Callum and Adel's changes on 12/02/19
Dependencies: Crypto
main.cpp
- Committer:
- CallumAlder
- Date:
- 2019-03-05
- Revision:
- 15:2f95f2fb68e3
- Parent:
- 14:4e312fb83330
- Child:
- 16:db7ef0a4aa23
File content as of revision 15:2f95f2fb68e3:
#include "SHA256.h" #include "mbed.h" //#include <iostream> //Photointerrupter input pins #define I1pin D3 #define I2pin D6 #define I3pin D5 //Incremental encoder input pins #define CHApin D12 #define CHBpin D11 //Motor Drive output pins //Mask in output byte #define L1Lpin D1 //0x01 #define L1Hpin A3 //0x02 #define L2Lpin D0 //0x04 #define L2Hpin A6 //0x08 #define L3Lpin D10 //0x10 #define L3Hpin D2 //0x20 #define PWMpin D9 //Motor current sense #define MCSPpin A1 #define MCSNpin A0 //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Drive state to output table const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed //Phase lead to make motor spin const int8_t lead = 2; //2 for forwards, -2 for backwards // Global States // TODO: Can we not use globals? int8_t orState = 0; //Rotot offset at motor state 0 int8_t currentState = 0; //Rotot offset at motor state 0 //Status LED DigitalOut led1(LED1); //Photointerrupter inputs InterruptIn I1(I1pin); InterruptIn I2(I2pin); InterruptIn I3(I3pin); //Motor Drive outputs DigitalOut L1L(L1Lpin); DigitalOut L1H(L1Hpin); DigitalOut L2L(L2Lpin); DigitalOut L2H(L2Hpin); DigitalOut L3L(L3Lpin); DigitalOut L3H(L3Hpin); //Set a given drive state void motorOut(int8_t driveState){ //Lookup the output byte from the drive state. int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first if (~driveOut & 0x01) L1L = 0; if (~driveOut & 0x02) L1H = 1; if (~driveOut & 0x04) L2L = 0; if (~driveOut & 0x08) L2H = 1; if (~driveOut & 0x10) L3L = 0; if (~driveOut & 0x20) L3H = 1; //Then turn on if (driveOut & 0x01) L1L = 1; if (driveOut & 0x02) L1H = 0; if (driveOut & 0x04) L2L = 1; if (driveOut & 0x08) L2H = 0; if (driveOut & 0x10) L3L = 1; if (driveOut & 0x20) L3H = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState(){ return stateMap[I1 + 2*I2 + 4*I3]; } //Basic synchronisation routine int8_t motorHome() { //Put the motor in drive state 0 and wait for it to stabilise motorOut(0); wait(2.0); //Get the rotor state return readRotorState(); } void stateUpdate(/*int8_t *currentState, int8_t offset, int8_t lead*/) { // TODO: Global fix currentState = readRotorState(); motorOut((currentState - orState + lead + 6) % 6); } //Main int main() { //Initialise the serial port Serial pc(SERIAL_TX, SERIAL_RX); pc.printf("Hello\n\r"); // std::ios::sync_with_stdio(false); SHA256::SHA256 Miner; uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64, 0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73, 0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E, 0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20, 0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20, 0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint64_t* key = (uint64_t*)((int)sequence + 48); uint64_t* nonce = (uint64_t*)((int)sequence + 56); uint8_t hash[32]; uint32_t length64 = 64; uint32_t hashCounter = 0; Timer timer; //Run the motor synchronisation orState = motorHome(); // Add callbacks I1.fall(&stateUpdate); I2.fall(&stateUpdate); I3.fall(&stateUpdate); // Push motor to move currentState = readRotorState(); motorOut((currentState-orState+lead+6)%6); // We push it digitally // pc.printf("Rotor origin: %x\n\r",orState); // orState is subtracted from future rotor state inputs to align rotor and motor states // intState = readRotorState(); //if (intState != intStateOld) { // pc.printf("old:%d \t new:%d \t next:%d \n\r",intStateOld, intState, (intState-orState+lead+6)%6); // intStateOld = intState; // motorOut((intState-orState+lead+6)%6); //+6 to make sure the remainder is positive // } // Keep the program running indefinitely timer.start(); // start timer while (1) { // pc.printf("Current:%d \t Next:%d \n\r", currentState, (currentState-orState+lead+6)%6); Miner.computeHash(hash, sequence, length64); hashCounter++; if ((hash[0]==0) && (hash[1]==0)){ pc.printf("hash: "); for(int i = 0; i < 32; ++i) pc.printf("%02x", hash[i]); pc.printf("\n\r"); } (*nonce)++; // Per Second i.e. when greater or equal to 1 if (timer.read() >= 1){ pc.printf("HashRate = %02u \n\r",hashCounter); hashCounter=0; timer.reset(); } } }