dasd

Dependencies:   BufferedSerial

main.cpp

Committer:
jsobiecki
Date:
2019-05-06
Revision:
5:5653e559a67b
Parent:
4:6ebe8982de0e
Child:
6:1c84602323c8

File content as of revision 5:5653e559a67b:

    // Coded by Luís Afonso 11-04-2019
#include "mbed.h"
#include "BufferedSerial.h"
#include "rplidar.h"
#include "Robot.h"
#include "Communication.h"
#include "math.h"
#include "ActiveCell.h"
#include "HistogramCell.h"
#define M_PI 3.14159265358979323846f

RPLidar lidar;
BufferedSerial se_lidar(PA_9, PA_10);
PwmOut rplidar_motor(D3);

//EXERCICIO 1
//Luis Cruz N2011164454
//Jacek Sobecki N2018319609
Serial pc(SERIAL_TX, SERIAL_RX, 115200);
DigitalIn button(PC_13);
void poseEst(float p[], float radius, float enc_res, float b);
void SpeedLim(float w[]);
void initializeArrays();
void calcSectors(float theta);
void sumForces();
void updateActive(float xR, float yR,float theta);
//int ReadSensors();
//const int m = 200, n = 200, activeSize = 11;
//histogram size | aSize active region size
const int hSize = 80, aSize = 11;
ActiveCell activeReg[aSize][aSize];
HistogramCell histogram[hSize][hSize];
//Repulsive force sums
float p[3], p_obj[3], p_final[3], fX, fY;
const float Fca=6;/*5*/

//VFH
const int L=2;
float secVal[36];
float smooth[36];

int main()
{
    float odomX, odomY, odomTheta;
    struct RPLidarMeasurement data;
    
    pc.baud(115200);
    init_communication(&pc);

    // Lidar initialization
    rplidar_motor.period(0.001f);
    lidar.begin(se_lidar);
    lidar.setAngle(0,360);

    pc.printf("Program started.\n");
    
    lidar.startThreadScan();
    
    /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    button.mode(PullUp);
    getCountsAndReset();
    setSpeeds(0, 0);
    initializeArrays();
    while(button==1);
    rplidar_motor.write(0.7f);
    //w[0] = Omega     | w[1] = Left  | w[2] = Right
    //p[0] = X         | p[1] = Y     | p[2] = Theta
    //p_obj[0] = X     | p_obj[1] = Y | p_obj[2] = Theta
    //b = Distance between wheels, enc_res = Encoder Resolution, v = Calculated speed
    //k_v = Speed gain, k_s = Curvature gain, wratio = Angular speed ratio control command
    //Cells dim: 5x5cm |
    float  w[3], v, theta, theta_error, err, integral = 0.0, k_i = 0.01/*0.02*/;
    const float radius = 3.5, b = 13.3, enc_res = 1440, k_v = 8/*7*/, 
    k_s = 12/*10*/, sample_time = 0.05, d_stalker = 5, k_f = 12.5; /*12.5*/ //VFF
    float theta_final;
// ===============================================================================
// =================================== COORDS ====================================
// =============================================================================== 
    //Target coordinates
    p_final[0] = 100, p_final[1] = 20, p_final[2] = 0;
    //p_obj[0] = 20, p_obj[1] = 20, p_obj[2] = 0;
    //Initial coordinates:
    p[0] = 20, p[1] = 20, p[2] = 0;
// ===============================================================================
// =================================== EXECUTION =================================
// ===============================================================================
    while(1){
        // poll for measurements. Returns -1 if no new measurements are available. returns 0 if found one.
        if(lidar.pollSensorData(&data) == 0)
        {
                pc.printf("dist:%f  angle:%f   %d   %c\n", data.distance, data.angle, data.quality, data.startBit); // Prints one lidar measurement.
        }
        
        
        getCountsAndReset();
        //pc.printf("Speeds: Left=%lf   Right=%lf\n", w[1], w[2]);
        //pc.printf("OBJECTIVE X: %lf  OBJECTIVE Y: %lf\n", p_obj[0], p_obj[1]);
        //pc.printf("Position: X=%lf   Y=%lf   Theta=%lf\n\n", p[0], p[1], p[2]);
        //pc.printf("Force (X): X=%lf   Force(Y)=%lf\n", fX, fY);
        
        
        //------------Process lidar readings
        //theta of the robot in degrees
        float thetaR_deg = 0;
        //float thetaR_deg = (p[2]*180.0f)/M_PI;
        if(thetaR_deg <0) thetaR_deg=360+thetaR_deg;
        //real angle of the reading
        if(data.angle<360 && data.angle>0) data.angle=360-data.angle;
        float readAngle = data.angle - 180 + thetaR_deg;
        if(readAngle>=360) readAngle=fmod(readAngle,360);
        
        pc.printf("Robots_deg: %f  data_deg: %f  readAngle: %f\n",thetaR_deg,data.angle,readAngle);
        
        //update cells according to a reading
        if(data.distance!=0 && data.distance<200){
        for(int i=0;i<11;i++){
            for (int j = 0; j < 11; j++) {
                if(readAngle<=activeReg[i][j].sectorK*10+5 && readAngle>=activeReg[i][j].sectorK*10-5){
                    if(data.distance<=((double)activeReg[i][j].distance+2.5)*10 && data.distance>=((double)activeReg[i][j].distance-2.5)*10) {
                        //cell is occupied
                        activeReg[i][j].cellVal = 3;
                    } else if (data.distance>((double)activeReg[i][j].distance-2.5)*10){
                            //cell is unoccupied
                            activeReg[i][j].cellVal = 1;
                    }
                }
            }
        }
        }
        
        for (int j = 10; j >= 0; j--) {
        for (int i = 0; i < 11; i++) {
            cout << "[" << activeReg[i][j].cellVal << "]";
        }
        cout << endl;
    }
        
  
        //Path calculation
        poseEst(p, radius, enc_res, b); //Pose estimation
        theta_final = atan2(p_final[1]-p[1],p_final[0]-p[0]);
        theta_final = atan2(sin(theta_final),cos(theta_final));
        //updateActive(p[0], p[1], theta_final);
        p_obj[0] = p[0]+k_f*fX; // add parameter to relate chosen direction (VFH) to the point nearby of the robot
        p_obj[1] = p[1]+k_f*fY;
        //Control Law
        err = sqrt(pow((p_obj[0]-p[0]),2)+pow((p_obj[1]-p[1]),2)) - d_stalker; //distance to the point
        theta = atan2(p_obj[1]-p[1],p_obj[0]-p[0]);
        //pc.printf("theta MAIN: = %lf\n\n", theta);
        theta = atan2(sin(theta),cos(theta));
        

        
        p[2] = atan2(sin(p[2]),cos(p[2]));
        theta_error = theta-p[2];
        theta_error = atan2(sin(theta_error),cos(theta_error));
        //pc.printf("theta_error = %lf | p[2]= %lf\n\n", theta_error, p[2]);
        w[0] = k_s*(theta_error); //direction gain
        integral += err;
        v = k_v*err+k_i*integral; //Speed calculation
        w[1] = (v-(b/2)*w[0])/radius;
        w[2] = (v+(b/2)*w[0])/radius;
        
        SpeedLim(w);
        //if((fabs(p[0]-p_final[0])+fabs(p[1]-p_final[1])) < 70) k_i = -0.005;
        if((fabs(p[0]-p_final[0])+fabs(p[1]-p_final[1])) < 5){
            setSpeeds(0,0);
        }
        else{
            //setSpeeds(w[1], w[2]);
            }
        wait(sample_time); 
    }
}
// ===============================================================================
// =================================== FUNCTIONS =================================
// ===============================================================================
//Pose Estimation function
void poseEst(float p[], float radius, float enc_res, float b){
    float deltaDl, deltaDr, deltaD, deltaT;
    deltaDl = ((float)countsLeft)*(2.0f*M_PI*radius/enc_res);
    deltaDr = ((float)countsRight)*(2.0f*M_PI*radius/enc_res);
    deltaD = (deltaDr + deltaDl)/2.0f;
    deltaT = (deltaDr - deltaDl)/b;
    if(fabs(deltaT) == 0){
        p[0] = p[0] + deltaD*cos(p[2]) + deltaT/2;
        p[1] = p[1] + deltaD*sin(p[2]) + deltaT/2;
        return;
    }
    p[0] = p[0] + deltaD*(sin(deltaT/2.0f)/(deltaT/2.0f))*cos(p[2]+deltaT/2.0f);
    p[1] = p[1] + deltaD*(sin(deltaT/2.0f)/(deltaT/2.0f))*sin(p[2]+deltaT/2.0f);
    p[2] = p[2] + deltaT;
}
//Speed limiter function
void SpeedLim(float w[]){
    float wratio;
    wratio = fabs(w[2]/w[1]);
    if(w[2] > 150 || w[1] > 150){
        if(wratio < 1){
            w[1] = 150;
            w[2] = w[1]*wratio;
        }
        else if(wratio > 1){
            w[2] = 150;
            w[1] = w[2]/wratio;
        }
        else{
            w[2] = 150;
            w[1] = 150;
        }
    }
    if(w[2] < 50 || w[1] < 50){
        if(wratio < 1){
            w[1] = 50;
            w[2] = w[1]*wratio;
        }
        else if(wratio > 1){
            w[2] = 50;
            w[1] = w[2]/wratio;
        }
        else{
            w[2] = 50;
            w[1] = 50;
        }
    }
}

void initializeArrays() {
    for (int i = 0; i < hSize; i++) {
        for (int j = 0; j < hSize; j++) {
            histogram[i][j].calculate(i, j);
            //if(((i >= 8 && i <= 12) && (j == 0 || j == 8)) || ((i == 8 || i == 12) && (j >= 0 && j <= 8))) histogram[i][j].cellVal=3;
            //if(((i >= 0 && i <= 3) && (j == 8 || j == 12)) || ((i == 0 || i == 3) && (j >= 8 && j <= 12))) histogram[i][j].cellVal=3;
            //if(((i >= 14 && i <= 20) && (j == 8 || j == 9)) || ((i == 14 || i == 20) && (j >= 8 && j <= 9))) histogram[i][j].cellVal=3;
        }
    }
    for (int i = 0; i < aSize; i++) {
        for (int j = 0; j < aSize; j++) {
            activeReg[i][j].calDist(i, j);
        }
    }
}

//xR, yR - robots position in coordinates system
//this updates histogram, i just didn't want to change name in all places
void updateActive(float xR, float yR,float theta) {
    int idXr = 0;
    int idYr = 0;
    for (int i = 0; i < hSize; i++) {
        for (int j = 0; j < hSize; j++) {
            if (xR > histogram[i][j].x - 2.5 && xR < histogram[i][j].x + 2.5 && yR > histogram[i][j].y - 2.5 &&
                yR < histogram[i][j].y + 2.5) {
                idXr = i;
                idYr = j;
                break;
            }
        }
    }
    int m = idXr - aSize / 2;
    for (int k = 0; k < aSize; k++) {
        int n = idYr - aSize / 2;
        for (int l = 0; l < aSize; l++) {
            if (m >= 0 && n >= 0 && m < hSize && n < hSize) {
                histogram[m][n].cellVal=activeReg[k][l].cellVal;
            }
            n++;
        }
        m++;
    }
    for (int i = 0; i < aSize; ++i) {
        for (int j = 0; j < aSize; ++j) {
            activeReg[i][j].calForce();
        }
    }
    activeReg[5][5].amplitude=0;
    activeReg[5][5].amplitude=0;
    
    for (int j = 10; j >= 0; j--) {
        for (int i = 0; i < 11; i++) {
            cout << "[" << activeReg[i][j].cellVal << "]";
        }
        cout << endl;
    }

    calcSectors(theta);
}
void calcSectors(float theta){
    for (int k = 0; k < 36; ++k) {
        secVal[k]=0;
        for (int i = 0; i < aSize; ++i) {
            for (int j = 0; j < aSize; ++j) {
                if(activeReg[i][j].sectorK==k)
                    secVal[k]+=activeReg[i][j].amplitude;
            }
        }
    }

    smooth[0]=(secVal[34]+2*secVal[35]+2*secVal[0]+2*secVal[1]+secVal[2])/5;
    smooth[1]=(secVal[35]+2*secVal[0]+2*secVal[1]+2*secVal[2]+secVal[3])/5;
    smooth[34]=(secVal[32]+2*secVal[33]+2*secVal[34]+2*secVal[35]+secVal[0])/5;
    smooth[35]=(secVal[33]+2*secVal[34]+2*secVal[35]+2*secVal[0]+secVal[1])/5;
    for (int i = 2; i < 34; ++i) {
        smooth[i]=(secVal[i-L]+2*secVal[i-L+1]+2*secVal[i]+2*secVal[i+L-1]+secVal[i+L])/5;
    }
    
    const int thresh=200;//100
    int temp[36];
    int counter = 0, aux = 0;
    int valley[36];
    for(int i=0;i<36;++i){
        //pc.printf("|%lf", smooth[i]);
        if(smooth[i]<thresh){
            temp[i]=1;
            //valley[aux][aux] = 
            counter++;
        }
        else{
            valley[aux] = counter;
            counter = 0;
            aux++;
            temp[i]=0;
            //pc.printf("#%d", i);
        }
        
    }
    float best=999;
    float theta_deg;
    theta_deg =(theta*180.0f)/M_PI;
    //pc.printf("theta (degrees): = %lf\n\n", theta_deg);
   int destSec = theta_deg / 10;
   if(destSec<0) destSec=36+destSec;
   //cout<<"destination sector: "<<destSec<<endl;
   
   int L=destSec;
    int R=destSec;
    while(temp[L]==0){
        L--;
        if(L<0) L=35;
    }
    while(temp[R]==0){
        R++;
        if(R>35) R=0;
    }
   
    float dirSet, dirC,dirL,dirR;
    if(temp[destSec]==1){
        int k=destSec-1;
        if(k<0) k=35;
        int size=1;
        while(temp[k]==1){
            size++;
            k--;
            if(k<0) k=35;
            if(k==destSec) break;
            if(size>=5) break;
        }
        int right=k+1;
        if(right<0) right=35;
        k=destSec+1;
        if(k>35) k=0;
        while(temp[k]==1){
            size++;
            k++;
            if(k>35) k=0;
            if(k==destSec) break;
            if(size>=5) break;
        }
        int left=k-1;
        if(left>35) left=0;
        if(size>=5) {
        //wide
            dirC=destSec*10;
            //cout << "wide"<<endl;
            }
    
        else if(size>4 && size<5) //narrow
        {
            dirC=0.5*(left*10+right*10);
            //cout<<"narrow"<<endl;
        } else {
            int secL = L;
        while (temp[secL] != 1) {
            secL++;
            if (secL > 35) secL = 0;
        }
        int rightL = secL;
        int size = 1;

        int i = secL + 1;
        if (i > 35) i = 0;
        while (temp[i] == 1) {
            size++;
            i++;
            if (i > 35) i = 0;
            if (i == secL) break;
            // Smax here
            if (size >= 5) break;
        }
        int leftL = i - 1;
        if (leftL < 0) leftL = 35;
        if (size >= 5) //wide
            dirL = rightL * 10 + 0.5 * 10 * 5;
        else if(size>4 && size<5)  //narrow
            dirL = 0.5 * (leftL * 10 + rightL * 10);
        else
            dirL=9999;
        ///////////////////////////////////////////////////////////////////
        int secR = R;
        while (temp[secR] != 1) {
            secR--;
            if (secR < 0) secR = 35;
        }

        int leftR = secR;
        int sizeR = 1;

        int j = secR - 1;
        if (j < 0) j = 35;
        while (temp[j] == 1) {
            sizeR++;
            j--;
            if (j < 0) j = 35;
            if (j == secR) break;
            if (sizeR >= 5) break;
        }
        int rightR = j + 1;
        if (rightR > 35) rightR = 0;
        if (sizeR >= 5) //wide
            dirR = leftR * 10 + 0.5 * 10 * 5;
        else if(sizeR>4 && sizeR<5)//narrow
            dirR = 0.5 * (rightR * 10 + leftR * 10);
        else
            dirR=9999;

        if(dirL>360) dirL=fabs(dirL-360);
        if(dirR>360) dirR=fabs(dirR-360);
        if(fabs(theta_deg-dirL)>fabs(theta_deg-dirR))
            dirC=dirR;
        else
            dirC=dirL;
        }
        dirSet=dirC;
        //cout<<"dirSet: 1"<<endl;

        ///////////////////////////////////////////////////////////
    } else {
        int secL = destSec;
        while (temp[secL] != 1) {
            secL++;
            if (secL > 35) secL = 0;
        }
        int rightL = secL;
        int size = 1;

        int i = secL + 1;
        if (i > 35) i = 0;
        while (temp[i] == 1) {
            size++;
            i++;
            if (i > 35) i = 0;
            if (i == secL) break;
            // Smax here
            if (size >= 5) break;
        }
        int leftL = i - 1;
        if (leftL < 0) leftL = 35;
        if (size >= 5) //wide
            dirL = rightL * 10 + 0.5 * 10 * 5;
        else if(size>4 && size<5)  //narrow
            dirL = 0.5 * (leftL * 10 + rightL * 10);
        else
            dirL=9999;
        ///////////////////////////////////////////////////////////////////
        int secR = destSec;
        while (temp[secR] != 1) {
            secR--;
            if (secR < 0) secR = 35;
        }

        int leftR = secR;
        int sizeR = 1;

        int j = secR - 1;
        if (j < 0) j = 35;
        while (temp[j] == 1) {
            sizeR++;
            j--;
            if (j < 0) j = 35;
            if (j == secR) break;
            if (sizeR >= 5) break;
        }
        int rightR = j + 1;
        if (rightR > 35) rightR = 0;
        if (sizeR >= 5) //wide
            dirR = leftR * 10 + 0.5 * 10 * 5;
        else if(sizeR>4 && sizeR<5)//narrow
            dirR = 0.5 * (rightR * 10 + leftR * 10);
        else
            dirR=9999;

        if(dirL>360) dirL=fabs(dirL-360);
        if(dirR>360) dirR=fabs(dirR-360);
        if(fabs(theta_deg-dirL)>fabs(theta_deg-dirR))
            dirSet=dirR;
        else
            dirSet=dirL;
        //cout<<"dirSet:2 dirR: "<<dirR<<" dirL: "<<dirL<<endl;
    }
    //cout<<"dirSet: "<<dirSet<<endl;
    
    fX=cos(dirSet*M_PI/180.0f);
    fY=sin(dirSet*M_PI/180.0f);
    
}