Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: RZ_A2M_Mbed_samples
Camera Calibration and 3D Reconstruction
The functions in this section use a so-called pinhole camera model. More...
Data Structures | |
class | StereoMatcher |
The base class for stereo correspondence algorithms. More... | |
class | StereoBM |
Class for computing stereo correspondence using the block matching algorithm, introduced and contributed to OpenCV by K. More... | |
class | StereoSGBM |
The class implements the modified H. More... | |
Modules | |
Fisheye camera model | |
Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X) The coordinate vector of P in the camera reference frame is: | |
C API | |
Enumerations | |
enum | { LMEDS = 4, RANSAC = 8, RHO = 16 } |
type of the robust estimation algorithm More... | |
enum | { , SOLVEPNP_EPNP = 1, SOLVEPNP_P3P = 2, SOLVEPNP_DLS = 3, SOLVEPNP_UPNP = 4 } |
enum | { , CALIB_USE_QR = 0x100000 , CALIB_USE_LU = (1 << 17) } |
enum | { FM_7POINT = 1, FM_8POINT = 2, FM_LMEDS = 4, FM_RANSAC = 8 } |
the algorithm for finding fundamental matrix More... | |
Functions | |
CV_EXPORTS_W void | Rodrigues (InputArray src, OutputArray dst, OutputArray jacobian=noArray()) |
Converts a rotation matrix to a rotation vector or vice versa. | |
CV_EXPORTS_W Mat | findHomography (InputArray srcPoints, InputArray dstPoints, int method=0, double ransacReprojThreshold=3, OutputArray mask=noArray(), const int maxIters=2000, const double confidence=0.995) |
Finds a perspective transformation between two planes. | |
CV_EXPORTS Mat | findHomography (InputArray srcPoints, InputArray dstPoints, OutputArray mask, int method=0, double ransacReprojThreshold=3) |
CV_EXPORTS_W Vec3d | RQDecomp3x3 (InputArray src, OutputArray mtxR, OutputArray mtxQ, OutputArray Qx=noArray(), OutputArray Qy=noArray(), OutputArray Qz=noArray()) |
Computes an RQ decomposition of 3x3 matrices. | |
CV_EXPORTS_W void | decomposeProjectionMatrix (InputArray projMatrix, OutputArray cameraMatrix, OutputArray rotMatrix, OutputArray transVect, OutputArray rotMatrixX=noArray(), OutputArray rotMatrixY=noArray(), OutputArray rotMatrixZ=noArray(), OutputArray eulerAngles=noArray()) |
Decomposes a projection matrix into a rotation matrix and a camera matrix. | |
CV_EXPORTS_W void | matMulDeriv (InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB) |
Computes partial derivatives of the matrix product for each multiplied matrix. | |
CV_EXPORTS_W void | composeRT (InputArray rvec1, InputArray tvec1, InputArray rvec2, InputArray tvec2, OutputArray rvec3, OutputArray tvec3, OutputArray dr3dr1=noArray(), OutputArray dr3dt1=noArray(), OutputArray dr3dr2=noArray(), OutputArray dr3dt2=noArray(), OutputArray dt3dr1=noArray(), OutputArray dt3dt1=noArray(), OutputArray dt3dr2=noArray(), OutputArray dt3dt2=noArray()) |
Combines two rotation-and-shift transformations. | |
CV_EXPORTS_W void | projectPoints (InputArray objectPoints, InputArray rvec, InputArray tvec, InputArray cameraMatrix, InputArray distCoeffs, OutputArray imagePoints, OutputArray jacobian=noArray(), double aspectRatio=0) |
Projects 3D points to an image plane. | |
CV_EXPORTS_W bool | solvePnP (InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int flags=SOLVEPNP_ITERATIVE) |
Finds an object pose from 3D-2D point correspondences. | |
CV_EXPORTS_W bool | solvePnPRansac (InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int iterationsCount=100, float reprojectionError=8.0, double confidence=0.99, OutputArray inliers=noArray(), int flags=SOLVEPNP_ITERATIVE) |
Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. | |
CV_EXPORTS_W Mat | initCameraMatrix2D (InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio=1.0) |
Finds an initial camera matrix from 3D-2D point correspondences. | |
CV_EXPORTS_W bool | findChessboardCorners (InputArray image, Size patternSize, OutputArray corners, int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE) |
Finds the positions of internal corners of the chessboard. | |
CV_EXPORTS bool | find4QuadCornerSubpix (InputArray img, InputOutputArray corners, Size region_size) |
finds subpixel-accurate positions of the chessboard corners | |
CV_EXPORTS_W void | drawChessboardCorners (InputOutputArray image, Size patternSize, InputArray corners, bool patternWasFound) |
Renders the detected chessboard corners. | |
CV_EXPORTS_W bool | findCirclesGrid (InputArray image, Size patternSize, OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID, const Ptr< FeatureDetector > &blobDetector=SimpleBlobDetector::create()) |
Finds centers in the grid of circles. | |
CV_EXPORTS_AS (calibrateCameraExtended) double calibrateCamera(InputArrayOfArrays objectPoints | |
Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern. | |
CV_EXPORTS_W void | calibrationMatrixValues (InputArray cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, CV_OUT double &fovx, CV_OUT double &fovy, CV_OUT double &focalLength, CV_OUT Point2d &principalPoint, CV_OUT double &aspectRatio) |
Computes useful camera characteristics from the camera matrix. | |
CV_EXPORTS_W double | stereoCalibrate (InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1, InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2, Size imageSize, OutputArray R, OutputArray T, OutputArray E, OutputArray F, int flags=CALIB_FIX_INTRINSIC, TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6)) |
Calibrates the stereo camera. | |
CV_EXPORTS_W void | stereoRectify (InputArray cameraMatrix1, InputArray distCoeffs1, InputArray cameraMatrix2, InputArray distCoeffs2, Size imageSize, InputArray R, InputArray T, OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags=CALIB_ZERO_DISPARITY, double alpha=-1, Size newImageSize=Size(), CV_OUT Rect *validPixROI1=0, CV_OUT Rect *validPixROI2=0) |
Computes rectification transforms for each head of a calibrated stereo camera. | |
CV_EXPORTS_W bool | stereoRectifyUncalibrated (InputArray points1, InputArray points2, InputArray F, Size imgSize, OutputArray H1, OutputArray H2, double threshold=5) |
Computes a rectification transform for an uncalibrated stereo camera. | |
CV_EXPORTS_W float | rectify3Collinear (InputArray cameraMatrix1, InputArray distCoeffs1, InputArray cameraMatrix2, InputArray distCoeffs2, InputArray cameraMatrix3, InputArray distCoeffs3, InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3, Size imageSize, InputArray R12, InputArray T12, InputArray R13, InputArray T13, OutputArray R1, OutputArray R2, OutputArray R3, OutputArray P1, OutputArray P2, OutputArray P3, OutputArray Q, double alpha, Size newImgSize, CV_OUT Rect *roi1, CV_OUT Rect *roi2, int flags) |
computes the rectification transformations for 3-head camera, where all the heads are on the same line. | |
CV_EXPORTS_W Mat | getOptimalNewCameraMatrix (InputArray cameraMatrix, InputArray distCoeffs, Size imageSize, double alpha, Size newImgSize=Size(), CV_OUT Rect *validPixROI=0, bool centerPrincipalPoint=false) |
Returns the new camera matrix based on the free scaling parameter. | |
CV_EXPORTS_W void | convertPointsToHomogeneous (InputArray src, OutputArray dst) |
Converts points from Euclidean to homogeneous space. | |
CV_EXPORTS_W void | convertPointsFromHomogeneous (InputArray src, OutputArray dst) |
Converts points from homogeneous to Euclidean space. | |
CV_EXPORTS void | convertPointsHomogeneous (InputArray src, OutputArray dst) |
Converts points to/from homogeneous coordinates. | |
CV_EXPORTS_W Mat | findFundamentalMat (InputArray points1, InputArray points2, int method=FM_RANSAC, double param1=3., double param2=0.99, OutputArray mask=noArray()) |
Calculates a fundamental matrix from the corresponding points in two images. | |
CV_EXPORTS Mat | findFundamentalMat (InputArray points1, InputArray points2, OutputArray mask, int method=FM_RANSAC, double param1=3., double param2=0.99) |
CV_EXPORTS_W Mat | findEssentialMat (InputArray points1, InputArray points2, InputArray cameraMatrix, int method=RANSAC, double prob=0.999, double threshold=1.0, OutputArray mask=noArray()) |
Calculates an essential matrix from the corresponding points in two images. | |
CV_EXPORTS_W Mat | findEssentialMat (InputArray points1, InputArray points2, double focal=1.0, Point2d pp=Point2d(0, 0), int method=RANSAC, double prob=0.999, double threshold=1.0, OutputArray mask=noArray()) |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. | |
CV_EXPORTS_W void | decomposeEssentialMat (InputArray E, OutputArray R1, OutputArray R2, OutputArray t) |
Decompose an essential matrix to possible rotations and translation. | |
CV_EXPORTS_W int | recoverPose (InputArray E, InputArray points1, InputArray points2, InputArray cameraMatrix, OutputArray R, OutputArray t, InputOutputArray mask=noArray()) |
Recover relative camera rotation and translation from an estimated essential matrix and the corresponding points in two images, using cheirality check. | |
CV_EXPORTS_W int | recoverPose (InputArray E, InputArray points1, InputArray points2, OutputArray R, OutputArray t, double focal=1.0, Point2d pp=Point2d(0, 0), InputOutputArray mask=noArray()) |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. | |
CV_EXPORTS_W void | computeCorrespondEpilines (InputArray points, int whichImage, InputArray F, OutputArray lines) |
For points in an image of a stereo pair, computes the corresponding epilines in the other image. | |
CV_EXPORTS_W void | triangulatePoints (InputArray projMatr1, InputArray projMatr2, InputArray projPoints1, InputArray projPoints2, OutputArray points4D) |
Reconstructs points by triangulation. | |
CV_EXPORTS_W void | correctMatches (InputArray F, InputArray points1, InputArray points2, OutputArray newPoints1, OutputArray newPoints2) |
Refines coordinates of corresponding points. | |
CV_EXPORTS_W void | filterSpeckles (InputOutputArray img, double newVal, int maxSpeckleSize, double maxDiff, InputOutputArray buf=noArray()) |
Filters off small noise blobs (speckles) in the disparity map. | |
CV_EXPORTS_W Rect | getValidDisparityROI (Rect roi1, Rect roi2, int minDisparity, int numberOfDisparities, int SADWindowSize) |
computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify()) | |
CV_EXPORTS_W void | validateDisparity (InputOutputArray disparity, InputArray cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp=1) |
validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm | |
CV_EXPORTS_W void | reprojectImageTo3D (InputArray disparity, OutputArray _3dImage, InputArray Q, bool handleMissingValues=false, int ddepth=-1) |
Reprojects a disparity image to 3D space. | |
CV_EXPORTS_W double | sampsonDistance (InputArray pt1, InputArray pt2, InputArray F) |
Calculates the Sampson Distance between two points. | |
CV_EXPORTS_W int | estimateAffine3D (InputArray src, InputArray dst, OutputArray out, OutputArray inliers, double ransacThreshold=3, double confidence=0.99) |
Computes an optimal affine transformation between two 3D point sets. | |
CV_EXPORTS_W cv::Mat | estimateAffine2D (InputArray from, InputArray to, OutputArray inliers=noArray(), int method=RANSAC, double ransacReprojThreshold=3, size_t maxIters=2000, double confidence=0.99, size_t refineIters=10) |
Computes an optimal affine transformation between two 2D point sets. | |
CV_EXPORTS_W cv::Mat | estimateAffinePartial2D (InputArray from, InputArray to, OutputArray inliers=noArray(), int method=RANSAC, double ransacReprojThreshold=3, size_t maxIters=2000, double confidence=0.99, size_t refineIters=10) |
Computes an optimal limited affine transformation with 4 degrees of freedom between two 2D point sets. | |
CV_EXPORTS_W int | decomposeHomographyMat (InputArray H, InputArray K, OutputArrayOfArrays rotations, OutputArrayOfArrays translations, OutputArrayOfArrays normals) |
Decompose a homography matrix to rotation(s), translation(s) and plane normal(s). |
Detailed Description
The functions in this section use a so-called pinhole camera model.
In this model, a scene view is formed by projecting 3D points into the image plane using a perspective transformation.
or
where:
are the coordinates of a 3D point in the world coordinate space
are the coordinates of the projection point in pixels
is a camera matrix, or a matrix of intrinsic parameters
is a principal point that is usually at the image center
are the focal lengths expressed in pixel units.
Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled (multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is fixed (in case of zoom lens). The joint rotation-translation matrix is called a matrix of extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa, rigid motion of an object in front of a still camera. That is,
translates coordinates of a point
to a coordinate system, fixed with respect to the camera. The transformation above is equivalent to the following (when
):
The following figure illustrates the pinhole camera model.

Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion. So, the above model is extended as:
,
,
,
,
, and
are radial distortion coefficients.
and
are tangential distortion coefficients.
,
,
, and
, are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.
The next figure shows two common types of radial distortion: barrel distortion (typically and pincushion distortion (typically
).

In some cases the image sensor may be tilted in order to focus an oblique plane in front of the camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or triangulation with a laser fan. The tilt causes a perspective distortion of and
. This distortion can be modelled in the following way, see e.g. Louhichi07.
where the matrix is defined by two rotations with angular parameter
and
, respectively,
In the functions below the coefficients are passed or returned as
vector. That is, if the vector contains four elements, it means that . The distortion coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera parameters. And they remain the same regardless of the captured image resolution. If, for example, a camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion coefficients can be used for 640 x 480 images from the same camera while
,
,
, and
need to be scaled appropriately.
The functions below use the above model to do the following:
- Project 3D points to the image plane given intrinsic and extrinsic parameters.
- Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their projections.
- Estimate intrinsic and extrinsic camera parameters from several views of a known calibration pattern (every view is described by several 3D-2D point correspondences).
- Estimate the relative position and orientation of the stereo camera "heads" and compute the rectification* transformation that makes the camera optical axes parallel.
- Note:
- A calibration sample for 3 cameras in horizontal position can be found at opencv_source_code/samples/cpp/3calibration.cpp
- A calibration sample based on a sequence of images can be found at opencv_source_code/samples/cpp/calibration.cpp
- A calibration sample in order to do 3D reconstruction can be found at opencv_source_code/samples/cpp/build3dmodel.cpp
- A calibration sample of an artificially generated camera and chessboard patterns can be found at opencv_source_code/samples/cpp/calibration_artificial.cpp
- A calibration example on stereo calibration can be found at opencv_source_code/samples/cpp/stereo_calib.cpp
- A calibration example on stereo matching can be found at opencv_source_code/samples/cpp/stereo_match.cpp
- (Python) A camera calibration sample can be found at opencv_source_code/samples/python/calibrate.py
- A calibration sample for 3 cameras in horizontal position can be found at opencv_source_code/samples/cpp/3calibration.cpp
Enumeration Type Documentation
anonymous enum |
type of the robust estimation algorithm
Definition at line 230 of file calib3d.hpp.
anonymous enum |
- Enumerator:
Definition at line 235 of file calib3d.hpp.
anonymous enum |
- Enumerator:
CALIB_USE_QR use QR instead of SVD decomposition for solving. Faster but potentially less precise
CALIB_USE_LU use LU instead of SVD decomposition for solving. much faster but potentially less precise
Definition at line 254 of file calib3d.hpp.
anonymous enum |
the algorithm for finding fundamental matrix
- Enumerator:
FM_7POINT 7-point algorithm
FM_8POINT 8-point algorithm
FM_LMEDS least-median algorithm
FM_RANSAC RANSAC algorithm.
Definition at line 280 of file calib3d.hpp.
Function Documentation
CV_EXPORTS_W void cv::calibrationMatrixValues | ( | InputArray | cameraMatrix, |
Size | imageSize, | ||
double | apertureWidth, | ||
double | apertureHeight, | ||
CV_OUT double & | fovx, | ||
CV_OUT double & | fovy, | ||
CV_OUT double & | focalLength, | ||
CV_OUT Point2d & | principalPoint, | ||
CV_OUT double & | aspectRatio | ||
) |
Computes useful camera characteristics from the camera matrix.
- Parameters:
-
cameraMatrix Input camera matrix that can be estimated by calibrateCamera or stereoCalibrate . imageSize Input image size in pixels. apertureWidth Physical width in mm of the sensor. apertureHeight Physical height in mm of the sensor. fovx Output field of view in degrees along the horizontal sensor axis. fovy Output field of view in degrees along the vertical sensor axis. focalLength Focal length of the lens in mm. principalPoint Principal point in mm. aspectRatio
The function computes various useful camera characteristics from the previously estimated camera matrix.
- Note:
- Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for the chessboard pitch (it can thus be any value).
CV_EXPORTS_W void cv::composeRT | ( | InputArray | rvec1, |
InputArray | tvec1, | ||
InputArray | rvec2, | ||
InputArray | tvec2, | ||
OutputArray | rvec3, | ||
OutputArray | tvec3, | ||
OutputArray | dr3dr1 = noArray() , |
||
OutputArray | dr3dt1 = noArray() , |
||
OutputArray | dr3dr2 = noArray() , |
||
OutputArray | dr3dt2 = noArray() , |
||
OutputArray | dt3dr1 = noArray() , |
||
OutputArray | dt3dt1 = noArray() , |
||
OutputArray | dt3dr2 = noArray() , |
||
OutputArray | dt3dt2 = noArray() |
||
) |
Combines two rotation-and-shift transformations.
- Parameters:
-
rvec1 First rotation vector. tvec1 First translation vector. rvec2 Second rotation vector. tvec2 Second translation vector. rvec3 Output rotation vector of the superposition. tvec3 Output translation vector of the superposition. dr3dr1 dr3dt1 dr3dr2 dr3dt2 dt3dr1 dt3dt1 dt3dr2 dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and tvec2, respectively.
The functions compute:
where denotes a rotation vector to a rotation matrix transformation, and
denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a function that contains a matrix multiplication.
CV_EXPORTS_W void cv::computeCorrespondEpilines | ( | InputArray | points, |
int | whichImage, | ||
InputArray | F, | ||
OutputArray | lines | ||
) |
For points in an image of a stereo pair, computes the corresponding epilines in the other image.
- Parameters:
-
points Input points. or
matrix of type CV_32FC2 or vector<Point2f> .
whichImage Index of the image (1 or 2) that contains the points . F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify . lines Output vector of the epipolar lines corresponding to the points in the other image. Each line is encoded by 3 numbers
.
For every point in one of the two images of a stereo pair, the function finds the equation of the corresponding epipolar line in the other image.
From the fundamental matrix definition (see findFundamentalMat ), line in the second image for the point
in the first image (when whichImage=1 ) is computed as:
And vice versa, when whichImage=2, is computed from
as:
Line coefficients are defined up to a scale. They are normalized so that .
CV_EXPORTS_W void cv::convertPointsFromHomogeneous | ( | InputArray | src, |
OutputArray | dst | ||
) |
Converts points from homogeneous to Euclidean space.
- Parameters:
-
src Input vector of N-dimensional points. dst Output vector of N-1-dimensional points.
The function converts points homogeneous to Euclidean space using perspective projection. That is, each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the output point coordinates will be (0,0,0,...).
CV_EXPORTS void cv::convertPointsHomogeneous | ( | InputArray | src, |
OutputArray | dst | ||
) |
Converts points to/from homogeneous coordinates.
- Parameters:
-
src Input array or vector of 2D, 3D, or 4D points. dst Output vector of 2D, 3D, or 4D points.
The function converts 2D or 3D points from/to homogeneous coordinates by calling either convertPointsToHomogeneous or convertPointsFromHomogeneous.
- Note:
- The function is obsolete. Use one of the previous two functions instead.
CV_EXPORTS_W void cv::convertPointsToHomogeneous | ( | InputArray | src, |
OutputArray | dst | ||
) |
Converts points from Euclidean to homogeneous space.
- Parameters:
-
src Input vector of N-dimensional points. dst Output vector of N+1-dimensional points.
The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
CV_EXPORTS_W void cv::correctMatches | ( | InputArray | F, |
InputArray | points1, | ||
InputArray | points2, | ||
OutputArray | newPoints1, | ||
OutputArray | newPoints2 | ||
) |
Refines coordinates of corresponding points.
- Parameters:
-
F 3x3 fundamental matrix. points1 1xN array containing the first set of points. points2 1xN array containing the second set of points. newPoints1 The optimized points1. newPoints2 The optimized points2.
The function implements the Optimal Triangulation Method (see Multiple View Geometry for details). For each given point correspondence points1[i] <-> points2[i], and a fundamental matrix F, it computes the corrected correspondences newPoints1[i] <-> newPoints2[i] that minimize the geometric error (where
is the geometric distance between points
and
) subject to the epipolar constraint
.
cv::CV_EXPORTS_AS | ( | calibrateCameraExtended | ) |
Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
- Parameters:
-
objectPoints In the new interface it is a vector of vectors of calibration pattern points in the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer vector contains as many elements as the number of the pattern views. If the same calibration pattern is shown in each view and it is fully visible, all the vectors will be the same. Although, it is possible to use partially occluded patterns, or even different patterns in different views. Then, the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that Z-coordinate of each input object point is 0. In the old interface all the vectors of object points from different views are concatenated together. imagePoints In the new interface it is a vector of vectors of the projections of calibration pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i. In the old interface all the vectors of object points from different views are concatenated together. imageSize Size of the image used only to initialize the intrinsic camera matrix. cameraMatrix Output 3x3 floating-point camera matrix . If CV and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
distCoeffs Output vector of distortion coefficients of 4, 5, 8, 12 or 14 elements.
rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding k-th translation vector (see the next output parameter description) brings the calibration pattern from the model coordinate space (in which object points are specified) to the world coordinate space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). tvecs Output vector of translation vectors estimated for each pattern view. stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. Order of deviations values: If one of parameters is not estimated, it's deviation is equals to zero.
stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. Order of deviations values: where M is number of pattern views,
are concatenated 1x3 vectors.
perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. flags Different flags that may be zero or a combination of the following values: - **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image center ( imageSize is used), and focal distances are computed in a least-squares fashion. Note, that if intrinsic parameters are known, there is no need to use this function just to estimate extrinsic parameters. Use solvePnP instead.
- **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global optimization. It stays at the center or at a different location specified when CV_CALIB_USE_INTRINSIC_GUESS is set too.
- **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The ratio fx/fy stays the same as in the input cameraMatrix . When CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are ignored, only their ratio is computed and used further.
- **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients
are set to zeros and stay zero.
- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the rational model and return 8 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients.
- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the thin prism model and return 12 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients.
- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the tilted sensor model and return 14 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients.
- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
criteria Termination criteria for the iterative optimization algorithm.
- Returns:
- the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the views. The algorithm is based on Zhang2000 and BouguetMCT . The coordinates of 3D object points and their corresponding 2D projections in each view must be specified. That may be achieved by using an object with a known geometry and easily detectable feature points. Such an object is called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters (when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also be used as long as initial cameraMatrix is provided.
The algorithm performs the following steps:
- Compute the initial intrinsic parameters (the option only available for planar calibration patterns) or read them from the input parameters. The distortion coefficients are all set to zeros initially unless some of CV_CALIB_FIX_K? are specified.
- Estimate the initial camera pose as if the intrinsic parameters have been already known. This is done using solvePnP .
- Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error, that is, the total sum of squared distances between the observed feature points imagePoints and the projected (using the current estimates for camera parameters and the poses) object points objectPoints. See projectPoints for details.
- Note:
- If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and calibrateCamera returns bad values (zero distortion coefficients, an image center very far from (w/2-0.5,h/2-0.5), and/or large differences between
and
(ratios of 10:1 or more)), then you have probably used patternSize=cvSize(rows,cols) instead of using patternSize=cvSize(cols,rows) in findChessboardCorners .
- See also:
- findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
CV_EXPORTS_W void cv::decomposeEssentialMat | ( | InputArray | E, |
OutputArray | R1, | ||
OutputArray | R2, | ||
OutputArray | t | ||
) |
Decompose an essential matrix to possible rotations and translation.
- Parameters:
-
E The input essential matrix. R1 One possible rotation matrix. R2 Another possible rotation matrix. t One possible translation.
This function decompose an essential matrix E using svd decomposition HartleyZ00 . Generally 4 possible poses exists for a given E. They are ,
,
,
. By decomposing E, you can only get the direction of the translation, so the function returns unit t.
CV_EXPORTS_W int cv::decomposeHomographyMat | ( | InputArray | H, |
InputArray | K, | ||
OutputArrayOfArrays | rotations, | ||
OutputArrayOfArrays | translations, | ||
OutputArrayOfArrays | normals | ||
) |
Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
- Parameters:
-
H The input homography matrix between two images. K The input intrinsic camera calibration matrix. rotations Array of rotation matrices. translations Array of translation matrices. normals Array of plane normal matrices.
This function extracts relative camera motion between two views observing a planar object from the homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function may return up to four mathematical solution sets. At least two of the solutions may further be invalidated if point correspondences are available by applying positive depth constraint (all points must be in front of the camera). The decomposition method is described in detail in Malis .
CV_EXPORTS_W void cv::decomposeProjectionMatrix | ( | InputArray | projMatrix, |
OutputArray | cameraMatrix, | ||
OutputArray | rotMatrix, | ||
OutputArray | transVect, | ||
OutputArray | rotMatrixX = noArray() , |
||
OutputArray | rotMatrixY = noArray() , |
||
OutputArray | rotMatrixZ = noArray() , |
||
OutputArray | eulerAngles = noArray() |
||
) |
Decomposes a projection matrix into a rotation matrix and a camera matrix.
- Parameters:
-
projMatrix 3x4 input projection matrix P. cameraMatrix Output 3x3 camera matrix K. rotMatrix Output 3x3 external rotation matrix R. transVect Output 4x1 translation vector T. rotMatrixX Optional 3x3 rotation matrix around x-axis. rotMatrixY Optional 3x3 rotation matrix around y-axis. rotMatrixZ Optional 3x3 rotation matrix around z-axis. eulerAngles Optional three-element vector containing three Euler angles of rotation in degrees.
The function computes a decomposition of a projection matrix into a calibration and a rotation matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could be used in OpenGL. Note, there is always more than one sequence of rotations about the three principal axes that results in the same orientation of an object, eg. see Slabaugh . Returned tree rotation matrices and corresponding three Euler angules are only one of the possible solutions.
The function is based on RQDecomp3x3 .
CV_EXPORTS_W void cv::drawChessboardCorners | ( | InputOutputArray | image, |
Size | patternSize, | ||
InputArray | corners, | ||
bool | patternWasFound | ||
) |
Renders the detected chessboard corners.
- Parameters:
-
image Destination image. It must be an 8-bit color image. patternSize Number of inner corners per a chessboard row and column (patternSize = cv::Size(points_per_row,points_per_column)). corners Array of detected corners, the output of findChessboardCorners. patternWasFound Parameter indicating whether the complete board was found or not. The return value of findChessboardCorners should be passed here.
The function draws individual chessboard corners detected either as red circles if the board was not found, or as colored corners connected with lines if the board was found.
CV_EXPORTS_W cv::Mat cv::estimateAffine2D | ( | InputArray | from, |
InputArray | to, | ||
OutputArray | inliers = noArray() , |
||
int | method = RANSAC , |
||
double | ransacReprojThreshold = 3 , |
||
size_t | maxIters = 2000 , |
||
double | confidence = 0.99 , |
||
size_t | refineIters = 10 |
||
) |
Computes an optimal affine transformation between two 2D point sets.
- Parameters:
-
from First input 2D point set. to Second input 2D point set. inliers Output vector indicating which points are inliers. method Robust method used to compute tranformation. The following methods are possible: - cv::RANSAC - RANSAC-based robust method
- cv::LMEDS - Least-Median robust method RANSAC is the default method.
ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as an inlier. Applies only to RANSAC. maxIters The maximum number of robust method iterations, 2000 is the maximum it can be. confidence Confidence level, between 0 and 1, for the estimated transformation. Anything between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). Passing 0 will disable refining, so the output matrix will be output of robust method.
- Returns:
- Output 2D affine transformation matrix
or empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation between two 2D point sets using the selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the Levenberg-Marquardt method to reduce the re-projection error even more.
- Note:
- The RANSAC method can handle practically any ratio of outliers but need a threshold to distinguish inliers from outliers. The method LMeDS does not need any threshold but it works correctly only when there are more than 50% of inliers.
- See also:
- estimateAffinePartial2D, getAffineTransform
CV_EXPORTS_W int cv::estimateAffine3D | ( | InputArray | src, |
InputArray | dst, | ||
OutputArray | out, | ||
OutputArray | inliers, | ||
double | ransacThreshold = 3 , |
||
double | confidence = 0.99 |
||
) |
Computes an optimal affine transformation between two 3D point sets.
- Parameters:
-
src First input 3D point set. dst Second input 3D point set. out Output 3D affine transformation matrix .
inliers Output vector indicating which points are inliers. ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as an inlier. confidence Confidence level, between 0 and 1, for the estimated transformation. Anything between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
The function estimates an optimal 3D affine transformation between two 3D point sets using the RANSAC algorithm.
CV_EXPORTS_W cv::Mat cv::estimateAffinePartial2D | ( | InputArray | from, |
InputArray | to, | ||
OutputArray | inliers = noArray() , |
||
int | method = RANSAC , |
||
double | ransacReprojThreshold = 3 , |
||
size_t | maxIters = 2000 , |
||
double | confidence = 0.99 , |
||
size_t | refineIters = 10 |
||
) |
Computes an optimal limited affine transformation with 4 degrees of freedom between two 2D point sets.
- Parameters:
-
from First input 2D point set. to Second input 2D point set. inliers Output vector indicating which points are inliers. method Robust method used to compute tranformation. The following methods are possible: - cv::RANSAC - RANSAC-based robust method
- cv::LMEDS - Least-Median robust method RANSAC is the default method.
ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as an inlier. Applies only to RANSAC. maxIters The maximum number of robust method iterations, 2000 is the maximum it can be. confidence Confidence level, between 0 and 1, for the estimated transformation. Anything between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). Passing 0 will disable refining, so the output matrix will be output of robust method.
- Returns:
- Output 2D affine transformation (4 degrees of freedom) matrix
or empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust estimation.
The computed transformation is then refined further (using only inliers) with the Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
Where is the rotation angle,
the scaling factor and
are translations in
axes respectively.
- Note:
- The RANSAC method can handle practically any ratio of outliers but need a threshold to distinguish inliers from outliers. The method LMeDS does not need any threshold but it works correctly only when there are more than 50% of inliers.
- See also:
- estimateAffine2D, getAffineTransform
CV_EXPORTS_W void cv::filterSpeckles | ( | InputOutputArray | img, |
double | newVal, | ||
int | maxSpeckleSize, | ||
double | maxDiff, | ||
InputOutputArray | buf = noArray() |
||
) |
Filters off small noise blobs (speckles) in the disparity map.
- Parameters:
-
img The input 16-bit signed disparity image newVal The disparity value used to paint-off the speckles maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not affected by the algorithm maxDiff Maximum difference between neighbor disparity pixels to put them into the same blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point disparity map, where disparity values are multiplied by 16, this scale factor should be taken into account when specifying this parameter value. buf The optional temporary buffer to avoid memory allocation within the function.
CV_EXPORTS bool cv::find4QuadCornerSubpix | ( | InputArray | img, |
InputOutputArray | corners, | ||
Size | region_size | ||
) |
finds subpixel-accurate positions of the chessboard corners
CV_EXPORTS_W bool cv::findChessboardCorners | ( | InputArray | image, |
Size | patternSize, | ||
OutputArray | corners, | ||
int | flags = CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE |
||
) |
Finds the positions of internal corners of the chessboard.
- Parameters:
-
image Source chessboard view. It must be an 8-bit grayscale or color image. patternSize Number of inner corners per a chessboard row and column ( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ). corners Output array of detected corners. flags Various operation flags that can be zero or a combination of the following values: - **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black and white, rather than a fixed threshold level (computed from the average image brightness).
- **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before applying fixed or adaptive thresholding.
- **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter, square-like shape) to filter out false quads extracted at the contour retrieval stage.
- **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners, and shortcut the call if none is found. This can drastically speed up the call in the degenerate condition when no chessboard is observed.
The function attempts to determine whether the input image is a view of the chessboard pattern and locate the internal chessboard corners. The function returns a non-zero value if all of the corners are found and they are placed in a certain order (row by row, left to right in every row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example, a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black squares touch each other. The detected coordinates are approximate, and to determine their positions more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with different parameters if returned coordinates are not accurate enough.
Sample usage of detecting and drawing chessboard corners: :
Size patternsize(8,6); //interior number of corners Mat gray = ....; //source image vector<Point2f> corners; //this will be filled by the detected corners //CALIB_CB_FAST_CHECK saves a lot of time on images //that do not contain any chessboard corners bool patternfound = findChessboardCorners(gray, patternsize, corners, CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + CALIB_CB_FAST_CHECK); if(patternfound) cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1)); drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
- Note:
- The function requires white space (like a square-thick border, the wider the better) around the board to make the detection more robust in various environments. Otherwise, if there is no border and the background is dark, the outer black squares cannot be segmented properly and so the square grouping and ordering algorithm fails.
CV_EXPORTS_W bool cv::findCirclesGrid | ( | InputArray | image, |
Size | patternSize, | ||
OutputArray | centers, | ||
int | flags = CALIB_CB_SYMMETRIC_GRID , |
||
const Ptr< FeatureDetector > & | blobDetector = SimpleBlobDetector::create() |
||
) |
Finds centers in the grid of circles.
- Parameters:
-
image grid view of input circles; it must be an 8-bit grayscale or color image. patternSize number of circles per row and column ( patternSize = Size(points_per_row, points_per_colum) ). centers output array of detected centers. flags various operation flags that can be one of the following values: - **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
- **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
- **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to perspective distortions but much more sensitive to background clutter.
blobDetector feature detector that finds blobs like dark circles on light background.
The function attempts to determine whether the input image contains a grid of circles. If it is, the function locates centers of the circles. The function returns a non-zero value if all of the centers have been found and they have been placed in a certain order (row by row, left to right in every row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
Sample usage of detecting and drawing the centers of circles: :
Size patternsize(7,7); //number of centers Mat gray = ....; //source image vector<Point2f> centers; //this will be filled by the detected centers bool patternfound = findCirclesGrid(gray, patternsize, centers); drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
- Note:
- The function requires white space (like a square-thick border, the wider the better) around the board to make the detection more robust in various environments.
CV_EXPORTS_W Mat cv::findEssentialMat | ( | InputArray | points1, |
InputArray | points2, | ||
InputArray | cameraMatrix, | ||
int | method = RANSAC , |
||
double | prob = 0.999 , |
||
double | threshold = 1.0 , |
||
OutputArray | mask = noArray() |
||
) |
Calculates an essential matrix from the corresponding points in two images.
- Parameters:
-
points1 Array of N (N >= 5) 2D points from the first image. The point coordinates should be floating-point (single or double precision). points2 Array of the second image points of the same size and format as points1 . cameraMatrix Camera matrix . Note that this function assumes that points1 and points2 are feature points from cameras with the same camera matrix.
method Method for computing a fundamental matrix. - **RANSAC** for the RANSAC algorithm.
- **MEDS** for the LMedS algorithm.
prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of confidence (probability) that the estimated matrix is correct. threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar line in pixels, beyond which the point is considered an outlier and is not used for computing the final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the point localization, image resolution, and the image noise. mask Output array of N elements, every element of which is set to 0 for outliers and to 1 for the other points. The array is computed only in the RANSAC and LMedS methods.
This function estimates essential matrix based on the five-point algorithm solver in Nister03 . SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
where is an essential matrix,
and
are corresponding points in the first and the second images, respectively. The result of this function may be passed further to decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
CV_EXPORTS_W Mat cv::findEssentialMat | ( | InputArray | points1, |
InputArray | points2, | ||
double | focal = 1.0 , |
||
Point2d | pp = Point2d(0, 0) , |
||
int | method = RANSAC , |
||
double | prob = 0.999 , |
||
double | threshold = 1.0 , |
||
OutputArray | mask = noArray() |
||
) |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
- Parameters:
-
points1 Array of N (N >= 5) 2D points from the first image. The point coordinates should be floating-point (single or double precision). points2 Array of the second image points of the same size and format as points1 . focal focal length of the camera. Note that this function assumes that points1 and points2 are feature points from cameras with same focal length and principal point. pp principal point of the camera. method Method for computing a fundamental matrix. - **RANSAC** for the RANSAC algorithm.
- **LMEDS** for the LMedS algorithm.
threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar line in pixels, beyond which the point is considered an outlier and is not used for computing the final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the point localization, image resolution, and the image noise. prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of confidence (probability) that the estimated matrix is correct. mask Output array of N elements, every element of which is set to 0 for outliers and to 1 for the other points. The array is computed only in the RANSAC and LMedS methods.
This function differs from the one above that it computes camera matrix from focal length and principal point:
CV_EXPORTS Mat cv::findFundamentalMat | ( | InputArray | points1, |
InputArray | points2, | ||
OutputArray | mask, | ||
int | method = FM_RANSAC , |
||
double | param1 = 3. , |
||
double | param2 = 0.99 |
||
) |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
CV_EXPORTS_W Mat cv::findFundamentalMat | ( | InputArray | points1, |
InputArray | points2, | ||
int | method = FM_RANSAC , |
||
double | param1 = 3. , |
||
double | param2 = 0.99 , |
||
OutputArray | mask = noArray() |
||
) |
Calculates a fundamental matrix from the corresponding points in two images.
- Parameters:
-
points1 Array of N points from the first image. The point coordinates should be floating-point (single or double precision). points2 Array of the second image points of the same size and format as points1 . method Method for computing a fundamental matrix. - **CV_FM_7POINT** for a 7-point algorithm.
- **CV_FM_8POINT** for an 8-point algorithm.
- **CV_FM_RANSAC** for the RANSAC algorithm.
- **CV_FM_LMEDS** for the LMedS algorithm.
param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar line in pixels, beyond which the point is considered an outlier and is not used for computing the final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the point localization, image resolution, and the image noise. param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of confidence (probability) that the estimated matrix is correct. mask The epipolar geometry is described by the following equation: - **CV_FM_7POINT** for a 7-point algorithm.
where is a fundamental matrix,
and
are corresponding points in the first and the second images, respectively.
The function calculates the fundamental matrix using one of four methods listed above and returns the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point algorithm, the function may return up to 3 solutions ( matrix that stores all 3 matrices sequentially).
The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the epipolar lines corresponding to the specified points. It can also be passed to stereoRectifyUncalibrated to compute the rectification transformation. :
// Example. Estimation of fundamental matrix using the RANSAC algorithm int point_count = 100; vector<Point2f> points1(point_count); vector<Point2f> points2(point_count); // initialize the points here ... for( int i = 0; i < point_count; i++ ) { points1[i] = ...; points2[i] = ...; } Mat fundamental_matrix = findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
CV_EXPORTS_W Mat cv::findHomography | ( | InputArray | srcPoints, |
InputArray | dstPoints, | ||
int | method = 0 , |
||
double | ransacReprojThreshold = 3 , |
||
OutputArray | mask = noArray() , |
||
const int | maxIters = 2000 , |
||
const double | confidence = 0.995 |
||
) |
Finds a perspective transformation between two planes.
- Parameters:
-
srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2 or vector<Point2f> . dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or a vector<Point2f> . method Method used to computed a homography matrix. The following methods are possible: - **0** - a regular method using all the points
- **RANSAC** - RANSAC-based robust method
- **LMEDS** - Least-Median robust method
- **RHO** - PROSAC-based robust method
ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier (used in the RANSAC and RHO methods only). That is, if then the point
is considered an outlier. If srcPoints and dstPoints are measured in pixels, it usually makes sense to set this parameter somewhere in the range of 1 to 10.
mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input mask values are ignored. maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be. confidence Confidence level, between 0 and 1.
The function finds and returns the perspective transformation between the source and the destination planes:
so that the back-projection error
is minimized. If the parameter method is set to the default value 0, the function uses all the point pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs ( ,
) fit the rigid perspective transformation (that is, there are some outliers), this initial estimate will be poor. In this case, you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix using this subset and a simple least-square algorithm, and then compute the quality/goodness of the computed homography (which is the number of inliers for RANSAC or the median re-projection error for LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to distinguish inliers from outliers. The method LMeDS does not need any threshold but it works correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is determined up to a scale. Thus, it is normalized so that . Note that whenever an H matrix cannot be estimated, an empty one will be returned.
- See also:
- getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective, perspectiveTransform
- Note:
- A example on calculating a homography for image matching can be found at opencv_source_code/samples/cpp/video_homography.cpp
CV_EXPORTS Mat cv::findHomography | ( | InputArray | srcPoints, |
InputArray | dstPoints, | ||
OutputArray | mask, | ||
int | method = 0 , |
||
double | ransacReprojThreshold = 3 |
||
) |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
CV_EXPORTS_W Mat cv::getOptimalNewCameraMatrix | ( | InputArray | cameraMatrix, |
InputArray | distCoeffs, | ||
Size | imageSize, | ||
double | alpha, | ||
Size | newImgSize = Size() , |
||
CV_OUT Rect * | validPixROI = 0 , |
||
bool | centerPrincipalPoint = false |
||
) |
Returns the new camera matrix based on the free scaling parameter.
- Parameters:
-
cameraMatrix Input camera matrix. distCoeffs Input vector of distortion coefficients of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
imageSize Original image size. alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are valid) and 1 (when all the source image pixels are retained in the undistorted image). See stereoRectify for details. newImgSize Image size after rectification. By default,it is set to imageSize . validPixROI Optional output rectangle that outlines all-good-pixels region in the undistorted image. See roi1, roi2 description in stereoRectify . centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the principal point should be at the image center or not. By default, the principal point is chosen to best fit a subset of the source image (determined by alpha) to the corrected image.
- Returns:
- new_camera_matrix Output new camera matrix.
The function computes and returns the optimal new camera matrix based on the free scaling parameter. By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original image pixels if there is valuable information in the corners alpha=1 , or get something in between. When alpha>0 , the undistortion result is likely to have some black pixels corresponding to "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion coefficients, the computed new camera matrix, and newImageSize should be passed to initUndistortRectifyMap to produce the maps for remap .
CV_EXPORTS_W Rect cv::getValidDisparityROI | ( | Rect | roi1, |
Rect | roi2, | ||
int | minDisparity, | ||
int | numberOfDisparities, | ||
int | SADWindowSize | ||
) |
computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
CV_EXPORTS_W Mat cv::initCameraMatrix2D | ( | InputArrayOfArrays | objectPoints, |
InputArrayOfArrays | imagePoints, | ||
Size | imageSize, | ||
double | aspectRatio = 1.0 |
||
) |
Finds an initial camera matrix from 3D-2D point correspondences.
- Parameters:
-
objectPoints Vector of vectors of the calibration pattern points in the calibration pattern coordinate space. In the old interface all the per-view vectors are concatenated. See calibrateCamera for details. imagePoints Vector of vectors of the projections of the calibration pattern points. In the old interface all the per-view vectors are concatenated. imageSize Image size in pixels used to initialize the principal point. aspectRatio If it is zero or negative, both and
are estimated independently. Otherwise,
.
The function estimates and returns an initial camera matrix for the camera calibration process. Currently, the function only supports planar calibration patterns, which are patterns where each object point has z-coordinate =0.
CV_EXPORTS_W void cv::matMulDeriv | ( | InputArray | A, |
InputArray | B, | ||
OutputArray | dABdA, | ||
OutputArray | dABdB | ||
) |
Computes partial derivatives of the matrix product for each multiplied matrix.
- Parameters:
-
A First multiplied matrix. B Second multiplied matrix. dABdA First output derivative matrix d(A\*B)/dA of size .
dABdB Second output derivative matrix d(A\*B)/dB of size .
The function computes partial derivatives of the elements of the matrix product with regard to the elements of each of the two input matrices. The function is used to compute the Jacobian matrices in stereoCalibrate but can also be used in any other similar optimization function.
CV_EXPORTS_W void cv::projectPoints | ( | InputArray | objectPoints, |
InputArray | rvec, | ||
InputArray | tvec, | ||
InputArray | cameraMatrix, | ||
InputArray | distCoeffs, | ||
OutputArray | imagePoints, | ||
OutputArray | jacobian = noArray() , |
||
double | aspectRatio = 0 |
||
) |
Projects 3D points to an image plane.
- Parameters:
-
objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or vector<Point3f> ), where N is the number of points in the view. rvec Rotation vector. See Rodrigues for details. tvec Translation vector. cameraMatrix Camera matrix .
distCoeffs Input vector of distortion coefficients of 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or vector<Point2f> . jacobian Optional output 2Nx(10+<numDistCoeffs>) jacobian matrix of derivatives of image points with respect to components of the rotation vector, translation vector, focal lengths, coordinates of the principal point and the distortion coefficients. In the old interface different components of the jacobian are returned via different output parameters. aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian matrix.
The function computes projections of 3D points to the image plane given intrinsic and extrinsic camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of image points coordinates (as functions of all the input parameters) with respect to the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a re-projection error given the current intrinsic and extrinsic parameters.
- Note:
- By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by passing zero distortion coefficients, you can get various useful partial cases of the function. This means that you can compute the distorted coordinates for a sparse set of points or apply a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
CV_EXPORTS_W int cv::recoverPose | ( | InputArray | E, |
InputArray | points1, | ||
InputArray | points2, | ||
InputArray | cameraMatrix, | ||
OutputArray | R, | ||
OutputArray | t, | ||
InputOutputArray | mask = noArray() |
||
) |
Recover relative camera rotation and translation from an estimated essential matrix and the corresponding points in two images, using cheirality check.
Returns the number of inliers which pass the check.
- Parameters:
-
E The input essential matrix. points1 Array of N 2D points from the first image. The point coordinates should be floating-point (single or double precision). points2 Array of the second image points of the same size and format as points1 . cameraMatrix Camera matrix . Note that this function assumes that points1 and points2 are feature points from cameras with the same camera matrix.
R Recovered relative rotation. t Recoverd relative translation. mask Input/output mask for inliers in points1 and points2. : If it is not empty, then it marks inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to recover pose. In the output mask only inliers which pass the cheirality check. This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible pose hypotheses by doing cheirality check. The cheirality check basically means that the triangulated 3D points should have positive depth. Some details can be found in Nister03 .
This function can be used to process output E and mask from findEssentialMat. In this scenario, points1 and points2 are the same input for findEssentialMat. :
// Example. Estimation of fundamental matrix using the RANSAC algorithm int point_count = 100; vector<Point2f> points1(point_count); vector<Point2f> points2(point_count); // initialize the points here ... for( int i = 0; i < point_count; i++ ) { points1[i] = ...; points2[i] = ...; } // cametra matrix with both focal lengths = 1, and principal point = (0, 0) Mat cameraMatrix = Mat::eye(3, 3, CV_64F); Mat E, R, t, mask; E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask); recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
CV_EXPORTS_W int cv::recoverPose | ( | InputArray | E, |
InputArray | points1, | ||
InputArray | points2, | ||
OutputArray | R, | ||
OutputArray | t, | ||
double | focal = 1.0 , |
||
Point2d | pp = Point2d(0, 0) , |
||
InputOutputArray | mask = noArray() |
||
) |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
- Parameters:
-
E The input essential matrix. points1 Array of N 2D points from the first image. The point coordinates should be floating-point (single or double precision). points2 Array of the second image points of the same size and format as points1 . R Recovered relative rotation. t Recoverd relative translation. focal Focal length of the camera. Note that this function assumes that points1 and points2 are feature points from cameras with same focal length and principal point. pp principal point of the camera. mask Input/output mask for inliers in points1 and points2. : If it is not empty, then it marks inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to recover pose. In the output mask only inliers which pass the cheirality check.
This function differs from the one above that it computes camera matrix from focal length and principal point:
CV_EXPORTS_W float cv::rectify3Collinear | ( | InputArray | cameraMatrix1, |
InputArray | distCoeffs1, | ||
InputArray | cameraMatrix2, | ||
InputArray | distCoeffs2, | ||
InputArray | cameraMatrix3, | ||
InputArray | distCoeffs3, | ||
InputArrayOfArrays | imgpt1, | ||
InputArrayOfArrays | imgpt3, | ||
Size | imageSize, | ||
InputArray | R12, | ||
InputArray | T12, | ||
InputArray | R13, | ||
InputArray | T13, | ||
OutputArray | R1, | ||
OutputArray | R2, | ||
OutputArray | R3, | ||
OutputArray | P1, | ||
OutputArray | P2, | ||
OutputArray | P3, | ||
OutputArray | Q, | ||
double | alpha, | ||
Size | newImgSize, | ||
CV_OUT Rect * | roi1, | ||
CV_OUT Rect * | roi2, | ||
int | flags | ||
) |
computes the rectification transformations for 3-head camera, where all the heads are on the same line.
CV_EXPORTS_W void cv::reprojectImageTo3D | ( | InputArray | disparity, |
OutputArray | _3dImage, | ||
InputArray | Q, | ||
bool | handleMissingValues = false , |
||
int | ddepth = -1 |
||
) |
Reprojects a disparity image to 3D space.
- Parameters:
-
disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no fractional bits. _3dImage Output 3-channel floating-point image of the same size as disparity . Each element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. Q perspective transformation matrix that can be obtained with stereoRectify.
handleMissingValues Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). If handleMissingValues=true, then pixels with the minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed to 3D points with a very large Z value (currently set to 10000). ddepth The optional output array depth. If it is -1, the output image will have CV_32F depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
The function transforms a single-channel disparity map to a 3-channel image representing a 3D surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it computes:
The matrix Q can be an arbitrary matrix (for example, the one computed by stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform .
CV_EXPORTS_W void cv::Rodrigues | ( | InputArray | src, |
OutputArray | dst, | ||
OutputArray | jacobian = noArray() |
||
) |
Converts a rotation matrix to a rotation vector or vice versa.
- Parameters:
-
src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3). dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively. jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial derivatives of the output array components with respect to the input array components.
Inverse transformation can be also done easily, since
A rotation vector is a convenient and most compact representation of a rotation matrix (since any rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
CV_EXPORTS_W Vec3d cv::RQDecomp3x3 | ( | InputArray | src, |
OutputArray | mtxR, | ||
OutputArray | mtxQ, | ||
OutputArray | Qx = noArray() , |
||
OutputArray | Qy = noArray() , |
||
OutputArray | Qz = noArray() |
||
) |
Computes an RQ decomposition of 3x3 matrices.
- Parameters:
-
src 3x3 input matrix. mtxR Output 3x3 upper-triangular matrix. mtxQ Output 3x3 orthogonal matrix. Qx Optional output 3x3 rotation matrix around x-axis. Qy Optional output 3x3 rotation matrix around y-axis. Qz Optional output 3x3 rotation matrix around z-axis.
The function computes a RQ decomposition using the given rotations. This function is used in decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera and a rotation matrix.
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in degrees (as the return value) that could be used in OpenGL. Note, there is always more than one sequence of rotations about the three principal axes that results in the same orientation of an object, eg. see Slabaugh . Returned tree rotation matrices and corresponding three Euler angules are only one of the possible solutions.
CV_EXPORTS_W double cv::sampsonDistance | ( | InputArray | pt1, |
InputArray | pt2, | ||
InputArray | F | ||
) |
Calculates the Sampson Distance between two points.
The function sampsonDistance calculates and returns the first order approximation of the geometric error as:
The fundamental matrix may be calculated using the cv::findFundamentalMat function. See HZ 11.4.3 for details.
- Parameters:
-
pt1 first homogeneous 2d point pt2 second homogeneous 2d point F fundamental matrix
CV_EXPORTS_W bool cv::solvePnP | ( | InputArray | objectPoints, |
InputArray | imagePoints, | ||
InputArray | cameraMatrix, | ||
InputArray | distCoeffs, | ||
OutputArray | rvec, | ||
OutputArray | tvec, | ||
bool | useExtrinsicGuess = false , |
||
int | flags = SOLVEPNP_ITERATIVE |
||
) |
Finds an object pose from 3D-2D point correspondences.
- Parameters:
-
objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel, where N is the number of points. vector<Point3f> can be also passed here. imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, where N is the number of points. vector<Point2f> can be also passed here. cameraMatrix Input camera matrix .
distCoeffs Input vector of distortion coefficients of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from the model coordinate system to the camera coordinate system. tvec Output translation vector. useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses the provided rvec and tvec values as initial approximations of the rotation and translation vectors, respectively, and further optimizes them. flags Method for solving a PnP problem: - **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In this case the function finds such a pose that minimizes reprojection error, that is the sum of squared distances between the observed projections imagePoints and the projected (using projectPoints ) objectPoints .
- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang "Complete Solution Classification for the Perspective-Three-Point Problem". In this case the function requires exactly four object and image points.
- **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation".
- **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP".
- **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto, F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
Estimation". In this case the function also estimates the parameters
and
assuming that both have the same value. Then the cameraMatrix is updated with the estimated focal length.
The function estimates the object pose given a set of object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients.
- Note:
- An example of how to use solvePnP for planar augmented reality can be found at opencv_source_code/samples/python/plane_ar.py
- If you are using Python:
- Numpy array slices won't work as input because solvePnP requires contiguous arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
- The P3P algorithm requires image points to be in an array of shape (N,1,2) due to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9) which requires 2-channel information.
- Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
- The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are unstable and sometimes give completly wrong results. If you pass one of these two flags, SOLVEPNP_EPNP** method will be used instead.
CV_EXPORTS_W bool cv::solvePnPRansac | ( | InputArray | objectPoints, |
InputArray | imagePoints, | ||
InputArray | cameraMatrix, | ||
InputArray | distCoeffs, | ||
OutputArray | rvec, | ||
OutputArray | tvec, | ||
bool | useExtrinsicGuess = false , |
||
int | iterationsCount = 100 , |
||
float | reprojectionError = 8.0 , |
||
double | confidence = 0.99 , |
||
OutputArray | inliers = noArray() , |
||
int | flags = SOLVEPNP_ITERATIVE |
||
) |
Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
- Parameters:
-
objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel, where N is the number of points. vector<Point3f> can be also passed here. imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, where N is the number of points. vector<Point2f> can be also passed here. cameraMatrix Input camera matrix .
distCoeffs Input vector of distortion coefficients of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from the model coordinate system to the camera coordinate system. tvec Output translation vector. useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses the provided rvec and tvec values as initial approximations of the rotation and translation vectors, respectively, and further optimizes them. iterationsCount Number of iterations. reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value is the maximum allowed distance between the observed and computed point projections to consider it an inlier. confidence The probability that the algorithm produces a useful result. inliers Output vector that contains indices of inliers in objectPoints and imagePoints . flags Method for solving a PnP problem (see solvePnP ).
The function estimates an object pose given a set of object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients. This function finds such a pose that minimizes reprojection error, that is, the sum of squared distances between the observed projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC makes the function resistant to outliers.
- Note:
- An example of how to use solvePNPRansac for object detection can be found at opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
CV_EXPORTS_W double cv::stereoCalibrate | ( | InputArrayOfArrays | objectPoints, |
InputArrayOfArrays | imagePoints1, | ||
InputArrayOfArrays | imagePoints2, | ||
InputOutputArray | cameraMatrix1, | ||
InputOutputArray | distCoeffs1, | ||
InputOutputArray | cameraMatrix2, | ||
InputOutputArray | distCoeffs2, | ||
Size | imageSize, | ||
OutputArray | R, | ||
OutputArray | T, | ||
OutputArray | E, | ||
OutputArray | F, | ||
int | flags = CALIB_FIX_INTRINSIC , |
||
TermCriteria | criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) |
||
) |
Calibrates the stereo camera.
- Parameters:
-
objectPoints Vector of vectors of the calibration pattern points. imagePoints1 Vector of vectors of the projections of the calibration pattern points, observed by the first camera. imagePoints2 Vector of vectors of the projections of the calibration pattern points, observed by the second camera. cameraMatrix1 Input/output first camera matrix: ,
. If any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO , CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the matrix components must be initialized. See the flags description for details.
distCoeffs1 Input/output vector of distortion coefficients of 4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1 distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter is similar to distCoeffs1 . imageSize Size of the image used only to initialize intrinsic camera matrix. R Output rotation matrix between the 1st and the 2nd camera coordinate systems. T Output translation vector between the coordinate systems of the cameras. E Output essential matrix. F Output fundamental matrix. flags Different flags that may be zero or a combination of the following values: - **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F matrices are estimated.
- **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters according to the specified flags. Initial values are provided by the user.
- **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
- **CV_CALIB_FIX_FOCAL_LENGTH** Fix
and
.
- **CV_CALIB_FIX_ASPECT_RATIO** Optimize
. Fix the ratio
- **CV_CALIB_SAME_FOCAL_LENGTH** Enforce
and
.
- **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to zeros and fix there.
- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the rational model and return 8 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients.
- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the thin prism model and return 12 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients.
- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the tilted sensor model and return 14 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients.
- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
criteria Termination criteria for the iterative optimization algorithm.
The function estimates transformation between two cameras making a stereo pair. If you have a stereo camera where the relative position and orientation of two cameras is fixed, and if you computed poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2), respectively (this can be done with solvePnP ), then those poses definitely relate to each other. This means that, given ( ,
), it should be possible to compute (
,
). You only need to know the position and orientation of the second camera relative to the first camera. This is what the described function does. It computes (
,
) so that:
Optionally, it computes the essential matrix E:
where are components of the translation vector
:
. And the function can also compute the fundamental matrix F:
Besides the stereo-related information, the function can also perform a full calibration of each of two cameras. However, due to the high dimensionality of the parameter space and noise in the input data, the function can diverge from the correct solution. If the intrinsic parameters can be estimated with high accuracy for each of the cameras individually (for example, using calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the function along with the computed intrinsic parameters. Otherwise, if all the parameters are estimated at once, it makes sense to restrict some parameters, for example, pass CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a reasonable assumption.
Similarly to calibrateCamera , the function minimizes the total re-projection error for all the points in all the available views from both cameras. The function returns the final value of the re-projection error.
CV_EXPORTS_W void cv::stereoRectify | ( | InputArray | cameraMatrix1, |
InputArray | distCoeffs1, | ||
InputArray | cameraMatrix2, | ||
InputArray | distCoeffs2, | ||
Size | imageSize, | ||
InputArray | R, | ||
InputArray | T, | ||
OutputArray | R1, | ||
OutputArray | R2, | ||
OutputArray | P1, | ||
OutputArray | P2, | ||
OutputArray | Q, | ||
int | flags = CALIB_ZERO_DISPARITY , |
||
double | alpha = -1 , |
||
Size | newImageSize = Size() , |
||
CV_OUT Rect * | validPixROI1 = 0 , |
||
CV_OUT Rect * | validPixROI2 = 0 |
||
) |
Computes rectification transforms for each head of a calibrated stereo camera.
- Parameters:
-
cameraMatrix1 First camera matrix. distCoeffs1 First camera distortion parameters. cameraMatrix2 Second camera matrix. distCoeffs2 Second camera distortion parameters. imageSize Size of the image used for stereo calibration. R Rotation matrix between the coordinate systems of the first and the second cameras. T Translation vector between coordinate systems of the cameras. R1 Output 3x3 rectification transform (rotation matrix) for the first camera. R2 Output 3x3 rectification transform (rotation matrix) for the second camera. P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera. P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera. Q Output disparity-to-depth mapping matrix (see reprojectImageTo3D ).
flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area. alpha Free scaling parameter. If it is -1 or absent, the function performs the default scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified images are zoomed and shifted so that only valid pixels are visible (no black areas after rectification). alpha=1 means that the rectified image is decimated and shifted so that all the pixels from the original images from the cameras are retained in the rectified images (no source image pixels are lost). Obviously, any intermediate value yields an intermediate result between those two extreme cases. newImageSize New image resolution after rectification. The same size should be passed to initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to larger value can help you preserve details in the original image, especially when there is a big radial distortion. validPixROI1 Optional output rectangles inside the rectified images where all the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). validPixROI2 Optional output rectangles inside the rectified images where all the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below).
The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate as input. As output, it provides two rotation matrices and also two projection matrices in the new coordinates. The function distinguishes the following two cases:
- **Horizontal stereo**: the first and the second camera views are shifted relative to each other mainly along the x axis (with possible small vertical shift). In the rectified images, the corresponding epipolar lines in the left and right cameras are horizontal and have the same y-coordinate. P1 and P2 look like:
where is a horizontal shift between the cameras and
if CV_CALIB_ZERO_DISPARITY is set.
- **Vertical stereo**: the first and the second camera views are shifted relative to each other mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
where is a vertical shift between the cameras and
if CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through the corresponding image regions. This means that the images are well rectified, which is what most stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that their interiors are all valid pixels.

CV_EXPORTS_W bool cv::stereoRectifyUncalibrated | ( | InputArray | points1, |
InputArray | points2, | ||
InputArray | F, | ||
Size | imgSize, | ||
OutputArray | H1, | ||
OutputArray | H2, | ||
double | threshold = 5 |
||
) |
Computes a rectification transform for an uncalibrated stereo camera.
- Parameters:
-
points1 Array of feature points in the first image. points2 The corresponding points in the second image. The same formats as in findFundamentalMat are supported. F Input fundamental matrix. It can be computed from the same set of point pairs using findFundamentalMat . imgSize Size of the image. H1 Output rectification homography matrix for the first image. H2 Output rectification homography matrix for the second image. threshold Optional threshold used to filter out the outliers. If the parameter is greater than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points for which ) are rejected prior to computing the homographies. Otherwise,all the points are considered inliers.
The function computes the rectification transformations without knowing intrinsic parameters of the cameras and their relative position in the space, which explains the suffix "uncalibrated". Another related difference from stereoRectify is that the function outputs not the rectification transformations in the object (3D) space, but the planar perspective transformations encoded by the homography matrices H1 and H2 . The function implements the algorithm Hartley99 .
- Note:
- While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, it would be better to correct it before computing the fundamental matrix and calling this function. For example, distortion coefficients can be estimated for each head of stereo camera separately by using calibrateCamera . Then, the images can be corrected using undistort , or just the point coordinates can be corrected with undistortPoints .
CV_EXPORTS_W void cv::triangulatePoints | ( | InputArray | projMatr1, |
InputArray | projMatr2, | ||
InputArray | projPoints1, | ||
InputArray | projPoints2, | ||
OutputArray | points4D | ||
) |
Reconstructs points by triangulation.
- Parameters:
-
projMatr1 3x4 projection matrix of the first camera. projMatr2 3x4 projection matrix of the second camera. projPoints1 2xN array of feature points in the first image. In case of c++ version it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. projPoints2 2xN array of corresponding points in the second image. In case of c++ version it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. points4D 4xN array of reconstructed points in homogeneous coordinates.
The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their observations with a stereo camera. Projections matrices can be obtained from stereoRectify.
- Note:
- Keep in mind that all input data should be of float type in order for this function to work.
- See also:
- reprojectImageTo3D
CV_EXPORTS_W void cv::validateDisparity | ( | InputOutputArray | disparity, |
InputArray | cost, | ||
int | minDisparity, | ||
int | numberOfDisparities, | ||
int | disp12MaxDisp = 1 |
||
) |
validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
Generated on Tue Jul 12 2022 18:20:20 by
