCMDLENGTH){ //Make sure there is no overflow in comand. cmdIndx = 0; putMessage(error, 1); } else{ if(newChar != '\r'){ //While the command is not over, newCmd[cmdIndx] = newChar; //save input character and cmdIndx++; //advance index } else{ newCmd[cmdIndx] = '\0'; //When the command is finally over, cmdIndx = 0; //reset index and cmdParser(); //parse the command for decoding. } } } }*/ void returnCursor() { pc.putc('>'); for (int i = 0; i < inCharQIdx; ++i) // reset cursor position pc.putc(inCharQ[i]); // for (int i = inCharQIdx; i < MAXCMDLENGTH; ++i) // fill remaining with blanks // pc.putc(' '); // pc.putc('<'); } void cmdParser(){ switch(newCmd[0]) { case 'K': //(MsgChar[keyAdded]):// newKey_mutex.lock(); //Ensure there is no deadlock sscanf(newCmd, "K%x", &newKey); //Find desired the Key code putMessage(keyAdded, newKey); //Print it out newKey_mutex.unlock(); break; case 'V': //(MsgChar[velIn]):// sscanf(newCmd, "V%f", &targetVel); //Find desired the target velocity putMessage(velIn, targetVel); //Print it out break; case 'R': //(MsgChar[posIn]):// sscanf(newCmd, "R%f", &targetRot); //Find desired target rotation putMessage(posIn, targetRot); //Print it out break; case 'T': //(MsgChar[torque]):// sscanf(newCmd, "T%d", &motorPower); //Find desired target torque putMessage(torque, motorPower); //Print it out break; default: break; } } //~~~~~Decode messages to print on serial port~~~~~ void commOutFn() { while (_RUN) { osEvent newEvent = mailStack.get(); msg *pMessage = (msg*)newEvent.value.p; //Case switch to choose serial output based on incoming message switch(pMessage->type) { case motorState: pc.printf("The motor is currently in state %x\n\r", pMessage->message); break; case hashRate: pc.printf("\r>%s< Mining: %.4u Hash/s\r", inCharQ, (uint32_t)pMessage->message); returnCursor(); break; case nonceMatch: pc.printf("\r>%s< Nonce found: %x\r", inCharQ, pMessage->message); returnCursor(); break; case keyAdded: pc.printf("New Key Added:\t0x%016x\n\r", pMessage->message); break; case torque: pc.printf("Motor Torque set to:\t%d\n\r", pMessage->message); break; case velIn: pc.printf("Target Velocity set to:\t%.2f\n\r", targetVel); break; case velOut: pc.printf("Current Velocity:\t%.2f\n\r", \ (float)((int32_t)pMessage->message / 6)); break; case posIn: pc.printf("Target Rotation set to:\t%.2f\n\r", \ (float)((int32_t)pMessage->message / 6)); break; case posOut: pc.printf("Current Position:\t%.2f\n\r", \ (float)((int32_t)pMessage->message / 6)); break; case error: pc.printf("\r>%s< Debugging position:%x\n\r", inCharQ, pMessage->message); for (int i = 0; i < MAXCMDLENGTH; ++i) // reset buffer inCharQ[i] = ' '; break; default: pc.printf("Unknown Error. Message: %x\n\r", pMessage->message); break; } mailStack.free(pMessage); } } //TODO: stop function, maybe use parent deconstructor //void stop_comm{} // public: volatile uint64_t newKey; // hash key Mutex newKey_mutex; // Restrict access to prevent deadlock. Comm() : pc(SERIAL_TX, SERIAL_RX) { // inherit from the RawSerial constructor pc.printf("%s\n\r", "Welcome" ); MAXCMDLENGTH = 18; // reset buffer // MbedOS prints 'Embedded Systems are fun and do awesome things!' // if you print a null terminator pc.putc('>'); for (int i = 0; i < MAXCMDLENGTH; ++i) { inCharQ[i] = '.'; pc.putc('.'); } pc.putc('<'); pc.putc('\r'); inCharQ[MAXCMDLENGTH] = '\0'; strncpy(newCmd, inCharQ, MAXCMDLENGTH); cmdIndx = 0; inCharQIdx = 0; // inCharQIdx = MAXCMDLENGTH-1; pc.attach(callback(this, &Comm::serialISR)); // Thread t_comm_in(osPriorityAboveNormal, 1024); Thread t_comm_out(osPriorityAboveNormal, 1024); // Thread t_motor_ctrl(osPriorityAboveNormal, 1024); motorPower = 300; targetVel = 45.0; targetRot = 459.0; /*MsgChar = {'m', 'R', 'V', 'r', 'v', 'h', 'K', 'n', 'T', 'r', 'e'};*/ } void putMessage(msgType type, uint32_t message){ msg *p_msg = mailStack.alloc(); p_msg->type = type; p_msg->message = message; mailStack.put(p_msg); } void start_comm(){ _RUN = true; // reset buffer // MbedOS prints 'Embedded Systems are fun and do awesome things!' // if you print a null terminator pc.putc('>'); for (int i = 0; i < MAXCMDLENGTH; ++i) { inCharQ[i] = '.'; pc.putc('.'); } pc.putc('<'); pc.putc('\r'); inCharQ[MAXCMDLENGTH] = '\0'; strncpy(newCmd, inCharQ, MAXCMDLENGTH); // returnCursor(); // t_comm_in.start(callback(this, &Comm::commInFn)); // this::thread::wait() // wait(1.0); t_comm_out.start(callback(this, &Comm::commOutFn)); } char newCmd[]; // because unallocated must be defined at the bottom of the class char inCharQ[]; }; //Set a given drive state void motorOut(int8_t driveState){ //Lookup the output byte from the drive state. int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first if (~driveOut & 0x01) L1L = 0; if (~driveOut & 0x02) L1H = 1; if (~driveOut & 0x04) L2L = 0; if (~driveOut & 0x08) L2H = 1; if (~driveOut & 0x10) L3L = 0; if (~driveOut & 0x20) L3H = 1; //Then turn on if (driveOut & 0x01) L1L = 1; if (driveOut & 0x02) L1H = 0; if (driveOut & 0x04) L2L = 1; if (driveOut & 0x08) L2H = 0; if (driveOut & 0x10) L3L = 1; if (driveOut & 0x20) L3H = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState(){ return stateMap[I1 + 2*I2 + 4*I3]; } //Basic synchronisation routine int8_t motorHome() { //Put the motor in drive state 0 and wait for it to stabilise motorOut(0); wait(2.0); //Get the rotor state return readRotorState(); } void stateUpdate(int8_t *params[]) { // () { // **params *params[0] = readRotorState(); int8_t currentState = *params[0]; int8_t offset = *params[1]; motorOut((currentState - offset + lead + 6) % 6); } //Main int main() { // std::ios::sync_with_stdio(false); Comm comm_plz; // comm_plz.pc.printf("%s\n", "do i work bruh" ); // using printf of class is calm SHA256 Miner; uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64, 0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73, 0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E, 0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20, 0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20, 0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint64_t* key = (uint64_t*)((int)sequence + 48); uint64_t* nonce = (uint64_t*)((int)sequence + 56); uint8_t hash[32]; uint32_t length64 = 64; uint32_t hashCounter = 0; Timer timer; comm_plz.start_comm(); // Motor States int8_t orState = 0; //Rotot offset at motor state 0 int8_t currentState = 0; //Rotot offset at motor state 0 int8_t stateList[6]; //Rotot offset at motor state 0 //Run the motor synchronisation orState = motorHome(); // Add callbacks // I1.fall(&stateUpdate); // I2.fall(&stateUpdate); // I3.fall(&stateUpdate); int8_t* params[2]; params[0] = ¤tState; params[1] = &orState; I1.fall(callback(&stateUpdate,params)); I2.fall(callback(&stateUpdate,params)); I3.fall(callback(&stateUpdate,params)); I1.rise(callback(&stateUpdate,params)); I2.rise(callback(&stateUpdate,params)); I3.rise(callback(&stateUpdate,params)); // Push motor to move currentState = readRotorState(); motorOut((currentState-orState+lead+6)%6); // We push it digitally // pc.printf("Rotor origin: %x\n\r",orState); // orState is subtracted from future rotor state inputs to align rotor and motor states // intState = readRotorState(); //if (intState != intStateOld) { // pc.printf("old:%d \t new:%d \t next:%d \n\r",intStateOld, intState, (intState-orState+lead+6)%6); // intStateOld = intState; // motorOut((intState-orState+lead+6)%6); //+6 to make sure the remainder is positive // } // Keep the program running indefinitely timer.start(); // start timer int stateCount = 0; while (1) { // pc.printf("Current:%d \t Next:%d \n\r", currentState, (currentState-orState+lead+6)%6); comm_plz.newKey_mutex.lock(); *key = comm_plz.newKey; comm_plz.newKey_mutex.unlock(); Miner.computeHash(hash, sequence, length64); hashCounter++; if ((hash[0]==0) && (hash[1]==0)){ comm_plz.putMessage((Comm::msgType)7, *nonce); } // Try a new nonce (*nonce)++; if (stateCount<6){ stateList[stateCount] = currentState; stateCount++; } else { //pc.printf("states"); //for(int i = 0; i < 6; ++i) //pc.printf("%02i,", stateList[i]); //pc.printf("\n\r"); stateCount = 0; } // Per Second i.e. when greater or equal to 1 if (timer.read() >= 1){ comm_plz.putMessage((Comm::msgType)5, hashCounter); //pc.printf("HashRate = %02u \n\r",hashCounter); hashCounter=0; timer.reset(); } } }