
SunTracker_BLE
Dependencies: BLE_API X_NUCLEO_6180XA1 X_NUCLEO_IDB0XA1 X_NUCLEO_IHM01A1 X_NUCLEO_IKS01A1 mbed
Fork of SunTracker_BLE by
Overview
The SunTracker is a demo application running on ST Nucleo-F401RE stacking a set of ST X-NUCLEO expansion boards.
Main features provided are:
- A solar panel follows the light source, orienting the panel in order to achieve the best panel efficiency.
- Orientation is controlled thanks to a couple of VL6180X FlightSense light sensors mounted on a X-NUCLEO-6180XA1 expansion board and driven by X-NUCLEO-IHM01A1 controlled stepper motor acting as actuator to orientate the panel.
- The system features a progressive control on the stepper motor in order to modulate the panel rotation speed according to the light angle.
- The application is also able to control the panel productivity reading the panel voltage through an ADC and proving feedback on the local display.
- A manual orientation is possible by using the accelerometer on a X-NUCLEO-IKS01A1 expansion board that, according on board tilt, controls the speed and the rotate direction.
- A remote control is available using a X-NUCLEO-IDB04A1 or a X-NUCLEO-IDB05A1 Bluetooth Low Energy expansion board. Remote control software is here.
Working Status
- SunTracker has 3 working status visible on FlightSense display and switchable by pressing the User Button:
Status 0 (Idle)
- Motor: Free Turning
- Display: Waiting for User Button
Status 1
- Motor: Driven by Light
- Display: Direction and Light Intensity = Direction and Motor Speed
Status 2
- Motor: Driven by Light
- Display: Solar Panel Efficiency
Status 3
- Motor: Driven by Accelerometer
- Display: Direction and Accelerometer Intensity
Server Startup
- When you plug the power supply, the word ‘PUSH’ is shown on display.
- You can manually rotate the structure to assign the ‘Zero Point’. Then press the User Button to launch the application.
- The display will show this status, which means that the structureis oriented to maximize the efficiency of the solar panel.
- If there is a light displacement, the structure will rotate, left or right,to follow the light source and on display is shown the direction and the speed.
- You can press the User Button to show the panel efficiencywith 4 digits that represent the range from 0v (0000) to 3,3v (3300).
- Further pressing the User Button you will manual rotate the panel by tilt the Server or Client accelerometer depending by BLE connection.
Client Startup
- The Client application can remotely control the User Button and the Accelerometer functions.
- Power on the Client AFTER the Server, it will automatically search for the SunTracker and will establish a BLE connection.
- The Green Led on Nucleo Client board will be powered on.
Rotation Features
- It has been implemented a block of rotation to avoid cables twist.
- The blocking point can be set in the firmware by changing a constant.
- You can manually rotate the structure to assign the ‘Zero Point’ before press the User Button to launch the application.
- The system features a progressive control on the stepper motor in order to modulate the rotation speed according to the light or accelerometer angle.
List of Components
SERVER SunTracker_BLE
- Nucleo-F401RE platform using a STM32F401RET6 microcontroller.
- X-NUCLEO-IHM01A1 - Stepper motor driver board based on the EasySPIN L6474.
- X-NUCLEO-6180XA1 - 3-in-1 proximity and ambient light sensor board based on ST FlightSense technology.
- VL6180X-SATEL - Satellite boards compatible with X-NUCLEO-6180XA1 board.
- X-NUCLEO-IKS01A1 - Motion MEMS and environmental sensor board.
- X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1 - Bluetooth Low Energy Bluetooth low energy evaluation board.
- Stepper Motor 400’’ (Part Number 5350401) - To orientate the Mechanical Structure.
- Solar Panel 0.446w (Part Number 0194127) - To capture sunlight and generate electrical current.
- Power Supply 12v (Part Number 7262993) - To provide power supply at the Stepper Motor.
- Flat Cable 6 ways (Part Number 1807010) - To plug VL6180X-SATEL with X-NUCLEO-6180XA1 (60cm length each x2).
- Cable Connector (Part Number 6737694) - To plug the Flat Cable (x4).
- Power Connector (Part Number 0487842) - To provide Power Supply to X-NUCLEO-IHM01A1.
CLIENT SunTracker_BLE_Remote
- Nucleo-F401RE platform using a STM32F401RET6 microcontroller.
- X-NUCLEO-IKS01A1 - Motion MEMS and environmental sensor board.
- X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1- Bluetooth Low Energy Bluetooth low energy evaluation board.
MECHANICAL STRUCTURE
Find here the STL files to print with a 3D printer.
FLAT CABLE ASSEMBLY
HARDWARE SETUP
Nucleo ADC + Solar Panel
Connect Solar Panel cables to Nucleo Morpho PC_3 (white) and Nucleo Morpho GND (black). Connect a capacitor 10uF between PC_3 and GND to stabilize its voltage value shown on display.
EasySpin (L6474) + BLE
Hardware conflict between EasySpin DIR1 and BLE Reset, both on same Arduino Pin PA_8. Disconnect PA_8 between EasySpin and Nucleo by fold EasySpin Pin. PB_2 has been configured as EasySpin DIR1 in the firmware .Connect Nucleo Morpho PB_2 to FlightSense Arduino PA_8 by a wire.
FlightSense Satellites
In case of instability with I2C due to long flat cables, solder 4 SMD capacitors 47pF on FlightSense board in parallel between R15, R16, R17, R18 and plug 2 capacitors 15pF between FlightSense Arduino PB_8 and PB_9 to GND pin to cut-off noises over 720 KHz.
Arduino & Morpho Pinout
CustomSensorsService.h
- Committer:
- fabiombed
- Date:
- 2016-02-26
- Revision:
- 9:ca289bf57f52
- Parent:
- 8:144855fe02bd
- Child:
- 14:644f9e7278e9
File content as of revision 9:ca289bf57f52:
/****************************************************************************** * @file CustomSensorsService.h * @author Fabio Brembilla * @version V1.0.0 * @date January, 2016 * @brief SunTracker Custom Service for BlueTooth (IDB0XA1 expansion board) ***************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ #ifndef __CUSTOM_BLE_SENSORS_SERVICE_H__ #define __CUSTOM_BLE_SENSORS_SERVICE_H__ #include "BLE.h" #include "UUID.h" /* BLE Services: Primary + 2 Secondary (Char Desk) */ const LongUUIDBytes_t SENS_SERVICE_UUID_128 = {0x00,0x00,0x00,0x00,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B}; //Primary const LongUUIDBytes_t SENS_POSITION_CHAR_UUID_128 = {0x00,0x00,0x00,0x01,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B}; //Motor Position const LongUUIDBytes_t SENS_SUNPANEL_CHAR_UUID_128 = {0x00,0x00,0x00,0x02,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B}; //SunPanel Voltage #define POSITION_DATA_LEN 2+2 #define SUNPANEL_DATA_LEN 2+2 /* Custom Sensors Service */ class CustomSensorService { public: CustomSensorService(BLEDevice &_ble) : ble(_ble), positionCharacteristic(SENS_POSITION_CHAR_UUID_128, envPosition, POSITION_DATA_LEN, POSITION_DATA_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_READ | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY), sunpanelCharacteristic(SENS_SUNPANEL_CHAR_UUID_128, envSunpanel, SUNPANEL_DATA_LEN, SUNPANEL_DATA_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_READ | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY) { static bool serviceAdded = false; // To be sure to define just one time if (serviceAdded) { return; } GattCharacteristic *charTable[] = {&positionCharacteristic, &sunpanelCharacteristic}; GattService envService(SENS_SERVICE_UUID_128, charTable, sizeof(charTable) / sizeof(GattCharacteristic *)); ble.gattServer().addService(envService); isEnabledPositionNotify = false; isEnabledSunpanelNotify = false; memset (envPosition, 0, POSITION_DATA_LEN); memset (envSunpanel, 0, SUNPANEL_DATA_LEN); isBTLEConnected = DISCONNECTED; serviceAdded = true; } // Tests Method void sendEnvPosition (int16_t Pos, uint16_t TimeStamp) { STORE_LE_16(envPosition,TimeStamp); STORE_LE_16(envPosition+2,Pos); PRINTF("sendEnvPosition!! handle: %d\n\r", positionCharacteristic.getValueAttribute().getHandle()); memcpy (pastenvPosition, envPosition, POSITION_DATA_LEN); ble.gattServer().write(positionCharacteristic.getValueAttribute().getHandle(), envPosition, POSITION_DATA_LEN, 0); } /* void sendEnvTemperature (int16_t Temp, uint16_t TimeStamp) { STORE_LE_16(envTemperature,TimeStamp); STORE_LE_16(envTemperature+2,Temp); PRINTF("sendEnvTemperature!! handle: %d\n\r", envTemperatureCharacteristic.getValueAttribute().getHandle()); memcpy (pastenvTemperature, envTemperature, TEMP_DATA_LEN); ble.gattServer().write(envTemperatureCharacteristic.getValueAttribute().getHandle(), envTemperature, TEMP_DATA_LEN, 0); } void updateEnvTemperature (int16_t Temp, uint16_t TimeStamp) { if (memcmp (&pastenvTemperature[2], &Temp, 2) != 0) { sendEnvTemperature (Temp, TimeStamp); } } void sendEnvHumidity(uint16_t Hum, uint16_t TimeStamp) { STORE_LE_16(envHumidity,TimeStamp); STORE_LE_16(envHumidity+2,Hum); memcpy (pastenvHumidity, envHumidity, HUM_DATA_LEN); ble.gattServer().write(envHumidityCharacteristic.getValueAttribute().getHandle(), envHumidity, HUM_DATA_LEN, 0); } void updateEnvHumidity(uint16_t Hum, uint16_t TimeStamp) { if (memcmp (&pastenvHumidity[2], &Hum, 2) != 0) { sendEnvHumidity(Hum, TimeStamp); } } void sendEnvPressure(uint32_t Press, uint16_t TimeStamp) { STORE_LE_16(envPressure,TimeStamp); STORE_LE_32(envPressure+2,Press); memcpy (pastenvPressure, envPressure, PRES_DATA_LEN); ble.gattServer().write(envPressureCharacteristic.getValueAttribute().getHandle(), envPressure, PRES_DATA_LEN, 0); } void updateEnvPressure(uint32_t Press, uint16_t TimeStamp) { if (memcmp (&pastenvPressure[2], &Press, 2) != 0) { sendEnvPressure(Press, TimeStamp); } } void sendEnvMagnetometer(AxesRaw_TypeDef *Magn, uint16_t TimeStamp, osxMFX_calibFactor magOffset) { STORE_LE_16(envMagn,TimeStamp); STORE_LE_16(envMagn+2,(Magn->AXIS_X - magOffset.magOffX)); STORE_LE_16(envMagn+4,(Magn->AXIS_Y - magOffset.magOffY)); STORE_LE_16(envMagn+6,(Magn->AXIS_Z - magOffset.magOffZ)); ble.gattServer().write(envMagnetometerCharacteristic.getValueAttribute().getHandle(), envMagn, MAG_DATA_LEN, 0); } void updateEnvMagnetometer(AxesRaw_TypeDef *Magn, uint16_t TimeStamp, osxMFX_calibFactor magOffset) { if (isMagNotificationEn()) sendEnvMagnetometer(Magn, TimeStamp, magOffset); } void sendEnvAccelerometer (AxesRaw_TypeDef *Acc, uint16_t TimeStamp) { STORE_LE_16(envAcce,TimeStamp); STORE_LE_16(envAcce+2,Acc->AXIS_X); STORE_LE_16(envAcce+4,Acc->AXIS_Y); STORE_LE_16(envAcce+6,Acc->AXIS_Z); ble.gattServer().write(envAccelerometerCharacteristic.getValueAttribute().getHandle(), envAcce, ACC_DATA_LEN, 0); } void updateEnvAccelerometer (AxesRaw_TypeDef *Acc, uint16_t TimeStamp) { if (isAccNotificationEn()) sendEnvAccelerometer (Acc, TimeStamp); } void sendEnvGyroscope (AxesRaw_TypeDef *Gyro, uint16_t TimeStamp) { STORE_LE_16(envGyro,TimeStamp); STORE_LE_16(envGyro+2,Gyro->AXIS_X); STORE_LE_16(envGyro+4,Gyro->AXIS_Y); STORE_LE_16(envGyro+6,Gyro->AXIS_Z); ble.gattServer().write(envGyroCharacteristic.getValueAttribute().getHandle(), envGyro, GYRO_DATA_LEN, 0); } void updateEnvGyroscope (AxesRaw_TypeDef *Gyro, uint16_t TimeStamp) { if (isGyroNotificationEn()) sendEnvGyroscope (Gyro, TimeStamp); } void sendEnvAccGyroMag (AxesRaw_TypeDef *Acc, AxesRaw_TypeDef *Gyro, AxesRaw_TypeDef *Magn, uint16_t TimeStamp, osxMFX_calibFactor magOffset) { STORE_LE_16(envAccGyroMag,TimeStamp); STORE_LE_16(envAccGyroMag+2,Acc->AXIS_X); STORE_LE_16(envAccGyroMag+4,Acc->AXIS_Y); STORE_LE_16(envAccGyroMag+6,Acc->AXIS_Z); STORE_LE_16(envAccGyroMag+8,Gyro->AXIS_X); STORE_LE_16(envAccGyroMag+10,Gyro->AXIS_Y); STORE_LE_16(envAccGyroMag+12,Gyro->AXIS_Z); STORE_LE_16(envAccGyroMag+14,(Magn->AXIS_X - magOffset.magOffX)); STORE_LE_16(envAccGyroMag+16,(Magn->AXIS_Y - magOffset.magOffY)); STORE_LE_16(envAccGyroMag+18,(Magn->AXIS_Z - magOffset.magOffZ)); ble.gattServer().write(envAccGyroMagCharacteristic.getValueAttribute().getHandle(), envAccGyroMag, ACCGYROMAG_DATA_LEN, 0); } void updateEnvAccGyroMag (AxesRaw_TypeDef *Acc, AxesRaw_TypeDef *Gyro, AxesRaw_TypeDef *Magn, uint16_t TimeStamp, osxMFX_calibFactor magOffset) { if (isAccGyroMagNotificationEn())sendEnvAccGyroMag (Acc, Gyro, Magn, TimeStamp, magOffset); } */ void enNotify (Gap::Handle_t handle) { if (isPositionHandle(handle)) { isEnabledPositionNotify = true; memset(envPosition,0,POSITION_DATA_LEN); return; } if (isSunpanelHandle(handle)) { isEnabledSunpanelNotify = true; memset(envSunpanel,0,SUNPANEL_DATA_LEN); return; } } void disNotify (Gap::Handle_t handle) { if (isPositionHandle(handle)) { isEnabledPositionNotify = false; memset(envPosition,0,POSITION_DATA_LEN); return; } if (isSunpanelHandle(handle)) { isEnabledSunpanelNotify = false; memset(envSunpanel,0,SUNPANEL_DATA_LEN); return; } } bool isPositionNotificationEn (void) { return isEnabledPositionNotify; } bool isSunpanelNotificationEn (void) { return isEnabledSunpanelNotify; } bool isPositionHandle (Gap::Handle_t handle) { if (handle == positionCharacteristic.getValueAttribute().getHandle()) return true; return false; } bool isSunpanelHandle (Gap::Handle_t handle) { if (handle == sunpanelCharacteristic.getValueAttribute().getHandle()) return true; return false; } void updateConnectionStatus(ConnectionStatus_t status) { isEnabledPositionNotify = false; isEnabledSunpanelNotify = false; memset (envPosition, 0, POSITION_DATA_LEN); memset (envSunpanel, 0, SUNPANEL_DATA_LEN); isBTLEConnected = status; } // Variables Initialization private: BLEDevice &ble; uint8_t envPosition [POSITION_DATA_LEN]; uint8_t envSunpanel [SUNPANEL_DATA_LEN]; uint8_t pastenvPosition [POSITION_DATA_LEN]; uint8_t pastenvSunpanel [SUNPANEL_DATA_LEN]; GattCharacteristic positionCharacteristic; GattCharacteristic sunpanelCharacteristic; ConnectionStatus_t isBTLEConnected; bool isEnabledPositionNotify; bool isEnabledSunpanelNotify; }; #endif /* #ifndef __CUSTOM_BLE_SENSORS_SERVICE_H__*/