Demonstration of Class-A LoRaWAN device using NAMote-72

Dependencies:   LoRaWAN-lib mbed lib_mpl3115a2 lib_mma8451q lib_gps SX1272Lib

Dependents:   LoRaWAN-NAMote72-BVS-confirmed-tester-0-7v1_copy

LoRaWAN-NAMote72 Application Demo is a Class-A device example project using LoRaWAN-lib and SX1272Lib libraries.

This project is compliant with LoRaWAN V1.0.1 specification.

Comissioning.h (LoRaWAN Network Configuration)

The end-device can be activated in one of the two ways:

Over the Air (OTA) activation can be enabled as shown in the figure below. /media/uploads/ubhat/ota_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_EUI (8 Bytes) : Fist 3 Bytes is the Organizationally Unique Identifier (OUI) followed by 5 bytes of unique ID. If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_APPLICATION_EUI (8 Bytes)
  • LORAWAN_APPLICATION_KEY (or DEVKEY) (16 Bytes)

/media/uploads/ubhat/ota_eui.png

Activation by Personalization (ABP) can be enabled as shown in the figure below. /media/uploads/ubhat/abp_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_ADDRESS (4 Bytes) : If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_NWKSKEY (16 Bytes)
  • LORAWAN_APPSKEY (16 Bytes)

/media/uploads/ubhat/abp_key.png

Config.h (LoRaWAN Communication Parameters)

  • Mode of Operation : Hybrid If the end-device needs to be configured to operate over 8-channels, then Hybrid Mode needs to be enabled /media/uploads/ubhat/hybridenable.png
  • Mode of Operation : Frequency Hop If the end-device needs to be configured to operate over 64-channels, then Hybrid Mode needs to be disabled
  • Delay between successive JOIN REQUESTs : The delay between successive Join Requests (until the end-device joins the network) can be configured using the parameter OVER_THE_AIR_ACTIVATION_DUTYCYCLE
  • Inter-Frame Delay : One can change the delay between each frame transmission using APP_TX_DUTYCYCLE It is advisable that APP_TX_DUTYCYCLE is greater than or equal to 3sec.
  • Data Rate : The data rate can be configured as per LoRaWAN specification using the paramter LORAWAN_DEFAULT_DATARATE. The range of values are DR_0, DR_1, DR_2, DR_3 and DR_4
  • Confirmed/Unconfirmed Messages : The uplink message or payload can be chosen to be confirmed or unconfirmed using the parameter LORAWAN_CONFIRMED_MSG_ON. When set to 1, the transmitted messages need to be confirmed with an ACK by the network server in the subsequent RX window. When set to 0, no ACK is requested.
  • ADR ON/OFF : The ADR can be enabled or disabled using the parameter LORAWAN_ADR_ON. When set to 1, ADR is enabled and disabled when set to 0.
  • Application Port : The application port can be set using parameter LORAWAN_APP_PORT.
  • Payload Length : The lenght of the payload (in bytes) to be transmitted can be configured using LORAWAN_APP_DATA_SIZE
  • Transmit Power : The transmit power can be configured using LORAWAN_TX_POWER (LoRaMAC verifies if the set power is compliant with the LoRaWAN spec and FCC guidelines)

/media/uploads/ubhat/loraconfig.png

Main.cpp (Device State Machine)

The end-device state machine is defined.

  • Initial State : Device is initialized.
  • Join State : For OTA, Join Request is transmitted to the network until Join Accept is received by the end-device. Join event function is called that sets Red LED ON.
  • Send State : Transmit payload frame is prepared. Tx event is called that blinks the Red LED indicating uplink transmission.
  • Cycle State : Next packet transmission is scheduled

LoRaEventProc.cpp (Events and On-board Application)

Define events during Join, Tx & Rx. Prepare TX packet by appending with appropriate application data.

/media/uploads/ubhat/lora_events.png

  • PrepareLoRaFrame(uint8_t port ) : Prepare LoRa payload frame with on-board application data such as GPS, Temperature, Battery, etc. LoRa.ApplicationCall(AppType ) calls application AppType defined in LoRaApp.cpp. AppType is defined in LoRaApp.h

/media/uploads/ubhat/lora_app.png

LoRaApp.cpp

User-defined applications such as GPS, Temp, Accelerometer, LED indications etc. Event based actions such as LED blink on Tx, LED toggle on downlink etc /media/uploads/ubhat/apptype.png

LoRaDeviceStateProc.cpp

Process function calls corresponding to different Device states /media/uploads/ubhat/device_state.png

LoRaMacLayerService.cpp

Define MAC Layer Services: MLME & MCPS

Serial Terminal Display

By using a serial port connection using applications such as teraterm or putty, one can view the status of the End-Device. Once the End-Device Joins the network, transmission parameters such as payload data, application port, message type etc. are displayed on the terminal.

/media/uploads/ubhat/serial.png

Default Application Payload

This application defaults to sending uplink data to logical port 5. The application payload consists of: /media/uploads/jknapp_smtc/payload.png

Sample Application Payload Calculation for Longitude/Latitude

Payload => 00 19 F6 352BBA A94C20 FFFF

Temperature Calculation

19H => 2510

Temp = 25/2 = 12.5 oC

Battery Level

FFH => 100 %

F6H => 96.5 %

Longitude Calculation

longitude = A94C20H => 1109507210

longitudinal coordinate = -360 + (longitude10 x 180/(223))

longitudinal coordinate = -121.93

Latitude Calculation

latitude = 352BBAH = 348460210

latitude coordinate = (latitude10 x 90/(223-1))

latitude coordinate = 37.39

Committer:
ubhat
Date:
Tue May 17 00:21:55 2016 +0000
Revision:
0:69f2e28d12c1
Project for LoRa Bootcamp

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ubhat 0:69f2e28d12c1 1 /**************************************************************************
ubhat 0:69f2e28d12c1 2 Copyright (C) 2009 Lander Casado, Philippas Tsigas
ubhat 0:69f2e28d12c1 3
ubhat 0:69f2e28d12c1 4 All rights reserved.
ubhat 0:69f2e28d12c1 5
ubhat 0:69f2e28d12c1 6 Permission is hereby granted, free of charge, to any person obtaining
ubhat 0:69f2e28d12c1 7 a copy of this software and associated documentation files
ubhat 0:69f2e28d12c1 8 (the "Software"), to deal with the Software without restriction, including
ubhat 0:69f2e28d12c1 9 without limitation the rights to use, copy, modify, merge, publish,
ubhat 0:69f2e28d12c1 10 distribute, sublicense, and/or sell copies of the Software, and to
ubhat 0:69f2e28d12c1 11 permit persons to whom the Software is furnished to do so, subject to
ubhat 0:69f2e28d12c1 12 the following conditions:
ubhat 0:69f2e28d12c1 13
ubhat 0:69f2e28d12c1 14 Redistributions of source code must retain the above copyright notice,
ubhat 0:69f2e28d12c1 15 this list of conditions and the following disclaimers. Redistributions in
ubhat 0:69f2e28d12c1 16 binary form must reproduce the above copyright notice, this list of
ubhat 0:69f2e28d12c1 17 conditions and the following disclaimers in the documentation and/or
ubhat 0:69f2e28d12c1 18 other materials provided with the distribution.
ubhat 0:69f2e28d12c1 19
ubhat 0:69f2e28d12c1 20 In no event shall the authors or copyright holders be liable for any special,
ubhat 0:69f2e28d12c1 21 incidental, indirect or consequential damages of any kind, or any damages
ubhat 0:69f2e28d12c1 22 whatsoever resulting from loss of use, data or profits, whether or not
ubhat 0:69f2e28d12c1 23 advised of the possibility of damage, and on any theory of liability,
ubhat 0:69f2e28d12c1 24 arising out of or in connection with the use or performance of this software.
ubhat 0:69f2e28d12c1 25
ubhat 0:69f2e28d12c1 26 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
ubhat 0:69f2e28d12c1 27 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
ubhat 0:69f2e28d12c1 28 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
ubhat 0:69f2e28d12c1 29 CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
ubhat 0:69f2e28d12c1 30 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
ubhat 0:69f2e28d12c1 31 FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
ubhat 0:69f2e28d12c1 32 DEALINGS WITH THE SOFTWARE
ubhat 0:69f2e28d12c1 33
ubhat 0:69f2e28d12c1 34 *****************************************************************************/
ubhat 0:69f2e28d12c1 35 //#include <sys/param.h>
ubhat 0:69f2e28d12c1 36 //#include <sys/systm.h>
ubhat 0:69f2e28d12c1 37 #include <stdint.h>
ubhat 0:69f2e28d12c1 38 #include "aes.h"
ubhat 0:69f2e28d12c1 39 #include "cmac.h"
ubhat 0:69f2e28d12c1 40 #include "utilities.h"
ubhat 0:69f2e28d12c1 41
ubhat 0:69f2e28d12c1 42 #define LSHIFT(v, r) do { \
ubhat 0:69f2e28d12c1 43 int32_t i; \
ubhat 0:69f2e28d12c1 44 for (i = 0; i < 15; i++) \
ubhat 0:69f2e28d12c1 45 (r)[i] = (v)[i] << 1 | (v)[i + 1] >> 7; \
ubhat 0:69f2e28d12c1 46 (r)[15] = (v)[15] << 1; \
ubhat 0:69f2e28d12c1 47 } while (0)
ubhat 0:69f2e28d12c1 48
ubhat 0:69f2e28d12c1 49 #define XOR(v, r) do { \
ubhat 0:69f2e28d12c1 50 int32_t i; \
ubhat 0:69f2e28d12c1 51 for (i = 0; i < 16; i++) \
ubhat 0:69f2e28d12c1 52 { \
ubhat 0:69f2e28d12c1 53 (r)[i] = (r)[i] ^ (v)[i]; \
ubhat 0:69f2e28d12c1 54 } \
ubhat 0:69f2e28d12c1 55 } while (0) \
ubhat 0:69f2e28d12c1 56
ubhat 0:69f2e28d12c1 57
ubhat 0:69f2e28d12c1 58 void AES_CMAC_Init(AES_CMAC_CTX *ctx)
ubhat 0:69f2e28d12c1 59 {
ubhat 0:69f2e28d12c1 60 memset1(ctx->X, 0, sizeof ctx->X);
ubhat 0:69f2e28d12c1 61 ctx->M_n = 0;
ubhat 0:69f2e28d12c1 62 memset1(ctx->rijndael.ksch, '\0', 240);
ubhat 0:69f2e28d12c1 63 }
ubhat 0:69f2e28d12c1 64
ubhat 0:69f2e28d12c1 65 void AES_CMAC_SetKey(AES_CMAC_CTX *ctx, const uint8_t key[AES_CMAC_KEY_LENGTH])
ubhat 0:69f2e28d12c1 66 {
ubhat 0:69f2e28d12c1 67 //rijndael_set_key_enc_only(&ctx->rijndael, key, 128);
ubhat 0:69f2e28d12c1 68 aes_set_key( key, AES_CMAC_KEY_LENGTH, &ctx->rijndael);
ubhat 0:69f2e28d12c1 69 }
ubhat 0:69f2e28d12c1 70
ubhat 0:69f2e28d12c1 71 void AES_CMAC_Update(AES_CMAC_CTX *ctx, const uint8_t *data, uint32_t len)
ubhat 0:69f2e28d12c1 72 {
ubhat 0:69f2e28d12c1 73 uint32_t mlen;
ubhat 0:69f2e28d12c1 74 uint8_t in[16];
ubhat 0:69f2e28d12c1 75
ubhat 0:69f2e28d12c1 76 if (ctx->M_n > 0) {
ubhat 0:69f2e28d12c1 77 mlen = MIN(16 - ctx->M_n, len);
ubhat 0:69f2e28d12c1 78 memcpy1(ctx->M_last + ctx->M_n, data, mlen);
ubhat 0:69f2e28d12c1 79 ctx->M_n += mlen;
ubhat 0:69f2e28d12c1 80 if (ctx->M_n < 16 || len == mlen)
ubhat 0:69f2e28d12c1 81 return;
ubhat 0:69f2e28d12c1 82 XOR(ctx->M_last, ctx->X);
ubhat 0:69f2e28d12c1 83 //rijndael_encrypt(&ctx->rijndael, ctx->X, ctx->X);
ubhat 0:69f2e28d12c1 84 aes_encrypt( ctx->X, ctx->X, &ctx->rijndael);
ubhat 0:69f2e28d12c1 85 data += mlen;
ubhat 0:69f2e28d12c1 86 len -= mlen;
ubhat 0:69f2e28d12c1 87 }
ubhat 0:69f2e28d12c1 88 while (len > 16) { /* not last block */
ubhat 0:69f2e28d12c1 89
ubhat 0:69f2e28d12c1 90 XOR(data, ctx->X);
ubhat 0:69f2e28d12c1 91 //rijndael_encrypt(&ctx->rijndael, ctx->X, ctx->X);
ubhat 0:69f2e28d12c1 92
ubhat 0:69f2e28d12c1 93 memcpy1(in, &ctx->X[0], 16); //Bestela ez du ondo iten
ubhat 0:69f2e28d12c1 94 aes_encrypt( in, in, &ctx->rijndael);
ubhat 0:69f2e28d12c1 95 memcpy1(&ctx->X[0], in, 16);
ubhat 0:69f2e28d12c1 96
ubhat 0:69f2e28d12c1 97 data += 16;
ubhat 0:69f2e28d12c1 98 len -= 16;
ubhat 0:69f2e28d12c1 99 }
ubhat 0:69f2e28d12c1 100 /* potential last block, save it */
ubhat 0:69f2e28d12c1 101 memcpy1(ctx->M_last, data, len);
ubhat 0:69f2e28d12c1 102 ctx->M_n = len;
ubhat 0:69f2e28d12c1 103 }
ubhat 0:69f2e28d12c1 104
ubhat 0:69f2e28d12c1 105 void AES_CMAC_Final(uint8_t digest[AES_CMAC_DIGEST_LENGTH], AES_CMAC_CTX *ctx)
ubhat 0:69f2e28d12c1 106 {
ubhat 0:69f2e28d12c1 107 uint8_t K[16];
ubhat 0:69f2e28d12c1 108 uint8_t in[16];
ubhat 0:69f2e28d12c1 109 /* generate subkey K1 */
ubhat 0:69f2e28d12c1 110 memset1(K, '\0', 16);
ubhat 0:69f2e28d12c1 111
ubhat 0:69f2e28d12c1 112 //rijndael_encrypt(&ctx->rijndael, K, K);
ubhat 0:69f2e28d12c1 113
ubhat 0:69f2e28d12c1 114 aes_encrypt( K, K, &ctx->rijndael);
ubhat 0:69f2e28d12c1 115
ubhat 0:69f2e28d12c1 116 if (K[0] & 0x80) {
ubhat 0:69f2e28d12c1 117 LSHIFT(K, K);
ubhat 0:69f2e28d12c1 118 K[15] ^= 0x87;
ubhat 0:69f2e28d12c1 119 } else
ubhat 0:69f2e28d12c1 120 LSHIFT(K, K);
ubhat 0:69f2e28d12c1 121
ubhat 0:69f2e28d12c1 122
ubhat 0:69f2e28d12c1 123 if (ctx->M_n == 16) {
ubhat 0:69f2e28d12c1 124 /* last block was a complete block */
ubhat 0:69f2e28d12c1 125 XOR(K, ctx->M_last);
ubhat 0:69f2e28d12c1 126
ubhat 0:69f2e28d12c1 127 } else {
ubhat 0:69f2e28d12c1 128 /* generate subkey K2 */
ubhat 0:69f2e28d12c1 129 if (K[0] & 0x80) {
ubhat 0:69f2e28d12c1 130 LSHIFT(K, K);
ubhat 0:69f2e28d12c1 131 K[15] ^= 0x87;
ubhat 0:69f2e28d12c1 132 } else
ubhat 0:69f2e28d12c1 133 LSHIFT(K, K);
ubhat 0:69f2e28d12c1 134
ubhat 0:69f2e28d12c1 135 /* padding(M_last) */
ubhat 0:69f2e28d12c1 136 ctx->M_last[ctx->M_n] = 0x80;
ubhat 0:69f2e28d12c1 137 while (++ctx->M_n < 16)
ubhat 0:69f2e28d12c1 138 ctx->M_last[ctx->M_n] = 0;
ubhat 0:69f2e28d12c1 139
ubhat 0:69f2e28d12c1 140 XOR(K, ctx->M_last);
ubhat 0:69f2e28d12c1 141
ubhat 0:69f2e28d12c1 142
ubhat 0:69f2e28d12c1 143 }
ubhat 0:69f2e28d12c1 144 XOR(ctx->M_last, ctx->X);
ubhat 0:69f2e28d12c1 145
ubhat 0:69f2e28d12c1 146 //rijndael_encrypt(&ctx->rijndael, ctx->X, digest);
ubhat 0:69f2e28d12c1 147
ubhat 0:69f2e28d12c1 148 memcpy1(in, &ctx->X[0], 16); //Bestela ez du ondo iten
ubhat 0:69f2e28d12c1 149 aes_encrypt(in, digest, &ctx->rijndael);
ubhat 0:69f2e28d12c1 150 memset1(K, 0, sizeof K);
ubhat 0:69f2e28d12c1 151
ubhat 0:69f2e28d12c1 152 }
ubhat 0:69f2e28d12c1 153