Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: SX1280PingPong RangignMaster RangingSlave MSNV2-Terminal_V1-6 ... more
sx1280.cpp
- Committer:
- GregCr
- Date:
- 2017-04-10
- Revision:
- 3:6cabb9538041
- Parent:
- 2:62b6e0f59f0f
- Child:
- 4:abf14b677777
File content as of revision 3:6cabb9538041:
/*
______ _
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2016 Semtech
Description: Driver for SX1280 devices
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis, Gregory Cristian and Matthieu Verdy
*/
#include "mbed.h"
#include "sx1280.h"
#include "sx1280-hal.h"
/*!
* \brief ContinuousMode and SingleMode are two particular values for TickTime.
* The ContinuousMode keeps the radio in Rx or Tx mode, even after successfull reception
* or transmission. It should never generate Timeout interrupt.
* The SingleMode lets the radio enought time to make one reception or transmission.
* No Timeout interrupt is generated, and the radio fall in StandBy mode after
* reception or transmission.
*/
TickTime_t ContinuousMode = { RADIO_TICK_SIZE_0015_US, 0xFFFF };
TickTime_t SingleMode = { RADIO_TICK_SIZE_0015_US, 0xFFFF };
/*!
* \brief Radio registers definition
*
*/
typedef struct
{
uint16_t Addr; //!< The address of the register
uint8_t Value; //!< The value of the register
}RadioRegisters_t;
/*!
* \brief Radio hardware registers initialization definition
*/
#define RADIO_INIT_REGISTERS_VALUE { }
/*!
* \brief Radio hardware registers initialization
*/
const RadioRegisters_t RadioRegsInit[] = RADIO_INIT_REGISTERS_VALUE;
void SX1280::Init( void )
{
Reset( );
IoIrqInit( dioIrq );
Wakeup( );
SetRegistersDefault( );
}
void SX1280::SetRegistersDefault( void )
{
for( int16_t i = 0; i < sizeof( RadioRegsInit ) / sizeof( RadioRegisters_t ); i++ )
{
WriteRegister( RadioRegsInit[i].Addr, RadioRegsInit[i].Value );
}
}
uint16_t SX1280::GetFirmwareVersion( void )
{
return( ( ( ReadRegister( 0x0153 ) ) << 8 ) | ( ReadRegister( 0x0154 ) ) );
}
RadioStatus_t SX1280::GetStatus( void )
{
uint8_t stat = 0;
RadioStatus_t status;
ReadCommand( RADIO_GET_STATUS, ( uint8_t * )&stat, 1 );
status.Value = stat;
return( status );
}
RadioOperatingModes_t SX1280::GetOpMode( void )
{
return( OperatingMode );
}
void SX1280::SetSleep( SleepParams_t sleepConfig )
{
uint8_t sleep = ( sleepConfig.WakeUpRTC << 3 ) |
( sleepConfig.InstructionRamRetention << 2 ) |
( sleepConfig.DataBufferRetention << 1 ) |
( sleepConfig.DataRamRetention );
OperatingMode = MODE_SLEEP;
WriteCommand( RADIO_SET_SLEEP, &sleep, 1 );
}
void SX1280::SetStandby( RadioStandbyModes_t standbyConfig )
{
WriteCommand( RADIO_SET_STANDBY, ( uint8_t* )&standbyConfig, 1 );
if( standbyConfig == STDBY_RC )
{
OperatingMode = MODE_STDBY_RC;
}
else
{
OperatingMode = MODE_STDBY_XOSC;
}
}
void SX1280::SetFs( void )
{
WriteCommand( RADIO_SET_FS, 0, 0 );
OperatingMode = MODE_FS;
}
void SX1280::SetTx( TickTime_t timeout )
{
uint8_t buf[3];
buf[0] = timeout.Step;
buf[1] = ( uint8_t )( ( timeout.NbSteps >> 8 ) & 0x00FF );
buf[2] = ( uint8_t )( timeout.NbSteps & 0x00FF );
ClearIrqStatus( IRQ_RADIO_ALL );
// If the radio is doing ranging operations, then apply the specific calls
// prior to SetTx
if( GetPacketType( ) == PACKET_TYPE_RANGING )
{
SetRangingRole( RADIO_RANGING_ROLE_MASTER );
}
WriteCommand( RADIO_SET_TX, buf, 3 );
OperatingMode = MODE_TX;
}
void SX1280::SetRx( TickTime_t timeout )
{
uint8_t buf[3];
buf[0] = timeout.Step;
buf[1] = ( uint8_t )( ( timeout.NbSteps >> 8 ) & 0x00FF );
buf[2] = ( uint8_t )( timeout.NbSteps & 0x00FF );
ClearIrqStatus( IRQ_RADIO_ALL );
// If the radio is doing ranging operations, then apply the specific calls
// prior to SetRx
if( GetPacketType( ) == PACKET_TYPE_RANGING )
{
SetRangingRole( RADIO_RANGING_ROLE_SLAVE );
}
WriteCommand( RADIO_SET_RX, buf, 3 );
OperatingMode = MODE_RX;
}
void SX1280::SetRxDutyCycle( RadioTickSizes_t step, uint16_t nbStepRx, uint16_t nbStepSleep )
{
uint8_t buf[5];
buf[0] = step;
buf[1] = ( uint8_t )( ( nbStepRx >> 8 ) & 0x00FF );
buf[2] = ( uint8_t )( nbStepRx & 0x00FF );
buf[3] = ( uint8_t )( ( nbStepSleep >> 8 ) & 0x00FF );
buf[4] = ( uint8_t )( nbStepSleep & 0x00FF );
WriteCommand( RADIO_SET_RXDUTYCYCLE, buf, 5 );
OperatingMode = MODE_RX;
}
void SX1280::SetCad( void )
{
WriteCommand( RADIO_SET_CAD, 0, 0 );
OperatingMode = MODE_CAD;
}
void SX1280::SetTxContinuousWave( void )
{
WriteCommand( RADIO_SET_TXCONTINUOUSWAVE, 0, 0 );
}
void SX1280::SetTxContinuousPreamble( void )
{
WriteCommand( RADIO_SET_TXCONTINUOUSPREAMBLE, 0, 0 );
}
void SX1280::SetPacketType( RadioPacketTypes_t packetType )
{
// Save packet type internally to avoid questioning the radio
this->PacketType = packetType;
WriteCommand( RADIO_SET_PACKETTYPE, ( uint8_t* )&packetType, 1 );
}
RadioPacketTypes_t SX1280::GetPacketType( void )
{
return this->PacketType;
}
void SX1280::SetRfFrequency( uint32_t frequency )
{
uint8_t buf[3];
uint32_t freq = 0;
freq = ( uint32_t )( ( double )frequency / ( double )FREQ_STEP );
buf[0] = ( uint8_t )( ( freq >> 16 ) & 0xFF );
buf[1] = ( uint8_t )( ( freq >> 8 ) & 0xFF );
buf[2] = ( uint8_t )( freq & 0xFF );
WriteCommand( RADIO_SET_RFFREQUENCY, buf, 3 );
}
void SX1280::SetTxParams( int8_t power, RadioRampTimes_t rampTime )
{
uint8_t buf[2];
// The power value to send on SPI/UART is in the range [0..31] and the
// physical output power is in the range [-18..13]dBm
buf[0] = power + 18;
buf[1] = ( uint8_t )rampTime;
WriteCommand( RADIO_SET_TXPARAMS, buf, 2 );
}
void SX1280::SetCadParams( RadioLoRaCadSymbols_t cadSymbolNum )
{
WriteCommand( RADIO_SET_CADPARAMS, ( uint8_t* )&cadSymbolNum, 1 );
OperatingMode = MODE_CAD;
}
void SX1280::SetBufferBaseAddresses( uint8_t txBaseAddress, uint8_t rxBaseAddress )
{
uint8_t buf[2];
buf[0] = txBaseAddress;
buf[1] = rxBaseAddress;
WriteCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 );
}
void SX1280::SetModulationParams( ModulationParams_t *modulationParams )
{
uint8_t buf[3];
// Check if required configuration corresponds to the stored packet type
// If not, silently update radio packet type
if( this->PacketType != modulationParams->PacketType )
{
this->SetPacketType( modulationParams->PacketType );
}
switch( modulationParams->PacketType )
{
case PACKET_TYPE_GFSK:
buf[0] = modulationParams->Params.Gfsk.BitrateBandwidth;
buf[1] = modulationParams->Params.Gfsk.ModulationIndex;
buf[2] = modulationParams->Params.Gfsk.ModulationShaping;
break;
case PACKET_TYPE_LORA:
case PACKET_TYPE_RANGING:
buf[0] = modulationParams->Params.LoRa.SpreadingFactor;
buf[1] = modulationParams->Params.LoRa.Bandwidth;
buf[2] = modulationParams->Params.LoRa.CodingRate;
this->LoRaBandwidth = modulationParams->Params.LoRa.Bandwidth;
break;
case PACKET_TYPE_FLRC:
buf[0] = modulationParams->Params.Flrc.BitrateBandwidth;
buf[1] = modulationParams->Params.Flrc.CodingRate;
buf[2] = modulationParams->Params.Flrc.ModulationShaping;
break;
case PACKET_TYPE_BLE:
buf[0] = modulationParams->Params.Ble.BitrateBandwidth;
buf[1] = modulationParams->Params.Ble.ModulationIndex;
buf[2] = modulationParams->Params.Ble.ModulationShaping;
break;
case PACKET_TYPE_NONE:
buf[0] = NULL;
buf[1] = NULL;
buf[2] = NULL;
break;
}
WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, 3 );
}
void SX1280::SetPacketParams( PacketParams_t *packetParams )
{
uint8_t buf[7];
// Check if required configuration corresponds to the stored packet type
// If not, silently update radio packet type
if( this->PacketType != packetParams->PacketType )
{
this->SetPacketType( packetParams->PacketType );
}
switch( packetParams->PacketType )
{
case PACKET_TYPE_GFSK:
buf[0] = packetParams->Params.Gfsk.PreambleLength;
buf[1] = packetParams->Params.Gfsk.SyncWordLength;
buf[2] = packetParams->Params.Gfsk.SyncWordMatch;
buf[3] = packetParams->Params.Gfsk.HeaderType;
buf[4] = packetParams->Params.Gfsk.PayloadLength;
buf[5] = packetParams->Params.Gfsk.CrcLength;
buf[6] = packetParams->Params.Gfsk.Whitening;
break;
case PACKET_TYPE_LORA:
case PACKET_TYPE_RANGING:
buf[0] = packetParams->Params.LoRa.PreambleLength;
buf[1] = packetParams->Params.LoRa.HeaderType;
buf[2] = packetParams->Params.LoRa.PayloadLength;
buf[3] = packetParams->Params.LoRa.CrcMode;
buf[4] = packetParams->Params.LoRa.InvertIQ;
buf[5] = NULL;
buf[6] = NULL;
break;
case PACKET_TYPE_FLRC:
buf[0] = packetParams->Params.Flrc.PreambleLength;
buf[1] = packetParams->Params.Flrc.SyncWordLength;
buf[2] = packetParams->Params.Flrc.SyncWordMatch;
buf[3] = packetParams->Params.Flrc.HeaderType;
buf[4] = packetParams->Params.Flrc.PayloadLength;
buf[5] = packetParams->Params.Flrc.CrcLength;
buf[6] = packetParams->Params.Flrc.Whitening;
break;
case PACKET_TYPE_BLE:
buf[0] = packetParams->Params.Ble.ConnectionState;
buf[1] = packetParams->Params.Ble.CrcField;
buf[2] = packetParams->Params.Ble.BlePacketType;
buf[3] = packetParams->Params.Ble.Whitening;
buf[4] = NULL;
buf[5] = NULL;
buf[6] = NULL;
break;
case PACKET_TYPE_NONE:
buf[0] = NULL;
buf[1] = NULL;
buf[2] = NULL;
buf[3] = NULL;
buf[4] = NULL;
buf[5] = NULL;
buf[6] = NULL;
break;
}
WriteCommand( RADIO_SET_PACKETPARAMS, buf, 7 );
}
void SX1280::GetRxBufferStatus( uint8_t *payloadLength, uint8_t *rxStartBufferPointer )
{
uint8_t status[2];
ReadCommand( RADIO_GET_RXBUFFERSTATUS, status, 2 );
// In case of LORA fixed header, the payloadLength is obtained by reading
// the register REG_LR_PAYLOADLENGTH
if( ( this -> GetPacketType( ) == PACKET_TYPE_LORA ) && ( ReadRegister( REG_LR_PACKETPARAMS ) >> 7 == 1 ) )
{
*payloadLength = ReadRegister( REG_LR_PAYLOADLENGTH );
}
else
{
*payloadLength = status[0];
}
*rxStartBufferPointer = status[1];
}
void SX1280::GetPacketStatus( PacketStatus_t *pktStatus )
{
uint8_t status[5];
ReadCommand( RADIO_GET_PACKETSTATUS, status, 5 );
pktStatus->packetType = this -> GetPacketType( );
switch( pktStatus->packetType )
{
case PACKET_TYPE_GFSK:
pktStatus->Gfsk.RssiSync = -( status[1] / 2 );
pktStatus->Gfsk.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
pktStatus->Gfsk.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
pktStatus->Gfsk.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
pktStatus->Gfsk.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
pktStatus->Gfsk.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
pktStatus->Gfsk.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
pktStatus->Gfsk.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
pktStatus->Gfsk.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
pktStatus->Gfsk.TxRxStatus.PacketSent = status[3] & 0x01;
pktStatus->Gfsk.SyncAddrStatus = status[4] & 0x07;
break;
case PACKET_TYPE_LORA:
case PACKET_TYPE_RANGING:
pktStatus->LoRa.RssiPkt = -( status[0] / 2 );
( status[1] < 128 ) ? ( pktStatus->LoRa.SnrPkt = status[1] / 4 ) : ( pktStatus->LoRa.SnrPkt = ( ( status[1] - 256 ) /4 ) );
pktStatus->LoRa.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
pktStatus->LoRa.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
pktStatus->LoRa.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
pktStatus->LoRa.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
pktStatus->LoRa.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
pktStatus->LoRa.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
pktStatus->LoRa.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
pktStatus->LoRa.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
pktStatus->LoRa.TxRxStatus.PacketSent = status[3] & 0x01;
pktStatus->LoRa.SyncAddrStatus = status[4] & 0x07;
break;
case PACKET_TYPE_FLRC:
pktStatus->Flrc.RssiSync = -( status[1] / 2 );
pktStatus->Flrc.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
pktStatus->Flrc.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
pktStatus->Flrc.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
pktStatus->Flrc.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
pktStatus->Flrc.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
pktStatus->Flrc.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
pktStatus->Flrc.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
pktStatus->Flrc.TxRxStatus.RxPid = ( status[3] >> 6 ) & 0x03;
pktStatus->Flrc.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
pktStatus->Flrc.TxRxStatus.RxPidErr = ( status[3] >> 4 ) & 0x01;
pktStatus->Flrc.TxRxStatus.PacketSent = status[3] & 0x01;
pktStatus->Flrc.SyncAddrStatus = status[4] & 0x07;
break;
case PACKET_TYPE_BLE:
pktStatus->Ble.RssiSync = -( status[1] / 2 );
pktStatus->Ble.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
pktStatus->Ble.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
pktStatus->Ble.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
pktStatus->Ble.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
pktStatus->Ble.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
pktStatus->Ble.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
pktStatus->Ble.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
pktStatus->Ble.TxRxStatus.PacketSent = status[3] & 0x01;
pktStatus->Ble.SyncAddrStatus = status[4] & 0x07;
break;
case PACKET_TYPE_NONE:
// In that specific case, we set everything in the pktStatus to zeros
// and reset the packet type accordingly
memset( pktStatus, 0, sizeof( PacketStatus_t ) );
pktStatus->packetType = PACKET_TYPE_NONE;
break;
}
}
int8_t SX1280::GetRssiInst( void )
{
uint8_t raw = 0;
ReadCommand( RADIO_GET_RSSIINST, &raw, 1 );
return ( int8_t ) ( -raw / 2 );
}
void SX1280::SetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask )
{
uint8_t buf[8];
buf[0] = ( uint8_t )( ( irqMask >> 8 ) & 0x00FF );
buf[1] = ( uint8_t )( irqMask & 0x00FF );
buf[2] = ( uint8_t )( ( dio1Mask >> 8 ) & 0x00FF );
buf[3] = ( uint8_t )( dio1Mask & 0x00FF );
buf[4] = ( uint8_t )( ( dio2Mask >> 8 ) & 0x00FF );
buf[5] = ( uint8_t )( dio2Mask & 0x00FF );
buf[6] = ( uint8_t )( ( dio3Mask >> 8 ) & 0x00FF );
buf[7] = ( uint8_t )( dio3Mask & 0x00FF );
WriteCommand( RADIO_SET_DIOIRQPARAMS, buf, 8 );
}
uint16_t SX1280::GetIrqStatus( void )
{
uint8_t irqStatus[2];
ReadCommand( RADIO_GET_IRQSTATUS, irqStatus, 2 );
return ( irqStatus[0] << 8 ) | irqStatus[1];
}
void SX1280::ClearIrqStatus( uint16_t irq )
{
uint8_t buf[2];
buf[0] = ( uint8_t )( ( ( uint16_t )irq >> 8 ) & 0x00FF );
buf[1] = ( uint8_t )( ( uint16_t )irq & 0x00FF );
WriteCommand( RADIO_CLR_IRQSTATUS, buf, 2 );
}
void SX1280::Calibrate( CalibrationParams_t calibParam )
{
uint8_t cal = ( calibParam.ADCBulkPEnable << 5 ) |
( calibParam.ADCBulkNEnable << 4 ) |
( calibParam.ADCPulseEnable << 3 ) |
( calibParam.PLLEnable << 2 ) |
( calibParam.RC13MEnable << 1 ) |
( calibParam.RC64KEnable );
WriteCommand( RADIO_CALIBRATE, &cal, 1 );
}
void SX1280::SetRegulatorMode( RadioRegulatorModes_t mode )
{
WriteCommand( RADIO_SET_REGULATORMODE, ( uint8_t* )&mode, 1 );
}
void SX1280::SetSaveContext( void )
{
WriteCommand( RADIO_SET_SAVECONTEXT, 0, 0 );
}
void SX1280::SetAutoTx( uint16_t time )
{
uint16_t compensatedTime = time - ( uint16_t )AUTO_TX_OFFSET;
uint8_t buf[2];
buf[0] = ( uint8_t )( ( compensatedTime >> 8 ) & 0x00FF );
buf[1] = ( uint8_t )( compensatedTime & 0x00FF );
WriteCommand( RADIO_SET_AUTOTX, buf, 2 );
}
void SX1280::SetAutoFs( bool enableAutoFs )
{
WriteCommand( RADIO_SET_AUTORX, ( uint8_t * )&enableAutoFs, 1 );
}
void SX1280::SetLongPreamble( bool enable )
{
WriteCommand( RADIO_SET_LONGPREAMBLE, ( uint8_t * )&enable, 1 );
}
void SX1280::SetPayload( uint8_t *buffer, uint8_t size, uint8_t offset )
{
WriteBuffer( offset, buffer, size );
}
uint8_t SX1280::GetPayload( uint8_t *buffer, uint8_t *size , uint8_t maxSize )
{
uint8_t offset;
GetRxBufferStatus( size, &offset );
if( *size > maxSize )
{
return 1;
}
ReadBuffer( offset, buffer, *size );
return 0;
}
void SX1280::SendPayload( uint8_t *payload, uint8_t size, TickTime_t timeout, uint8_t offset )
{
SetPayload( payload, size, offset );
SetTx( timeout );
}
uint8_t SX1280::SetSyncWord( uint8_t syncWordIdx, uint8_t *syncWord )
{
uint16_t addr;
uint8_t syncwordSize = 0;
switch( GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
syncwordSize = 5;
switch( syncWordIdx )
{
case 1:
addr = REG_LR_SYNCWORDBASEADDRESS1;
break;
case 2:
addr = REG_LR_SYNCWORDBASEADDRESS2;
break;
case 3:
addr = REG_LR_SYNCWORDBASEADDRESS3;
break;
default:
return 1;
}
break;
case PACKET_TYPE_FLRC:
// For FLRC packet type, the SyncWord is one byte shorter and
// the base address is shifted by one byte
syncwordSize = 4;
switch( syncWordIdx )
{
case 1:
addr = REG_LR_SYNCWORDBASEADDRESS1 + 1;
break;
case 2:
addr = REG_LR_SYNCWORDBASEADDRESS2 + 1;
break;
case 3:
addr = REG_LR_SYNCWORDBASEADDRESS3 + 1;
break;
default:
return 1;
}
break;
case PACKET_TYPE_BLE:
// For Ble packet type, only the first SyncWord is used and its
// address is shifted by one byte
syncwordSize = 4;
switch( syncWordIdx )
{
case 1:
addr = REG_LR_SYNCWORDBASEADDRESS1 + 1;
break;
default:
return 1;
}
break;
default:
return 1;
}
WriteRegister( addr, syncWord, syncwordSize );
return 0;
}
void SX1280::SetSyncWordErrorTolerance( uint8_t ErrorBits )
{
ErrorBits = ( ReadRegister( REG_LR_SYNCWORDTOLERANCE ) & 0xF0 ) | ( ErrorBits & 0x0F );
WriteRegister( REG_LR_SYNCWORDTOLERANCE, ErrorBits );
}
void SX1280::SetCrcSeed( uint16_t seed )
{
uint8_t val[2];
val[0] = ( uint8_t )( seed >> 8 ) & 0xFF;
val[1] = ( uint8_t )( seed & 0xFF );
switch( GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
case PACKET_TYPE_FLRC:
WriteRegister( REG_LR_CRCSEEDBASEADDR, val, 2 );
break;
default:
break;
}
}
void SX1280::SetCrcPolynomial( uint16_t polynomial )
{
uint8_t val[2];
val[0] = ( uint8_t )( polynomial >> 8 ) & 0xFF;
val[1] = ( uint8_t )( polynomial & 0xFF );
switch( GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
case PACKET_TYPE_FLRC:
WriteRegister( REG_LR_CRCPOLYBASEADDR, val, 2 );
break;
default:
break;
}
}
void SX1280::SetWhiteningSeed( uint8_t seed )
{
switch( GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
case PACKET_TYPE_FLRC:
case PACKET_TYPE_BLE:
WriteRegister( REG_LR_WHITSEEDBASEADDR, seed );
break;
default:
break;
}
}
void SX1280::SetRangingIdLength( RadioRangingIdCheckLengths_t length )
{
switch( GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
WriteRegister( REG_LR_RANGINGIDCHECKLENGTH, ( ( ( ( uint8_t )length ) & 0x03 ) << 6 ) | ( ReadRegister( REG_LR_RANGINGIDCHECKLENGTH ) & 0x3F ) );
break;
default:
break;
}
}
void SX1280::SetDeviceRangingAddress( uint32_t address )
{
uint8_t addrArray[] = { address >> 24, address >> 16, address >> 8, address };
switch( GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
WriteRegister( REG_LR_DEVICERANGINGADDR, addrArray, 4 );
break;
default:
break;
}
}
void SX1280::SetRangingRequestAddress( uint32_t address )
{
uint8_t addrArray[] = { address >> 24, address >> 16, address >> 8, address };
switch( GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
WriteRegister( REG_LR_REQUESTRANGINGADDR, addrArray, 4 );
break;
default:
break;
}
}
double SX1280::GetRangingResult( RadioRangingResultTypes_t resultType )
{
uint32_t valLsb = 0;
double val = 0.0;
switch( GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
this->SetStandby( STDBY_XOSC );
this->WriteRegister( 0x97F, this->ReadRegister( 0x97F ) | ( 1 << 1 ) ); // enable LORA modem clock
WriteRegister( REG_LR_RANGINGRESULTCONFIG, ( ReadRegister( REG_LR_RANGINGRESULTCONFIG ) & MASK_RANGINGMUXSEL ) | ( ( ( ( uint8_t )resultType ) & 0x03 ) << 4 ) );
valLsb = ( ( ReadRegister( REG_LR_RANGINGRESULTBASEADDR ) << 16 ) | ( ReadRegister( REG_LR_RANGINGRESULTBASEADDR + 1 ) << 8 ) | ( ReadRegister( REG_LR_RANGINGRESULTBASEADDR + 2 ) ) );
this->SetStandby( STDBY_RC );
// Convertion from LSB to distance. For explanation on the formula, refer to Datasheet of SX1280
switch( resultType )
{
case RANGING_RESULT_RAW:
// Convert the ranging LSB to distance in meter
// The theoretical conversion from register value to distance [m] is given by:
//distance [m] = ( complement2( register ) * 150 ) / ( 2^12 * bandwidth[MHz] ) )
// The API provide BW in [Hz] so the implemented formula is complement2( register ) / bandwidth[Hz] * A,
// where A = 150 / (2^12 / 1e6) = 36621.09
val = ( double )complement2( valLsb, 24 ) / ( double )this->GetLoRaBandwidth( ) * 36621.09375;
break;
case RANGING_RESULT_AVERAGED:
case RANGING_RESULT_DEBIASED:
case RANGING_RESULT_FILTERED:
val = ( double )valLsb * 20.0 / 100.0;
break;
default:
val = 0.0;
}
break;
default:
break;
}
return val;
}
void SX1280::SetRangingCalibration( uint16_t cal )
{
switch( GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
WriteRegister( REG_LR_RANGINGRERXTXDELAYCAL, ( uint8_t )( ( cal >> 8 ) & 0xFF ) );
WriteRegister( REG_LR_RANGINGRERXTXDELAYCAL + 1, ( uint8_t )( ( cal ) & 0xFF ) );
break;
default:
break;
}
}
void SX1280::RangingClearFilterResult( void )
{
uint8_t regVal = ReadRegister( REG_LR_RANGINGRESULTCLEARREG );
// To clear result, set bit 5 to 1 then to 0
WriteRegister( REG_LR_RANGINGRESULTCLEARREG, regVal | ( 1 << 5 ) );
WriteRegister( REG_LR_RANGINGRESULTCLEARREG, regVal & ( ~( 1 << 5 ) ) );
}
void SX1280::RangingSetFilterNumSamples( uint8_t num )
{
// Silently set 8 as minimum value
WriteRegister( REG_LR_RANGINGFILTERWINDOWSIZE, ( num < DEFAULT_RANGING_FILTER_SIZE ) ? DEFAULT_RANGING_FILTER_SIZE : num );
}
void SX1280::SetRangingRole( RadioRangingRoles_t role )
{
uint8_t buf[1];
buf[0] = role;
WriteCommand( RADIO_SET_RANGING_ROLE, &buf[0], 1 );
}
double SX1280::GetFrequencyError( )
{
uint8_t efeRaw[3] = {0};
uint32_t efe = 0;
double efeHz = 0.0;
switch( this->GetPacketType( ) )
{
case PACKET_TYPE_LORA:
case PACKET_TYPE_RANGING:
efeRaw[0] = this->ReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB );
efeRaw[1] = this->ReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB + 1 );
efeRaw[2] = this->ReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB + 2 );
efe = ( efeRaw[0]<<16 ) | ( efeRaw[1]<<8 ) | efeRaw[2];
efe &= REG_LR_ESTIMATED_FREQUENCY_ERROR_MASK;
efeHz = 1.55 * ( double )complement2( efe, 20 ) / ( 1600.0 / ( double )this->GetLoRaBandwidth( ) * 1000.0 );
break;
case PACKET_TYPE_NONE:
case PACKET_TYPE_BLE:
case PACKET_TYPE_FLRC:
case PACKET_TYPE_GFSK:
break;
}
return efeHz;
}
void SX1280::SetPollingMode( void )
{
this->PollingMode = true;
}
int32_t SX1280::complement2( const uint32_t num, const uint8_t bitCnt )
{
int32_t retVal = ( int32_t )num;
if( num >= 2<<( bitCnt - 2 ) )
{
retVal -= 2<<( bitCnt - 1 );
}
return retVal;
}
int32_t SX1280::GetLoRaBandwidth( )
{
int32_t bwValue = 0;
switch( this->LoRaBandwidth )
{
case LORA_BW_0200:
bwValue = 203125;
break;
case LORA_BW_0400:
bwValue = 406250;
break;
case LORA_BW_0800:
bwValue = 812500;
break;
case LORA_BW_1600:
bwValue = 1625000;
break;
default:
bwValue = 0;
}
return bwValue;
}
void SX1280::SetInterruptMode( void )
{
this->PollingMode = false;
}
void SX1280::OnDioIrq( void )
{
/*
* When polling mode is activated, it is up to the application to call
* ProcessIrqs( ). Otherwise, the driver automatically calls ProcessIrqs( )
* on radio interrupt.
*/
if( this->PollingMode == true )
{
this->IrqState = true;
}
else
{
this->ProcessIrqs( );
}
}
void SX1280::ProcessIrqs( void )
{
RadioPacketTypes_t packetType = PACKET_TYPE_NONE;
if( this->PollingMode == true )
{
if( this->IrqState == true )
{
__disable_irq( );
this->IrqState = false;
__enable_irq( );
}
else
{
return;
}
}
packetType = GetPacketType( );
uint16_t irqRegs = GetIrqStatus( );
ClearIrqStatus( IRQ_RADIO_ALL );
#if( SX1280_DEBUG == 1 )
DigitalOut TEST_PIN_1( D14 );
DigitalOut TEST_PIN_2( D15 );
for( int i = 0x8000; i != 0; i >>= 1 )
{
TEST_PIN_2 = 0;
TEST_PIN_1 = ( ( irqRegs & i ) != 0 ) ? 1 : 0;
TEST_PIN_2 = 1;
}
TEST_PIN_1 = 0;
TEST_PIN_2 = 0;
#endif
switch( packetType )
{
case PACKET_TYPE_GFSK:
case PACKET_TYPE_FLRC:
case PACKET_TYPE_BLE:
switch( OperatingMode )
{
case MODE_RX:
if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
{
if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
{
if( rxError != NULL )
{
rxError( IRQ_CRC_ERROR_CODE );
}
}
else if( ( irqRegs & IRQ_SYNCWORD_ERROR ) == IRQ_SYNCWORD_ERROR )
{
if( rxError != NULL )
{
rxError( IRQ_SYNCWORD_ERROR_CODE );
}
}
else
{
if( rxDone != NULL )
{
rxDone( );
}
}
}
if( ( irqRegs & IRQ_SYNCWORD_VALID ) == IRQ_SYNCWORD_VALID )
{
if( rxSyncWordDone != NULL )
{
rxSyncWordDone( );
}
}
if( ( irqRegs & IRQ_SYNCWORD_ERROR ) == IRQ_SYNCWORD_ERROR )
{
if( rxError != NULL )
{
rxError( IRQ_SYNCWORD_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( rxTimeout != NULL )
{
rxTimeout( );
}
}
break;
case MODE_TX:
if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
{
if( txDone != NULL )
{
txDone( );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( txTimeout != NULL )
{
txTimeout( );
}
}
break;
default:
// Unexpected IRQ: silently returns
break;
}
break;
case PACKET_TYPE_LORA:
switch( OperatingMode )
{
case MODE_RX:
if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
{
if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
{
if( rxError != NULL )
{
rxError( IRQ_CRC_ERROR_CODE );
}
}
else
{
if( rxDone != NULL )
{
rxDone( );
}
}
}
if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
{
if( rxHeaderDone != NULL )
{
rxHeaderDone( );
}
}
if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
{
if( rxError != NULL )
{
rxError( IRQ_HEADER_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( rxTimeout != NULL )
{
rxTimeout( );
}
}
if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_DISCARDED ) == IRQ_RANGING_SLAVE_REQUEST_DISCARDED )
{
if( rxError != NULL )
{
rxError( IRQ_RANGING_ON_LORA_ERROR_CODE );
}
}
break;
case MODE_TX:
if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
{
if( txDone != NULL )
{
txDone( );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( txTimeout != NULL )
{
txTimeout( );
}
}
break;
case MODE_CAD:
if( ( irqRegs & IRQ_CAD_DONE ) == IRQ_CAD_DONE )
{
if( ( irqRegs & IRQ_CAD_ACTIVITY_DETECTED ) == IRQ_CAD_ACTIVITY_DETECTED )
{
if( cadDone != NULL )
{
cadDone( true );
}
}
else
{
if( cadDone != NULL )
{
cadDone( false );
}
}
}
else if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( rxTimeout != NULL )
{
rxTimeout( );
}
}
break;
default:
// Unexpected IRQ: silently returns
break;
}
break;
case PACKET_TYPE_RANGING:
switch( OperatingMode )
{
// MODE_RX indicates an IRQ on the Slave side
case MODE_RX:
if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_DISCARDED ) == IRQ_RANGING_SLAVE_REQUEST_DISCARDED )
{
if( rangingDone != NULL )
{
rangingDone( IRQ_RANGING_SLAVE_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_VALID ) == IRQ_RANGING_SLAVE_REQUEST_VALID )
{
if( rangingDone != NULL )
{
rangingDone( IRQ_RANGING_SLAVE_VALID_CODE );
}
}
if( ( irqRegs & IRQ_RANGING_SLAVE_RESPONSE_DONE ) == IRQ_RANGING_SLAVE_RESPONSE_DONE )
{
if( rangingDone != NULL )
{
rangingDone( IRQ_RANGING_SLAVE_VALID_CODE );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( rangingDone != NULL )
{
rangingDone( IRQ_RANGING_SLAVE_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
{
if( rxHeaderDone != NULL )
{
rxHeaderDone( );
}
}
if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
{
if( rxError != NULL )
{
rxError( IRQ_HEADER_ERROR_CODE );
}
}
break;
// MODE_TX indicates an IRQ on the Master side
case MODE_TX:
if( ( irqRegs & IRQ_RANGING_MASTER_RESULT_TIMEOUT ) == IRQ_RANGING_MASTER_RESULT_TIMEOUT )
{
if( rangingDone != NULL )
{
rangingDone( IRQ_RANGING_MASTER_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_RANGING_MASTER_RESULT_VALID ) == IRQ_RANGING_MASTER_RESULT_VALID )
{
if( rangingDone != NULL )
{
rangingDone( IRQ_RANGING_MASTER_VALID_CODE );
}
}
break;
default:
// Unexpected IRQ: silently returns
break;
}
break;
default:
// Unexpected IRQ: silently returns
break;
}
}
SX1280RF1ZHP