Demonstration of Class-A LoRaWAN device using NAMote-72

Dependencies:   LoRaWAN-lib mbed lib_mpl3115a2 lib_mma8451q lib_gps SX1272Lib

Dependents:   LoRaWAN-NAMote72-BVS-confirmed-tester-0-7v1_copy

LoRaWAN-NAMote72 Application Demo is a Class-A device example project using LoRaWAN-lib and SX1272Lib libraries.

This project is compliant with LoRaWAN V1.0.1 specification.

Comissioning.h (LoRaWAN Network Configuration)

The end-device can be activated in one of the two ways:

Over the Air (OTA) activation can be enabled as shown in the figure below. /media/uploads/ubhat/ota_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_EUI (8 Bytes) : Fist 3 Bytes is the Organizationally Unique Identifier (OUI) followed by 5 bytes of unique ID. If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_APPLICATION_EUI (8 Bytes)
  • LORAWAN_APPLICATION_KEY (or DEVKEY) (16 Bytes)

/media/uploads/ubhat/ota_eui.png

Activation by Personalization (ABP) can be enabled as shown in the figure below. /media/uploads/ubhat/abp_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_ADDRESS (4 Bytes) : If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_NWKSKEY (16 Bytes)
  • LORAWAN_APPSKEY (16 Bytes)

/media/uploads/ubhat/abp_key.png

Config.h (LoRaWAN Communication Parameters)

  • Mode of Operation : Hybrid If the end-device needs to be configured to operate over 8-channels, then Hybrid Mode needs to be enabled /media/uploads/ubhat/hybridenable.png
  • Mode of Operation : Frequency Hop If the end-device needs to be configured to operate over 64-channels, then Hybrid Mode needs to be disabled
  • Delay between successive JOIN REQUESTs : The delay between successive Join Requests (until the end-device joins the network) can be configured using the parameter OVER_THE_AIR_ACTIVATION_DUTYCYCLE
  • Inter-Frame Delay : One can change the delay between each frame transmission using APP_TX_DUTYCYCLE It is advisable that APP_TX_DUTYCYCLE is greater than or equal to 3sec.
  • Data Rate : The data rate can be configured as per LoRaWAN specification using the paramter LORAWAN_DEFAULT_DATARATE. The range of values are DR_0, DR_1, DR_2, DR_3 and DR_4
  • Confirmed/Unconfirmed Messages : The uplink message or payload can be chosen to be confirmed or unconfirmed using the parameter LORAWAN_CONFIRMED_MSG_ON. When set to 1, the transmitted messages need to be confirmed with an ACK by the network server in the subsequent RX window. When set to 0, no ACK is requested.
  • ADR ON/OFF : The ADR can be enabled or disabled using the parameter LORAWAN_ADR_ON. When set to 1, ADR is enabled and disabled when set to 0.
  • Application Port : The application port can be set using parameter LORAWAN_APP_PORT.
  • Payload Length : The lenght of the payload (in bytes) to be transmitted can be configured using LORAWAN_APP_DATA_SIZE
  • Transmit Power : The transmit power can be configured using LORAWAN_TX_POWER (LoRaMAC verifies if the set power is compliant with the LoRaWAN spec and FCC guidelines)

/media/uploads/ubhat/loraconfig.png

Main.cpp (Device State Machine)

The end-device state machine is defined.

  • Initial State : Device is initialized.
  • Join State : For OTA, Join Request is transmitted to the network until Join Accept is received by the end-device. Join event function is called that sets Red LED ON.
  • Send State : Transmit payload frame is prepared. Tx event is called that blinks the Red LED indicating uplink transmission.
  • Cycle State : Next packet transmission is scheduled

LoRaEventProc.cpp (Events and On-board Application)

Define events during Join, Tx & Rx. Prepare TX packet by appending with appropriate application data.

/media/uploads/ubhat/lora_events.png

  • PrepareLoRaFrame(uint8_t port ) : Prepare LoRa payload frame with on-board application data such as GPS, Temperature, Battery, etc. LoRa.ApplicationCall(AppType ) calls application AppType defined in LoRaApp.cpp. AppType is defined in LoRaApp.h

/media/uploads/ubhat/lora_app.png

LoRaApp.cpp

User-defined applications such as GPS, Temp, Accelerometer, LED indications etc. Event based actions such as LED blink on Tx, LED toggle on downlink etc /media/uploads/ubhat/apptype.png

LoRaDeviceStateProc.cpp

Process function calls corresponding to different Device states /media/uploads/ubhat/device_state.png

LoRaMacLayerService.cpp

Define MAC Layer Services: MLME & MCPS

Serial Terminal Display

By using a serial port connection using applications such as teraterm or putty, one can view the status of the End-Device. Once the End-Device Joins the network, transmission parameters such as payload data, application port, message type etc. are displayed on the terminal.

/media/uploads/ubhat/serial.png

Default Application Payload

This application defaults to sending uplink data to logical port 5. The application payload consists of: /media/uploads/jknapp_smtc/payload.png

Sample Application Payload Calculation for Longitude/Latitude

Payload => 00 19 F6 352BBA A94C20 FFFF

Temperature Calculation

19H => 2510

Temp = 25/2 = 12.5 oC

Battery Level

FFH => 100 %

F6H => 96.5 %

Longitude Calculation

longitude = A94C20H => 1109507210

longitudinal coordinate = -360 + (longitude10 x 180/(223))

longitudinal coordinate = -121.93

Latitude Calculation

latitude = 352BBAH = 348460210

latitude coordinate = (latitude10 x 90/(223-1))

latitude coordinate = 37.39

system/crypto/cmac.cpp

Committer:
ubhat
Date:
2016-05-17
Revision:
0:69f2e28d12c1

File content as of revision 0:69f2e28d12c1:

/**************************************************************************
Copyright (C) 2009 Lander Casado, Philippas Tsigas

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files 
(the "Software"), to deal with the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, 
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions: 

Redistributions of source code must retain the above copyright notice, 
this list of conditions and the following disclaimers. Redistributions in
binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimers in the documentation and/or 
other materials provided with the distribution.

In no event shall the authors or copyright holders be liable for any special,
incidental, indirect or consequential damages of any kind, or any damages 
whatsoever resulting from loss of use, data or profits, whether or not 
advised of the possibility of damage, and on any theory of liability, 
arising out of or in connection with the use or performance of this software.
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
DEALINGS WITH THE SOFTWARE

*****************************************************************************/
//#include <sys/param.h>
//#include <sys/systm.h> 
#include <stdint.h>
#include "aes.h"
#include "cmac.h"
#include "utilities.h"

#define LSHIFT(v, r) do {                                       \
  int32_t i;                                                  \
           for (i = 0; i < 15; i++)                                \
                    (r)[i] = (v)[i] << 1 | (v)[i + 1] >> 7;         \
            (r)[15] = (v)[15] << 1;                                 \
    } while (0)
    
#define XOR(v, r) do {                                          \
            int32_t i;                                                  \
            for (i = 0; i < 16; i++)     \
        {   \
                    (r)[i] = (r)[i] ^ (v)[i]; \
        }                          \
    } while (0) \


void AES_CMAC_Init(AES_CMAC_CTX *ctx)
{
            memset1(ctx->X, 0, sizeof ctx->X);
            ctx->M_n = 0;
        memset1(ctx->rijndael.ksch, '\0', 240);
}
    
void AES_CMAC_SetKey(AES_CMAC_CTX *ctx, const uint8_t key[AES_CMAC_KEY_LENGTH])
{
           //rijndael_set_key_enc_only(&ctx->rijndael, key, 128);
       aes_set_key( key, AES_CMAC_KEY_LENGTH, &ctx->rijndael);
}
    
void AES_CMAC_Update(AES_CMAC_CTX *ctx, const uint8_t *data, uint32_t len)
{
            uint32_t mlen;
        uint8_t in[16];
    
            if (ctx->M_n > 0) {
                  mlen = MIN(16 - ctx->M_n, len);
                    memcpy1(ctx->M_last + ctx->M_n, data, mlen);
                    ctx->M_n += mlen;
                    if (ctx->M_n < 16 || len == mlen)
                            return;
                   XOR(ctx->M_last, ctx->X);
                    //rijndael_encrypt(&ctx->rijndael, ctx->X, ctx->X);
            aes_encrypt( ctx->X, ctx->X, &ctx->rijndael);
                    data += mlen;
                    len -= mlen;
            }
            while (len > 16) {      /* not last block */
         
                    XOR(data, ctx->X);
                    //rijndael_encrypt(&ctx->rijndael, ctx->X, ctx->X);

                    memcpy1(in, &ctx->X[0], 16); //Bestela ez du ondo iten
            aes_encrypt( in, in, &ctx->rijndael);
                    memcpy1(&ctx->X[0], in, 16);

                    data += 16;
                    len -= 16;
            }
            /* potential last block, save it */
            memcpy1(ctx->M_last, data, len);
            ctx->M_n = len;
}
   
void AES_CMAC_Final(uint8_t digest[AES_CMAC_DIGEST_LENGTH], AES_CMAC_CTX *ctx)
{
            uint8_t K[16];
        uint8_t in[16];
            /* generate subkey K1 */
            memset1(K, '\0', 16);

            //rijndael_encrypt(&ctx->rijndael, K, K);

            aes_encrypt( K, K, &ctx->rijndael);

            if (K[0] & 0x80) {
                    LSHIFT(K, K);
                   K[15] ^= 0x87;
            } else
                    LSHIFT(K, K);

       
            if (ctx->M_n == 16) {
                    /* last block was a complete block */
                    XOR(K, ctx->M_last);

           } else {
                   /* generate subkey K2 */
                  if (K[0] & 0x80) {
                          LSHIFT(K, K);
                          K[15] ^= 0x87;
                  } else
                           LSHIFT(K, K);

                   /* padding(M_last) */
                   ctx->M_last[ctx->M_n] = 0x80;
                   while (++ctx->M_n < 16)
                         ctx->M_last[ctx->M_n] = 0;
   
                  XOR(K, ctx->M_last);
          
           
           }
           XOR(ctx->M_last, ctx->X);
      
           //rijndael_encrypt(&ctx->rijndael, ctx->X, digest);
    
       memcpy1(in, &ctx->X[0], 16); //Bestela ez du ondo iten
       aes_encrypt(in, digest, &ctx->rijndael);
           memset1(K, 0, sizeof K);

}