Callum and Adel's changes on 12/02/19
Dependencies: Crypto
main.cpp
- Committer:
- CallumAlder
- Date:
- 2019-03-18
- Revision:
- 35:132413ec3d65
- Parent:
- 34:2c6f635cc8e7
- Child:
- 36:d3ad69448670
- Child:
- 37:71adabab284a
File content as of revision 35:132413ec3d65:
#include "SHA256.h" #include "mbed.h" // #include <iostream> // #include "rtos.h" /*TODO: Change Indx newCmd MAXCMDLENGTH move the global variables to a class because we arent paeasents - Mission Failed */ //Photointerrupter input pins #define I1pin D3 #define I2pin D6 #define I3pin D5 //Incremental encoder input pins #define CHApin D12 #define CHBpin D11 //Motor Drive output pins //Mask in output byte #define L1Lpin D1 //0x01 #define L1Hpin A3 //0x02 #define L2Lpin D0 //0x04 #define L2Hpin A6 //0x08 #define L3Lpin D10 //0x10 #define L3Hpin D2 //0x20 #define PWMpin D9 //Motor current sense #define MCSPpin A1 #define MCSNpin A0 //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Status LED DigitalOut led1(LED1); //Photointerrupter inputs InterruptIn I1(I1pin); InterruptIn I2(I2pin); InterruptIn I3(I3pin); //Motor Drive outputs DigitalOut L1L(L1Lpin); DigitalOut L1H(L1Hpin); DigitalOut L2L(L2Lpin); DigitalOut L2H(L2Hpin); DigitalOut L3L(L3Lpin); DigitalOut L3H(L3Hpin); PwmOut pwmCtrl(PWMpin); //Drive state to output table const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed class Comm{ public: Thread t_comm_out; // Thread *p_motor_ctrl; bool _RUN; RawSerial pc; // Queue<void, 8> inCharQ; // Input Character Queue static const char MsgChar[11]; uint8_t MAXCMDLENGTH; volatile uint8_t cmdIndx; volatile uint8_t inCharQIdx; volatile uint32_t motorPower; // motor toque volatile float targetVel; volatile float targetRot; enum msgType {motorState, posIn, velIn, posOut, velOut, hashRate, keyAdded, nonceMatch, torque, rotations, error}; typedef struct { msgType type; uint32_t message; } msg; Mail<msg, 32> mailStack; void serialISR(){ if (pc.readable()) { char newChar = pc.getc(); // inCharQ.put((void*)newChar); // void* = pointer to an unknown type that cannot be dereferenced if (inCharQIdx == (MAXCMDLENGTH)) { inCharQ[MAXCMDLENGTH] = '\0'; // force the string to have an end character putMessage(error, 1); inCharQIdx = 0; // reset buffer index // pc.putc('\r'); // carriage return moves to the start of the line // for (int i = 0; i < MAXCMDLENGTH; ++i) // { // inCharQ[i] = ' '; // pc.putc(' '); // } // pc.putc('\r'); // carriage return moves to the start of the line } else{ if(newChar != '\r'){ //While the command is not over, inCharQ[inCharQIdx] = newChar; //save input character and inCharQIdx++; //advance index pc.putc(newChar); } else{ inCharQ[inCharQIdx] = '\0'; //When the command is finally over, strncpy(newCmd, inCharQ, MAXCMDLENGTH); // Will copy 18 characters from inCharQ to newCmd cmdParser(); //parse the command for decoding. for (int i = 0; i < MAXCMDLENGTH; ++i) // reset buffer inCharQ[i] = ' '; inCharQIdx = 0; // reset index } } } } void returnCursor() { pc.putc('>'); for (int i = 0; i < inCharQIdx; ++i) // reset cursor position pc.putc(inCharQ[i]); // for (int i = inCharQIdx; i < MAXCMDLENGTH; ++i) // fill remaining with blanks // pc.putc(' '); // pc.putc('<'); } void cmdParser(){ switch(newCmd[0]) { case 'K': //(MsgChar[keyAdded]):// newKey_mutex.lock(); //Ensure there is no deadlock sscanf(newCmd, "K%x", &newKey); //Find desired the Key code putMessage(keyAdded, newKey); //Print it out newKey_mutex.unlock(); break; case 'V': //(MsgChar[velIn]):// sscanf(newCmd, "V%f", &targetVel); //Find desired the target velocity putMessage(velIn, targetVel); //Print it out break; case 'R': //(MsgChar[posIn]):// sscanf(newCmd, "R%f", &targetRot); //Find desired target rotation putMessage(posIn, targetRot); //Print it out break; case 'T': //(MsgChar[torque]):// sscanf(newCmd, "T%d", &motorPower); //Find desired target torque putMessage(torque, motorPower); //Print it out break; default: break; } } //~~~~~Decode messages to print on serial port~~~~~ void commOutFn() { while (_RUN) { osEvent newEvent = mailStack.get(); msg *pMessage = (msg *) newEvent.value.p; //Case switch to choose serial output based on incoming message switch (pMessage->type) { case motorState: pc.printf("\r>%s< The motor is currently in state %x\n\r", inCharQ, pMessage->message); break; case hashRate: pc.printf("\r>%s< Mining: %.4u Hash/s\r", inCharQ, (uint32_t) pMessage->message); returnCursor(); break; case nonceMatch: pc.printf("\r>%s< Nonce found: %x\r", inCharQ, pMessage->message); returnCursor(); break; case keyAdded: pc.printf("\r>%s< New Key Added:\t0x%016x\n\r", inCharQ, pMessage->message); break; case torque: pc.printf("\r>%s< Motor Torque set to:\t%d\n\r", inCharQ, pMessage->message); break; case velIn: pc.printf("\r>%s< Target Velocity set to:\t%.2f\n\r", inCharQ, targetVel); break; case velOut: pc.printf("\r>%s< Current Velocity:\t%.2f\n\r", inCharQ, \ (float) ((int32_t) pMessage->message / 6)); break; case posIn: pc.printf("\r>%s< Target Rotation set to:\t%.2f\n\r", inCharQ, \ (float) ((int32_t) pMessage->message / 6)); break; case posOut: pc.printf("\r>%s< Current Position:\t%.2f\n\r", inCharQ, \ (float) ((int32_t) pMessage->message / 6)); break; case error: pc.printf("\r>%s< Debugging position:%x\n\r", inCharQ, pMessage->message); for (int i = 0; i < MAXCMDLENGTH; ++i) // reset buffer inCharQ[i] = ' '; break; default: pc.printf("\r>%s< Unknown Error. Message: %x\n\r", inCharQ, pMessage->message); break; } mailStack.free(pMessage); } } //TODO: stop function, maybe use parent de-constructor //void stop_comm{} // public: volatile uint64_t newKey; // hash key Mutex newKey_mutex; // Restrict access to prevent deadlock. Comm() : pc(SERIAL_TX, SERIAL_RX), t_comm_out(osPriorityAboveNormal, 1024) { // inherit from the RawSerial constructor pc.printf("%s\n\r", "Welcome" ); MAXCMDLENGTH = 18; // reset buffer // MbedOS prints 'Embedded Systems are fun and do awesome things!' // if you print a null terminator pc.putc('>'); for (int i = 0; i < MAXCMDLENGTH; ++i) { inCharQ[i] = '.'; pc.putc('.'); } pc.putc('<'); pc.putc('\r'); inCharQ[MAXCMDLENGTH] = '\0'; strncpy(newCmd, inCharQ, MAXCMDLENGTH); cmdIndx = 0; inCharQIdx = 0; // inCharQIdx = MAXCMDLENGTH-1; pc.attach(callback(this, &Comm::serialISR)); // Thread t_comm_in(osPriorityAboveNormal, 1024); // Thread t_comm_out(osPriorityAboveNormal, 1024); // Thread t_motor_ctrl(osPriorityAboveNormal, 1024); motorPower = 300; targetVel = 45.0; targetRot = 459.0; /*MsgChar = {'m', 'R', 'V', 'r', 'v', 'h', 'K', 'n', 'T', 'r', 'e'};*/ } void putMessage(msgType type, uint32_t message){ msg *p_msg = mailStack.alloc(); p_msg->type = type; p_msg->message = message; mailStack.put(p_msg); } void start_comm(){ _RUN = true; // reset buffer // MbedOS prints 'Embedded Systems are fun and do awesome things!' // if you print a null terminator pc.putc('>'); for (int i = 0; i < MAXCMDLENGTH; ++i) { inCharQ[i] = '.'; pc.putc('.'); } pc.putc('<'); pc.putc('\r'); inCharQ[MAXCMDLENGTH] = '\0'; strncpy(newCmd, inCharQ, MAXCMDLENGTH); // returnCursor(); // t_comm_in.start(callback(this, &Comm::commInFn)); // this::thread::wait() // wait(1.0); t_comm_out.start(callback(this, &Comm::commOutFn)); } char newCmd[]; // because unallocated must be defined at the bottom of the class char inCharQ[]; }; class Motor { protected: int8_t orState; //Rotor offset at motor state 0, motor specific volatile int8_t currentState; //Current Rotor State volatile int8_t stateList[6]; //All possible rotor states stored //Phase lead to make motor spin int8_t lead; Comm* p_comm; bool _RUN; //Run the motor synchronisation float dutyC; // 1 = 100% float mtrPeriod; // motor period uint8_t stateCount[3]; // State Counter uint8_t theStates[3]; // The Key states Thread t_motor_ctrl; // Thread for motor Control uint32_t MAXPWM; public: Motor() : t_motor_ctrl(osPriorityAboveNormal, 1024) { // Set Power to maximum to drive motorHome() dutyC = 1; mtrPeriod = 2e-3; // motor period pwmCtrl.period(mtrPeriod); pwmCtrl.pulsewidth(mtrPeriod*dutyC); orState = motorHome(); //Rotot offset at motor state 0 currentState = readRotorState(); //Current Rotor State // stateList[6] = {0,0,0, 0,0,0}; //All possible rotor states stored lead = 2; //2 for forwards, -2 for backwards theStates[0] = orState; theStates[1] = (orState + lead) % 6; theStates[2] = (orState + (lead*2)) % 6; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; p_comm = NULL; // null pointer for now _RUN = false; MAXPWM = mtrPeriod*dutyC; } void motorStart(Comm *comm) { // Establish Photointerrupter Service Routines (auto choose next state) I1.fall(callback(this, &Motor::stateUpdate)); I2.fall(callback(this, &Motor::stateUpdate)); I3.fall(callback(this, &Motor::stateUpdate)); I1.rise(callback(this, &Motor::stateUpdate)); I2.rise(callback(this, &Motor::stateUpdate)); I3.rise(callback(this, &Motor::stateUpdate)); // push digitally so if motor is static it will start moving motorOut((currentState-orState+lead+6)%6); // We push it digitally // Default a lower duty cylce dutyC = 0.8; pwmCtrl.period(mtrPeriod); pwmCtrl.pulsewidth(mtrPeriod*dutyC); p_comm = comm; _RUN = true; // Start motor control thread t_motor_ctrl.start(callback(this, &Motor::motorCtrlFn)); MAXPWM = mtrPeriod*dutyC; } //Set a given drive state void motorOut(int8_t driveState) { //Lookup the output byte from the drive state. int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first if (~driveOut & 0x01) L1L = 0; if (~driveOut & 0x02) L1H = 1; if (~driveOut & 0x04) L2L = 0; if (~driveOut & 0x08) L2H = 1; if (~driveOut & 0x10) L3L = 0; if (~driveOut & 0x20) L3H = 1; //Then turn on if (driveOut & 0x01) L1L = 1; if (driveOut & 0x02) L1H = 0; if (driveOut & 0x04) L2L = 1; if (driveOut & 0x08) L2H = 0; if (driveOut & 0x10) L3L = 1; if (driveOut & 0x20) L3H = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState() { return stateMap[I1 + 2*I2 + 4*I3]; } //Basic synchronisation routine int8_t motorHome() { //Put the motor in drive state 0 and wait for it to stabilise motorOut(0); wait(2.0); //Get the rotor state return readRotorState(); } void stateUpdate() { // () { // **params currentState = readRotorState(); // Store into state counter if (currentState == theStates[0]) stateCount[0]++; else if (currentState == theStates[1]) stateCount[1]++; else if (currentState == theStates[2]) stateCount[2]++; // (Current - Offset + lead + 6) %6 motorOut((currentState - orState + lead + 6) % 6); } // attach_us -> runs funtion every 100ms void motorCtrlFn() { Ticker motorCtrlTicker; motorCtrlTicker.attach_us(callback(this,&Motor::motorCtrlTick), 1e5); // Init some things uint8_t cpyStateCount[3]; uint8_t cpyCurrentState; int16_t ting[2] = {5,1}; // 360,60 (for degrees), 5,1 (for states) uint8_t iterElementMax; int16_t totalDegrees; int16_t stateDiff; int32_t velocity; //Variable for local velocity calculation int32_t locMotorPos; //Local copy of motor position static int32_t oldMotorPos = 0; //Old motor position used for calculations static uint8_t motorCtrlCounter = 0; //Counter to be reset every 10 iterations to get velocity calculation in seconds int32_t torque; //Local variable to set motor torque float sError; //Velocity error between target and reality float rError; //Rotation error between target and reality static float rErrorOld; //Old rotation error used for calculation //~~~Controller constants~~~~ int32_t Kp1=22; //Proportional controller constants int32_t Kp2=22; //Calculated by trial and error to give optimal accuracy float Kd=15.5; while (_RUN) { t_motor_ctrl.signal_wait((int32_t)0x1); core_util_critical_section_enter(); //Access shared variables here std::copy(stateCount, stateCount+3, cpyStateCount); // TODO: A thing yes cpyCurrentState = currentState; for (int i = 0; i < 3; ++i) { stateCount[i] = 0; } core_util_critical_section_exit(); iterElementMax = std::max_element(cpyStateCount, cpyStateCount+3) - cpyStateCount; totalDegrees = ting[0] * cpyStateCount[iterElementMax]; stateDiff = theStates[iterElementMax]-cpyCurrentState; if (stateDiff >= 0) { totalDegrees = totalDegrees + (ting[1]* stateDiff); } else { totalDegrees = totalDegrees + (ting[1]*stateDiff*-1); } //p_comm->pc.printf("%u,%u,%u,%u. %.6i \r", iterElementMax, cpyStateCount[0],cpyStateCount[1],cpyStateCount[2], (totalDegrees*10)); //~~~~~Speed controller~~~~~~ velocity = totalDegrees*10; sError = (p_comm->targetVel * 6) - abs(velocity); //Read global variable targetVel updated by interrupt and calculate error between target and reality int32_t Ys; //Initialise controller output Ys (s=speed) if (sError == -abs(velocity)) { //Check if user entered V0, Ys = MAXPWM; //and set the output to maximum as specified } else { Ys = (int)(Kp1 * sError); //If the user didn't enter V0 implement controller transfer function: Ys = Kp * (s -|v|) where, } //Ys = controller output, Kp = prop controller constant, s = target velocity and v is the measured velocity //~~~~~Rotation control~~~~~~ rError = p_comm->targetRot - cpyCurrentState; //Read global variable targetRot updated by interrupt and calculate the rotation error. int32_t Yr; //Initialise controller output Yr (r=rotations) Yr = Kp2*rError + Kd*(rError - rErrorOld); //Implement controller transfer function Ys= Kp*Er + Kd* (dEr/dt) rErrorOld = rError; //Update rotation error if(rError < 0){ //Use the sign of the error to set controller wrt direction of rotation Ys = -Ys; } if((velocity>=0 && Ys<Yr) || (velocity<0 && Ys>Yr)){ //Choose Ys or Yr based on distance from target value so that it takes torque = Ys; //appropriate steps in the right direction to reach target value } else { torque = Yr; } if(torque < 0){ //Variable torque cannot be negative since it sets the PWM torque = -torque; //Hence we make the value positive, lead = -2; //and instead set the direction to the opposite one } else { lead = 2; } if(torque > MAXPWM){ //In case the calculated PWM is higher than our maximum 50% allowance, torque = MAXPWM; //Set it to our max. } pwmCtrl.pulsewidth(torque); p_comm->motorPower = torque; //Lastly, update global variable motorPower which is updated by interrupt } } void motorCtrlTick(){ t_motor_ctrl.signal_set(0x1); } }; int main() { // Declare Objects Comm comm_port; SHA256 miner; Motor motor; // Start Motor and Comm Port motor.motorStart(&comm_port); comm_port.start_comm(); // Declare Hash Variables uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64, 0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73, 0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E, 0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20, 0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20, 0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint64_t* key = (uint64_t*)((int)sequence + 48); uint64_t* nonce = (uint64_t*)((int)sequence + 56); uint8_t hash[32]; uint32_t length64 = 64; uint32_t hashCounter = 0; // Begin Main Timer Timer timer; timer.start(); // Loop Program while (1) { // Mutex For Access Control comm_port.newKey_mutex.lock(); *key = comm_port.newKey; comm_port.newKey_mutex.unlock(); // Compute Hash and Counter miner.computeHash(hash, sequence, length64); hashCounter++; // Enum Casting and Condition if ((hash[0]==0) && (hash[1]==0)){ comm_port.putMessage((Comm::msgType)7, *nonce); } // Try Nonce (*nonce)++; // Display via Comm Port if (timer.read() >= 1){ comm_port.putMessage((Comm::msgType)5, hashCounter); hashCounter=0; timer.reset(); } } return 0; }