Renesas / opencv-lib

Dependents:   RZ_A2M_Mbed_samples

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers calib3d.hpp Source File

calib3d.hpp

00001 /*M///////////////////////////////////////////////////////////////////////////////////////
00002 //
00003 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
00004 //
00005 //  By downloading, copying, installing or using the software you agree to this license.
00006 //  If you do not agree to this license, do not download, install,
00007 //  copy or use the software.
00008 //
00009 //
00010 //                          License Agreement
00011 //                For Open Source Computer Vision Library
00012 //
00013 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
00014 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
00015 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
00016 // Third party copyrights are property of their respective owners.
00017 //
00018 // Redistribution and use in source and binary forms, with or without modification,
00019 // are permitted provided that the following conditions are met:
00020 //
00021 //   * Redistribution's of source code must retain the above copyright notice,
00022 //     this list of conditions and the following disclaimer.
00023 //
00024 //   * Redistribution's in binary form must reproduce the above copyright notice,
00025 //     this list of conditions and the following disclaimer in the documentation
00026 //     and/or other materials provided with the distribution.
00027 //
00028 //   * The name of the copyright holders may not be used to endorse or promote products
00029 //     derived from this software without specific prior written permission.
00030 //
00031 // This software is provided by the copyright holders and contributors "as is" and
00032 // any express or implied warranties, including, but not limited to, the implied
00033 // warranties of merchantability and fitness for a particular purpose are disclaimed.
00034 // In no event shall the Intel Corporation or contributors be liable for any direct,
00035 // indirect, incidental, special, exemplary, or consequential damages
00036 // (including, but not limited to, procurement of substitute goods or services;
00037 // loss of use, data, or profits; or business interruption) however caused
00038 // and on any theory of liability, whether in contract, strict liability,
00039 // or tort (including negligence or otherwise) arising in any way out of
00040 // the use of this software, even if advised of the possibility of such damage.
00041 //
00042 //M*/
00043 
00044 #ifndef OPENCV_CALIB3D_HPP
00045 #define OPENCV_CALIB3D_HPP
00046 
00047 #include "opencv2/core.hpp"
00048 #include "opencv2/features2d.hpp"
00049 #include "opencv2/core/affine.hpp"
00050 
00051 /**
00052   @defgroup calib3d Camera Calibration and 3D Reconstruction
00053 
00054 The functions in this section use a so-called pinhole camera model. In this model, a scene view is
00055 formed by projecting 3D points into the image plane using a perspective transformation.
00056 
00057 \f[s  \; m' = A [R|t] M'\f]
00058 
00059 or
00060 
00061 \f[s  \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
00062 \begin{bmatrix}
00063 r_{11} & r_{12} & r_{13} & t_1  \\
00064 r_{21} & r_{22} & r_{23} & t_2  \\
00065 r_{31} & r_{32} & r_{33} & t_3
00066 \end{bmatrix}
00067 \begin{bmatrix}
00068 X \\
00069 Y \\
00070 Z \\
00071 1
00072 \end{bmatrix}\f]
00073 
00074 where:
00075 
00076 -   \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space
00077 -   \f$(u, v)\f$ are the coordinates of the projection point in pixels
00078 -   \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters
00079 -   \f$(cx, cy)\f$ is a principal point that is usually at the image center
00080 -   \f$fx, fy\f$ are the focal lengths expressed in pixel units.
00081 
00082 Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled
00083 (multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not
00084 depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is
00085 fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of
00086 extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
00087 rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a
00088 point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above
00089 is equivalent to the following (when \f$z \ne 0\f$ ):
00090 
00091 \f[\begin{array}{l}
00092 \vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
00093 x' = x/z \\
00094 y' = y/z \\
00095 u = f_x*x' + c_x \\
00096 v = f_y*y' + c_y
00097 \end{array}\f]
00098 
00099 The following figure illustrates the pinhole camera model.
00100 
00101 ![Pinhole camera model](pics/pinhole_camera_model.png)
00102 
00103 Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
00104 So, the above model is extended as:
00105 
00106 \f[\begin{array}{l}
00107 \vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
00108 x' = x/z \\
00109 y' = y/z \\
00110 x'' = x'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
00111 y'' = y'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
00112 \text{where} \quad r^2 = x'^2 + y'^2  \\
00113 u = f_x*x'' + c_x \\
00114 v = f_y*y'' + c_y
00115 \end{array}\f]
00116 
00117 \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are
00118 tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
00119 coefficients. Higher-order coefficients are not considered in OpenCV.
00120 
00121 The next figure shows two common types of radial distortion: barrel distortion (typically \f$ k_1 > 0 \f$ and pincushion distortion (typically \f$ k_1 < 0 \f$).
00122 
00123 ![](pics/distortion_examples.png)
00124 
00125 In some cases the image sensor may be tilted in order to focus an oblique plane in front of the
00126 camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or
00127 triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
00128 \f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07.
00129 
00130 \f[\begin{array}{l}
00131 s\vecthree{x'''}{y'''}{1} =
00132 \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
00133 {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
00134 {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
00135 u = f_x*x''' + c_x \\
00136 v = f_y*y''' + c_y
00137 \end{array}\f]
00138 
00139 where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$
00140 and \f$\tau_y\f$, respectively,
00141 
00142 \f[
00143 R(\tau_x, \tau_y) =
00144 \vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
00145 \vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
00146 \vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
00147 {0}{\cos(\tau_x)}{\sin(\tau_x)}
00148 {\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
00149 \f]
00150 
00151 In the functions below the coefficients are passed or returned as
00152 
00153 \f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
00154 
00155 vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
00156 coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
00157 parameters. And they remain the same regardless of the captured image resolution. If, for example, a
00158 camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
00159 coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and
00160 \f$c_y\f$ need to be scaled appropriately.
00161 
00162 The functions below use the above model to do the following:
00163 
00164 -   Project 3D points to the image plane given intrinsic and extrinsic parameters.
00165 -   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
00166 projections.
00167 -   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
00168 pattern (every view is described by several 3D-2D point correspondences).
00169 -   Estimate the relative position and orientation of the stereo camera "heads" and compute the
00170 *rectification* transformation that makes the camera optical axes parallel.
00171 
00172 @note
00173    -   A calibration sample for 3 cameras in horizontal position can be found at
00174         opencv_source_code/samples/cpp/3calibration.cpp
00175     -   A calibration sample based on a sequence of images can be found at
00176         opencv_source_code/samples/cpp/calibration.cpp
00177     -   A calibration sample in order to do 3D reconstruction can be found at
00178         opencv_source_code/samples/cpp/build3dmodel.cpp
00179     -   A calibration sample of an artificially generated camera and chessboard patterns can be
00180         found at opencv_source_code/samples/cpp/calibration_artificial.cpp
00181     -   A calibration example on stereo calibration can be found at
00182         opencv_source_code/samples/cpp/stereo_calib.cpp
00183     -   A calibration example on stereo matching can be found at
00184         opencv_source_code/samples/cpp/stereo_match.cpp
00185     -   (Python) A camera calibration sample can be found at
00186         opencv_source_code/samples/python/calibrate.py
00187 
00188   @{
00189     @defgroup calib3d_fisheye Fisheye camera model
00190 
00191     Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
00192     matrix X) The coordinate vector of P in the camera reference frame is:
00193 
00194     \f[Xc = R X + T\f]
00195 
00196     where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
00197     and z the 3 coordinates of Xc:
00198 
00199     \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]
00200 
00201     The pinhole projection coordinates of P is [a; b] where
00202 
00203     \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]
00204 
00205     Fisheye distortion:
00206 
00207     \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
00208 
00209     The distorted point coordinates are [x'; y'] where
00210 
00211     \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]
00212 
00213     Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
00214 
00215     \f[u = f_x (x' + \alpha y') + c_x \\
00216     v = f_y y' + c_y\f]
00217 
00218     @defgroup calib3d_c C API
00219 
00220   @}
00221  */
00222 
00223 namespace cv
00224 {
00225 
00226 //! @addtogroup calib3d
00227 //! @{
00228 
00229 //! type of the robust estimation algorithm
00230 enum { LMEDS  = 4, //!< least-median algorithm
00231        RANSAC = 8, //!< RANSAC algorithm
00232        RHO    = 16 //!< RHO algorithm
00233      };
00234 
00235 enum { SOLVEPNP_ITERATIVE = 0,
00236        SOLVEPNP_EPNP      = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
00237        SOLVEPNP_P3P       = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
00238        SOLVEPNP_DLS       = 3, //!< A Direct Least-Squares (DLS) Method for PnP  @cite hesch2011direct
00239        SOLVEPNP_UPNP      = 4  //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
00240 
00241 };
00242 
00243 enum { CALIB_CB_ADAPTIVE_THRESH = 1,
00244        CALIB_CB_NORMALIZE_IMAGE = 2,
00245        CALIB_CB_FILTER_QUADS    = 4,
00246        CALIB_CB_FAST_CHECK      = 8
00247      };
00248 
00249 enum { CALIB_CB_SYMMETRIC_GRID  = 1,
00250        CALIB_CB_ASYMMETRIC_GRID = 2,
00251        CALIB_CB_CLUSTERING      = 4
00252      };
00253 
00254 enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
00255        CALIB_FIX_ASPECT_RATIO    = 0x00002,
00256        CALIB_FIX_PRINCIPAL_POINT = 0x00004,
00257        CALIB_ZERO_TANGENT_DIST   = 0x00008,
00258        CALIB_FIX_FOCAL_LENGTH    = 0x00010,
00259        CALIB_FIX_K1              = 0x00020,
00260        CALIB_FIX_K2              = 0x00040,
00261        CALIB_FIX_K3              = 0x00080,
00262        CALIB_FIX_K4              = 0x00800,
00263        CALIB_FIX_K5              = 0x01000,
00264        CALIB_FIX_K6              = 0x02000,
00265        CALIB_RATIONAL_MODEL      = 0x04000,
00266        CALIB_THIN_PRISM_MODEL    = 0x08000,
00267        CALIB_FIX_S1_S2_S3_S4     = 0x10000,
00268        CALIB_TILTED_MODEL        = 0x40000,
00269        CALIB_FIX_TAUX_TAUY       = 0x80000,
00270        CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
00271        // only for stereo
00272        CALIB_FIX_INTRINSIC       = 0x00100,
00273        CALIB_SAME_FOCAL_LENGTH   = 0x00200,
00274        // for stereo rectification
00275        CALIB_ZERO_DISPARITY      = 0x00400,
00276        CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
00277      };
00278 
00279 //! the algorithm for finding fundamental matrix
00280 enum { FM_7POINT = 1, //!< 7-point algorithm
00281        FM_8POINT = 2, //!< 8-point algorithm
00282        FM_LMEDS  = 4, //!< least-median algorithm
00283        FM_RANSAC = 8  //!< RANSAC algorithm
00284      };
00285 
00286 
00287 
00288 /** @brief Converts a rotation matrix to a rotation vector or vice versa.
00289 
00290 @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
00291 @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
00292 @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
00293 derivatives of the output array components with respect to the input array components.
00294 
00295 \f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos{\theta} I + (1- \cos{\theta} ) r r^T +  \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
00296 
00297 Inverse transformation can be also done easily, since
00298 
00299 \f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
00300 
00301 A rotation vector is a convenient and most compact representation of a rotation matrix (since any
00302 rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
00303 optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
00304  */
00305 CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
00306 
00307 /** @brief Finds a perspective transformation between two planes.
00308 
00309 @param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
00310 or vector<Point2f> .
00311 @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
00312 a vector<Point2f> .
00313 @param method Method used to computed a homography matrix. The following methods are possible:
00314 -   **0** - a regular method using all the points
00315 -   **RANSAC** - RANSAC-based robust method
00316 -   **LMEDS** - Least-Median robust method
00317 -   **RHO**    - PROSAC-based robust method
00318 @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
00319 (used in the RANSAC and RHO methods only). That is, if
00320 \f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|  >  \texttt{ransacReprojThreshold}\f]
00321 then the point \f$i\f$ is considered an outlier. If srcPoints and dstPoints are measured in pixels,
00322 it usually makes sense to set this parameter somewhere in the range of 1 to 10.
00323 @param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
00324 mask values are ignored.
00325 @param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be.
00326 @param confidence Confidence level, between 0 and 1.
00327 
00328 The function finds and returns the perspective transformation \f$H\f$ between the source and the
00329 destination planes:
00330 
00331 \f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
00332 
00333 so that the back-projection error
00334 
00335 \f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
00336 
00337 is minimized. If the parameter method is set to the default value 0, the function uses all the point
00338 pairs to compute an initial homography estimate with a simple least-squares scheme.
00339 
00340 However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
00341 transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
00342 you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
00343 random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix
00344 using this subset and a simple least-square algorithm, and then compute the quality/goodness of the
00345 computed homography (which is the number of inliers for RANSAC or the median re-projection error for
00346 LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and
00347 the mask of inliers/outliers.
00348 
00349 Regardless of the method, robust or not, the computed homography matrix is refined further (using
00350 inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
00351 re-projection error even more.
00352 
00353 The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
00354 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
00355 correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
00356 noise is rather small, use the default method (method=0).
00357 
00358 The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
00359 determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an H matrix
00360 cannot be estimated, an empty one will be returned.
00361 
00362 @sa
00363 getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
00364 perspectiveTransform
00365 
00366 
00367 @note
00368    -   A example on calculating a homography for image matching can be found at
00369         opencv_source_code/samples/cpp/video_homography.cpp
00370 
00371  */
00372 CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
00373                                  int method = 0, double ransacReprojThreshold = 3,
00374                                  OutputArray mask=noArray(), const int maxIters = 2000,
00375                                  const double confidence = 0.995);
00376 
00377 /** @overload */
00378 CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
00379                                OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
00380 
00381 /** @brief Computes an RQ decomposition of 3x3 matrices.
00382 
00383 @param src 3x3 input matrix.
00384 @param mtxR Output 3x3 upper-triangular matrix.
00385 @param mtxQ Output 3x3 orthogonal matrix.
00386 @param Qx Optional output 3x3 rotation matrix around x-axis.
00387 @param Qy Optional output 3x3 rotation matrix around y-axis.
00388 @param Qz Optional output 3x3 rotation matrix around z-axis.
00389 
00390 The function computes a RQ decomposition using the given rotations. This function is used in
00391 decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
00392 and a rotation matrix.
00393 
00394 It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
00395 degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
00396 sequence of rotations about the three principal axes that results in the same orientation of an
00397 object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules
00398 are only one of the possible solutions.
00399  */
00400 CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
00401                                 OutputArray Qx = noArray(),
00402                                 OutputArray Qy = noArray(),
00403                                 OutputArray Qz = noArray());
00404 
00405 /** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.
00406 
00407 @param projMatrix 3x4 input projection matrix P.
00408 @param cameraMatrix Output 3x3 camera matrix K.
00409 @param rotMatrix Output 3x3 external rotation matrix R.
00410 @param transVect Output 4x1 translation vector T.
00411 @param rotMatrixX Optional 3x3 rotation matrix around x-axis.
00412 @param rotMatrixY Optional 3x3 rotation matrix around y-axis.
00413 @param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
00414 @param eulerAngles Optional three-element vector containing three Euler angles of rotation in
00415 degrees.
00416 
00417 The function computes a decomposition of a projection matrix into a calibration and a rotation
00418 matrix and the position of a camera.
00419 
00420 It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
00421 be used in OpenGL. Note, there is always more than one sequence of rotations about the three
00422 principal axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned
00423 tree rotation matrices and corresponding three Euler angules are only one of the possible solutions.
00424 
00425 The function is based on RQDecomp3x3 .
00426  */
00427 CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
00428                                              OutputArray rotMatrix, OutputArray transVect,
00429                                              OutputArray rotMatrixX = noArray(),
00430                                              OutputArray rotMatrixY = noArray(),
00431                                              OutputArray rotMatrixZ = noArray(),
00432                                              OutputArray eulerAngles =noArray() );
00433 
00434 /** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
00435 
00436 @param A First multiplied matrix.
00437 @param B Second multiplied matrix.
00438 @param dABdA First output derivative matrix d(A\*B)/dA of size
00439 \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
00440 @param dABdB Second output derivative matrix d(A\*B)/dB of size
00441 \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
00442 
00443 The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
00444 the elements of each of the two input matrices. The function is used to compute the Jacobian
00445 matrices in stereoCalibrate but can also be used in any other similar optimization function.
00446  */
00447 CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
00448 
00449 /** @brief Combines two rotation-and-shift transformations.
00450 
00451 @param rvec1 First rotation vector.
00452 @param tvec1 First translation vector.
00453 @param rvec2 Second rotation vector.
00454 @param tvec2 Second translation vector.
00455 @param rvec3 Output rotation vector of the superposition.
00456 @param tvec3 Output translation vector of the superposition.
00457 @param dr3dr1
00458 @param dr3dt1
00459 @param dr3dr2
00460 @param dr3dt2
00461 @param dt3dr1
00462 @param dt3dt1
00463 @param dt3dr2
00464 @param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and
00465 tvec2, respectively.
00466 
00467 The functions compute:
00468 
00469 \f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
00470 
00471 where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
00472 \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.
00473 
00474 Also, the functions can compute the derivatives of the output vectors with regards to the input
00475 vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
00476 your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
00477 function that contains a matrix multiplication.
00478  */
00479 CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
00480                              InputArray rvec2, InputArray tvec2,
00481                              OutputArray rvec3, OutputArray tvec3,
00482                              OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
00483                              OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
00484                              OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
00485                              OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
00486 
00487 /** @brief Projects 3D points to an image plane.
00488 
00489 @param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
00490 vector<Point3f> ), where N is the number of points in the view.
00491 @param rvec Rotation vector. See Rodrigues for details.
00492 @param tvec Translation vector.
00493 @param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
00494 @param distCoeffs Input vector of distortion coefficients
00495 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
00496 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
00497 @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
00498 vector<Point2f> .
00499 @param jacobian Optional output 2Nx(10+<numDistCoeffs>) jacobian matrix of derivatives of image
00500 points with respect to components of the rotation vector, translation vector, focal lengths,
00501 coordinates of the principal point and the distortion coefficients. In the old interface different
00502 components of the jacobian are returned via different output parameters.
00503 @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
00504 function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
00505 matrix.
00506 
00507 The function computes projections of 3D points to the image plane given intrinsic and extrinsic
00508 camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
00509 image points coordinates (as functions of all the input parameters) with respect to the particular
00510 parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
00511 calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
00512 re-projection error given the current intrinsic and extrinsic parameters.
00513 
00514 @note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
00515 passing zero distortion coefficients, you can get various useful partial cases of the function. This
00516 means that you can compute the distorted coordinates for a sparse set of points or apply a
00517 perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
00518  */
00519 CV_EXPORTS_W void projectPoints( InputArray objectPoints,
00520                                  InputArray rvec, InputArray tvec,
00521                                  InputArray cameraMatrix, InputArray distCoeffs,
00522                                  OutputArray imagePoints,
00523                                  OutputArray jacobian = noArray(),
00524                                  double aspectRatio = 0 );
00525 
00526 /** @brief Finds an object pose from 3D-2D point correspondences.
00527 
00528 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
00529 1xN/Nx1 3-channel, where N is the number of points. vector<Point3f> can be also passed here.
00530 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
00531 where N is the number of points. vector<Point2f> can be also passed here.
00532 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
00533 @param distCoeffs Input vector of distortion coefficients
00534 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
00535 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
00536 assumed.
00537 @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
00538 the model coordinate system to the camera coordinate system.
00539 @param tvec Output translation vector.
00540 @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
00541 the provided rvec and tvec values as initial approximations of the rotation and translation
00542 vectors, respectively, and further optimizes them.
00543 @param flags Method for solving a PnP problem:
00544 -   **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
00545 this case the function finds such a pose that minimizes reprojection error, that is the sum
00546 of squared distances between the observed projections imagePoints and the projected (using
00547 projectPoints ) objectPoints .
00548 -   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
00549 "Complete Solution Classification for the Perspective-Three-Point Problem". In this case the
00550 function requires exactly four object and image points.
00551 -   **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
00552 paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation".
00553 -   **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
00554 "A Direct Least-Squares (DLS) Method for PnP".
00555 -   **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
00556 F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
00557 Estimation". In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
00558 assuming that both have the same value. Then the cameraMatrix is updated with the estimated
00559 focal length.
00560 
00561 The function estimates the object pose given a set of object points, their corresponding image
00562 projections, as well as the camera matrix and the distortion coefficients.
00563 
00564 @note
00565    -   An example of how to use solvePnP for planar augmented reality can be found at
00566         opencv_source_code/samples/python/plane_ar.py
00567    -   If you are using Python:
00568         - Numpy array slices won't work as input because solvePnP requires contiguous
00569         arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
00570         modules/calib3d/src/solvepnp.cpp version 2.4.9)
00571         - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
00572         to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
00573         which requires 2-channel information.
00574         - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
00575         it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
00576         np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
00577    -   The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
00578        unstable and sometimes give completly wrong results. If you pass one of these two flags,
00579        **SOLVEPNP_EPNP** method will be used instead.
00580  */
00581 CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
00582                             InputArray cameraMatrix, InputArray distCoeffs,
00583                             OutputArray rvec, OutputArray tvec,
00584                             bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
00585 
00586 /** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
00587 
00588 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
00589 1xN/Nx1 3-channel, where N is the number of points. vector<Point3f> can be also passed here.
00590 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
00591 where N is the number of points. vector<Point2f> can be also passed here.
00592 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
00593 @param distCoeffs Input vector of distortion coefficients
00594 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
00595 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
00596 assumed.
00597 @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
00598 the model coordinate system to the camera coordinate system.
00599 @param tvec Output translation vector.
00600 @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
00601 the provided rvec and tvec values as initial approximations of the rotation and translation
00602 vectors, respectively, and further optimizes them.
00603 @param iterationsCount Number of iterations.
00604 @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
00605 is the maximum allowed distance between the observed and computed point projections to consider it
00606 an inlier.
00607 @param confidence The probability that the algorithm produces a useful result.
00608 @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
00609 @param flags Method for solving a PnP problem (see solvePnP ).
00610 
00611 The function estimates an object pose given a set of object points, their corresponding image
00612 projections, as well as the camera matrix and the distortion coefficients. This function finds such
00613 a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
00614 projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC
00615 makes the function resistant to outliers.
00616 
00617 @note
00618    -   An example of how to use solvePNPRansac for object detection can be found at
00619         opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
00620  */
00621 CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
00622                                   InputArray cameraMatrix, InputArray distCoeffs,
00623                                   OutputArray rvec, OutputArray tvec,
00624                                   bool useExtrinsicGuess = false, int iterationsCount = 100,
00625                                   float reprojectionError = 8.0, double confidence = 0.99,
00626                                   OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
00627 
00628 /** @brief Finds an initial camera matrix from 3D-2D point correspondences.
00629 
00630 @param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
00631 coordinate space. In the old interface all the per-view vectors are concatenated. See
00632 calibrateCamera for details.
00633 @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
00634 old interface all the per-view vectors are concatenated.
00635 @param imageSize Image size in pixels used to initialize the principal point.
00636 @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
00637 Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .
00638 
00639 The function estimates and returns an initial camera matrix for the camera calibration process.
00640 Currently, the function only supports planar calibration patterns, which are patterns where each
00641 object point has z-coordinate =0.
00642  */
00643 CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
00644                                      InputArrayOfArrays imagePoints,
00645                                      Size imageSize, double aspectRatio = 1.0 );
00646 
00647 /** @brief Finds the positions of internal corners of the chessboard.
00648 
00649 @param image Source chessboard view. It must be an 8-bit grayscale or color image.
00650 @param patternSize Number of inner corners per a chessboard row and column
00651 ( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
00652 @param corners Output array of detected corners.
00653 @param flags Various operation flags that can be zero or a combination of the following values:
00654 -   **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
00655 and white, rather than a fixed threshold level (computed from the average image brightness).
00656 -   **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
00657 applying fixed or adaptive thresholding.
00658 -   **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
00659 square-like shape) to filter out false quads extracted at the contour retrieval stage.
00660 -   **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
00661 and shortcut the call if none is found. This can drastically speed up the call in the
00662 degenerate condition when no chessboard is observed.
00663 
00664 The function attempts to determine whether the input image is a view of the chessboard pattern and
00665 locate the internal chessboard corners. The function returns a non-zero value if all of the corners
00666 are found and they are placed in a certain order (row by row, left to right in every row).
00667 Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
00668 a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
00669 squares touch each other. The detected coordinates are approximate, and to determine their positions
00670 more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
00671 different parameters if returned coordinates are not accurate enough.
00672 
00673 Sample usage of detecting and drawing chessboard corners: :
00674 @code
00675     Size patternsize(8,6); //interior number of corners
00676     Mat gray = ....; //source image
00677     vector<Point2f> corners; //this will be filled by the detected corners
00678 
00679     //CALIB_CB_FAST_CHECK saves a lot of time on images
00680     //that do not contain any chessboard corners
00681     bool patternfound = findChessboardCorners(gray, patternsize, corners,
00682             CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
00683             + CALIB_CB_FAST_CHECK);
00684 
00685     if(patternfound)
00686       cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
00687         TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
00688 
00689     drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
00690 @endcode
00691 @note The function requires white space (like a square-thick border, the wider the better) around
00692 the board to make the detection more robust in various environments. Otherwise, if there is no
00693 border and the background is dark, the outer black squares cannot be segmented properly and so the
00694 square grouping and ordering algorithm fails.
00695  */
00696 CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
00697                                          int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
00698 
00699 //! finds subpixel-accurate positions of the chessboard corners
00700 CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
00701 
00702 /** @brief Renders the detected chessboard corners.
00703 
00704 @param image Destination image. It must be an 8-bit color image.
00705 @param patternSize Number of inner corners per a chessboard row and column
00706 (patternSize = cv::Size(points_per_row,points_per_column)).
00707 @param corners Array of detected corners, the output of findChessboardCorners.
00708 @param patternWasFound Parameter indicating whether the complete board was found or not. The
00709 return value of findChessboardCorners should be passed here.
00710 
00711 The function draws individual chessboard corners detected either as red circles if the board was not
00712 found, or as colored corners connected with lines if the board was found.
00713  */
00714 CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
00715                                          InputArray corners, bool patternWasFound );
00716 
00717 /** @brief Finds centers in the grid of circles.
00718 
00719 @param image grid view of input circles; it must be an 8-bit grayscale or color image.
00720 @param patternSize number of circles per row and column
00721 ( patternSize = Size(points_per_row, points_per_colum) ).
00722 @param centers output array of detected centers.
00723 @param flags various operation flags that can be one of the following values:
00724 -   **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
00725 -   **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
00726 -   **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
00727 perspective distortions but much more sensitive to background clutter.
00728 @param blobDetector feature detector that finds blobs like dark circles on light background.
00729 
00730 The function attempts to determine whether the input image contains a grid of circles. If it is, the
00731 function locates centers of the circles. The function returns a non-zero value if all of the centers
00732 have been found and they have been placed in a certain order (row by row, left to right in every
00733 row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
00734 
00735 Sample usage of detecting and drawing the centers of circles: :
00736 @code
00737     Size patternsize(7,7); //number of centers
00738     Mat gray = ....; //source image
00739     vector<Point2f> centers; //this will be filled by the detected centers
00740 
00741     bool patternfound = findCirclesGrid(gray, patternsize, centers);
00742 
00743     drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
00744 @endcode
00745 @note The function requires white space (like a square-thick border, the wider the better) around
00746 the board to make the detection more robust in various environments.
00747  */
00748 CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
00749                                    OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
00750                                    const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
00751 
00752 /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
00753 
00754 @param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
00755 the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
00756 vector contains as many elements as the number of the pattern views. If the same calibration pattern
00757 is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
00758 possible to use partially occluded patterns, or even different patterns in different views. Then,
00759 the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
00760 then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
00761 Z-coordinate of each input object point is 0.
00762 In the old interface all the vectors of object points from different views are concatenated
00763 together.
00764 @param imagePoints In the new interface it is a vector of vectors of the projections of calibration
00765 pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
00766 objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
00767 In the old interface all the vectors of object points from different views are concatenated
00768 together.
00769 @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
00770 @param cameraMatrix Output 3x3 floating-point camera matrix
00771 \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
00772 and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
00773 initialized before calling the function.
00774 @param distCoeffs Output vector of distortion coefficients
00775 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
00776 4, 5, 8, 12 or 14 elements.
00777 @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
00778 (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
00779 k-th translation vector (see the next output parameter description) brings the calibration pattern
00780 from the model coordinate space (in which object points are specified) to the world coordinate
00781 space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
00782 @param tvecs Output vector of translation vectors estimated for each pattern view.
00783 @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
00784  Order of deviations values:
00785 \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
00786  s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
00787 @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
00788  Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
00789  \f$R_i, T_i\f$ are concatenated 1x3 vectors.
00790  @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
00791 @param flags Different flags that may be zero or a combination of the following values:
00792 -   **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
00793 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
00794 center ( imageSize is used), and focal distances are computed in a least-squares fashion.
00795 Note, that if intrinsic parameters are known, there is no need to use this function just to
00796 estimate extrinsic parameters. Use solvePnP instead.
00797 -   **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
00798 optimization. It stays at the center or at a different location specified when
00799 CV_CALIB_USE_INTRINSIC_GUESS is set too.
00800 -   **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
00801 ratio fx/fy stays the same as in the input cameraMatrix . When
00802 CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
00803 ignored, only their ratio is computed and used further.
00804 -   **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
00805 to zeros and stay zero.
00806 -   **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion
00807 coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is
00808 set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
00809 -   **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
00810 backward compatibility, this extra flag should be explicitly specified to make the
00811 calibration function use the rational model and return 8 coefficients. If the flag is not
00812 set, the function computes and returns only 5 distortion coefficients.
00813 -   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
00814 backward compatibility, this extra flag should be explicitly specified to make the
00815 calibration function use the thin prism model and return 12 coefficients. If the flag is not
00816 set, the function computes and returns only 5 distortion coefficients.
00817 -   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
00818 the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
00819 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
00820 -   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
00821 backward compatibility, this extra flag should be explicitly specified to make the
00822 calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
00823 set, the function computes and returns only 5 distortion coefficients.
00824 -   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
00825 the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
00826 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
00827 @param criteria Termination criteria for the iterative optimization algorithm.
00828 
00829 @return the overall RMS re-projection error.
00830 
00831 The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
00832 views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
00833 points and their corresponding 2D projections in each view must be specified. That may be achieved
00834 by using an object with a known geometry and easily detectable feature points. Such an object is
00835 called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
00836 a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
00837 (when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
00838 patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
00839 be used as long as initial cameraMatrix is provided.
00840 
00841 The algorithm performs the following steps:
00842 
00843 -   Compute the initial intrinsic parameters (the option only available for planar calibration
00844     patterns) or read them from the input parameters. The distortion coefficients are all set to
00845     zeros initially unless some of CV_CALIB_FIX_K? are specified.
00846 
00847 -   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
00848     done using solvePnP .
00849 
00850 -   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
00851     that is, the total sum of squared distances between the observed feature points imagePoints and
00852     the projected (using the current estimates for camera parameters and the poses) object points
00853     objectPoints. See projectPoints for details.
00854 
00855 @note
00856    If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
00857     calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
00858     (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
00859     then you have probably used patternSize=cvSize(rows,cols) instead of using
00860     patternSize=cvSize(cols,rows) in findChessboardCorners .
00861 
00862 @sa
00863    findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
00864  */
00865 CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
00866                                      InputArrayOfArrays imagePoints, Size imageSize,
00867                                      InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
00868                                      OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
00869                                      OutputArray stdDeviationsIntrinsics,
00870                                      OutputArray stdDeviationsExtrinsics,
00871                                      OutputArray perViewErrors,
00872                                      int flags = 0, TermCriteria criteria = TermCriteria(
00873                                         TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
00874 
00875 /** @overload double calibrateCamera( InputArrayOfArrays objectPoints,
00876                                      InputArrayOfArrays imagePoints, Size imageSize,
00877                                      InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
00878                                      OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
00879                                      OutputArray stdDeviations, OutputArray perViewErrors,
00880                                      int flags = 0, TermCriteria criteria = TermCriteria(
00881                                         TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
00882  */
00883 CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
00884                                      InputArrayOfArrays imagePoints, Size imageSize,
00885                                      InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
00886                                      OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
00887                                      int flags = 0, TermCriteria criteria = TermCriteria(
00888                                         TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
00889 
00890 /** @brief Computes useful camera characteristics from the camera matrix.
00891 
00892 @param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
00893 stereoCalibrate .
00894 @param imageSize Input image size in pixels.
00895 @param apertureWidth Physical width in mm of the sensor.
00896 @param apertureHeight Physical height in mm of the sensor.
00897 @param fovx Output field of view in degrees along the horizontal sensor axis.
00898 @param fovy Output field of view in degrees along the vertical sensor axis.
00899 @param focalLength Focal length of the lens in mm.
00900 @param principalPoint Principal point in mm.
00901 @param aspectRatio \f$f_y/f_x\f$
00902 
00903 The function computes various useful camera characteristics from the previously estimated camera
00904 matrix.
00905 
00906 @note
00907    Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
00908     the chessboard pitch (it can thus be any value).
00909  */
00910 CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
00911                                            double apertureWidth, double apertureHeight,
00912                                            CV_OUT double& fovx, CV_OUT double& fovy,
00913                                            CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
00914                                            CV_OUT double& aspectRatio );
00915 
00916 /** @brief Calibrates the stereo camera.
00917 
00918 @param objectPoints Vector of vectors of the calibration pattern points.
00919 @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
00920 observed by the first camera.
00921 @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
00922 observed by the second camera.
00923 @param cameraMatrix1 Input/output first camera matrix:
00924 \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
00925 any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO ,
00926 CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
00927 matrix components must be initialized. See the flags description for details.
00928 @param distCoeffs1 Input/output vector of distortion coefficients
00929 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
00930 4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
00931 @param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
00932 @param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
00933 is similar to distCoeffs1 .
00934 @param imageSize Size of the image used only to initialize intrinsic camera matrix.
00935 @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
00936 @param T Output translation vector between the coordinate systems of the cameras.
00937 @param E Output essential matrix.
00938 @param F Output fundamental matrix.
00939 @param flags Different flags that may be zero or a combination of the following values:
00940 -   **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
00941 matrices are estimated.
00942 -   **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
00943 according to the specified flags. Initial values are provided by the user.
00944 -   **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
00945 -   **CV_CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
00946 -   **CV_CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
00947 .
00948 -   **CV_CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
00949 -   **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
00950 zeros and fix there.
00951 -   **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial
00952 distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set,
00953 the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
00954 -   **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
00955 compatibility, this extra flag should be explicitly specified to make the calibration
00956 function use the rational model and return 8 coefficients. If the flag is not set, the
00957 function computes and returns only 5 distortion coefficients.
00958 -   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
00959 backward compatibility, this extra flag should be explicitly specified to make the
00960 calibration function use the thin prism model and return 12 coefficients. If the flag is not
00961 set, the function computes and returns only 5 distortion coefficients.
00962 -   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
00963 the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
00964 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
00965 -   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
00966 backward compatibility, this extra flag should be explicitly specified to make the
00967 calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
00968 set, the function computes and returns only 5 distortion coefficients.
00969 -   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
00970 the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
00971 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
00972 @param criteria Termination criteria for the iterative optimization algorithm.
00973 
00974 The function estimates transformation between two cameras making a stereo pair. If you have a stereo
00975 camera where the relative position and orientation of two cameras is fixed, and if you computed
00976 poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
00977 respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
00978 This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
00979 need to know the position and orientation of the second camera relative to the first camera. This is
00980 what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:
00981 
00982 \f[R_2=R*R_1
00983 T_2=R*T_1 + T,\f]
00984 
00985 Optionally, it computes the essential matrix E:
00986 
00987 \f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]
00988 
00989 where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
00990 can also compute the fundamental matrix F:
00991 
00992 \f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]
00993 
00994 Besides the stereo-related information, the function can also perform a full calibration of each of
00995 two cameras. However, due to the high dimensionality of the parameter space and noise in the input
00996 data, the function can diverge from the correct solution. If the intrinsic parameters can be
00997 estimated with high accuracy for each of the cameras individually (for example, using
00998 calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the
00999 function along with the computed intrinsic parameters. Otherwise, if all the parameters are
01000 estimated at once, it makes sense to restrict some parameters, for example, pass
01001 CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a
01002 reasonable assumption.
01003 
01004 Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
01005 points in all the available views from both cameras. The function returns the final value of the
01006 re-projection error.
01007  */
01008 CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
01009                                      InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
01010                                      InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
01011                                      InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
01012                                      Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
01013                                      int flags = CALIB_FIX_INTRINSIC,
01014                                      TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
01015 
01016 
01017 /** @brief Computes rectification transforms for each head of a calibrated stereo camera.
01018 
01019 @param cameraMatrix1 First camera matrix.
01020 @param distCoeffs1 First camera distortion parameters.
01021 @param cameraMatrix2 Second camera matrix.
01022 @param distCoeffs2 Second camera distortion parameters.
01023 @param imageSize Size of the image used for stereo calibration.
01024 @param R Rotation matrix between the coordinate systems of the first and the second cameras.
01025 @param T Translation vector between coordinate systems of the cameras.
01026 @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
01027 @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
01028 @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
01029 camera.
01030 @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
01031 camera.
01032 @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
01033 @param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
01034 the function makes the principal points of each camera have the same pixel coordinates in the
01035 rectified views. And if the flag is not set, the function may still shift the images in the
01036 horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
01037 useful image area.
01038 @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
01039 scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
01040 images are zoomed and shifted so that only valid pixels are visible (no black areas after
01041 rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
01042 pixels from the original images from the cameras are retained in the rectified images (no source
01043 image pixels are lost). Obviously, any intermediate value yields an intermediate result between
01044 those two extreme cases.
01045 @param newImageSize New image resolution after rectification. The same size should be passed to
01046 initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
01047 is passed (default), it is set to the original imageSize . Setting it to larger value can help you
01048 preserve details in the original image, especially when there is a big radial distortion.
01049 @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
01050 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
01051 (see the picture below).
01052 @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
01053 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
01054 (see the picture below).
01055 
01056 The function computes the rotation matrices for each camera that (virtually) make both camera image
01057 planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
01058 the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
01059 as input. As output, it provides two rotation matrices and also two projection matrices in the new
01060 coordinates. The function distinguishes the following two cases:
01061 
01062 -   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
01063     mainly along the x axis (with possible small vertical shift). In the rectified images, the
01064     corresponding epipolar lines in the left and right cameras are horizontal and have the same
01065     y-coordinate. P1 and P2 look like:
01066 
01067     \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
01068 
01069     \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
01070 
01071     where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
01072     CV_CALIB_ZERO_DISPARITY is set.
01073 
01074 -   **Vertical stereo**: the first and the second camera views are shifted relative to each other
01075     mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
01076     lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
01077 
01078     \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
01079 
01080     \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
01081 
01082     where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
01083     set.
01084 
01085 As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
01086 matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
01087 initialize the rectification map for each camera.
01088 
01089 See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
01090 the corresponding image regions. This means that the images are well rectified, which is what most
01091 stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
01092 their interiors are all valid pixels.
01093 
01094 ![image](pics/stereo_undistort.jpg)
01095  */
01096 CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
01097                                  InputArray cameraMatrix2, InputArray distCoeffs2,
01098                                  Size imageSize, InputArray R, InputArray T,
01099                                  OutputArray R1, OutputArray R2,
01100                                  OutputArray P1, OutputArray P2,
01101                                  OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
01102                                  double alpha = -1, Size newImageSize = Size(),
01103                                  CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
01104 
01105 /** @brief Computes a rectification transform for an uncalibrated stereo camera.
01106 
01107 @param points1 Array of feature points in the first image.
01108 @param points2 The corresponding points in the second image. The same formats as in
01109 findFundamentalMat are supported.
01110 @param F Input fundamental matrix. It can be computed from the same set of point pairs using
01111 findFundamentalMat .
01112 @param imgSize Size of the image.
01113 @param H1 Output rectification homography matrix for the first image.
01114 @param H2 Output rectification homography matrix for the second image.
01115 @param threshold Optional threshold used to filter out the outliers. If the parameter is greater
01116 than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
01117 for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
01118 rejected prior to computing the homographies. Otherwise,all the points are considered inliers.
01119 
01120 The function computes the rectification transformations without knowing intrinsic parameters of the
01121 cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
01122 related difference from stereoRectify is that the function outputs not the rectification
01123 transformations in the object (3D) space, but the planar perspective transformations encoded by the
01124 homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
01125 
01126 @note
01127    While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
01128     depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
01129     it would be better to correct it before computing the fundamental matrix and calling this
01130     function. For example, distortion coefficients can be estimated for each head of stereo camera
01131     separately by using calibrateCamera . Then, the images can be corrected using undistort , or
01132     just the point coordinates can be corrected with undistortPoints .
01133  */
01134 CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
01135                                              InputArray F, Size imgSize,
01136                                              OutputArray H1, OutputArray H2,
01137                                              double threshold = 5 );
01138 
01139 //! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
01140 CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
01141                                       InputArray cameraMatrix2, InputArray distCoeffs2,
01142                                       InputArray cameraMatrix3, InputArray distCoeffs3,
01143                                       InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
01144                                       Size imageSize, InputArray R12, InputArray T12,
01145                                       InputArray R13, InputArray T13,
01146                                       OutputArray R1, OutputArray R2, OutputArray R3,
01147                                       OutputArray P1, OutputArray P2, OutputArray P3,
01148                                       OutputArray Q, double alpha, Size newImgSize,
01149                                       CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
01150 
01151 /** @brief Returns the new camera matrix based on the free scaling parameter.
01152 
01153 @param cameraMatrix Input camera matrix.
01154 @param distCoeffs Input vector of distortion coefficients
01155 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
01156 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
01157 assumed.
01158 @param imageSize Original image size.
01159 @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
01160 valid) and 1 (when all the source image pixels are retained in the undistorted image). See
01161 stereoRectify for details.
01162 @param newImgSize Image size after rectification. By default,it is set to imageSize .
01163 @param validPixROI Optional output rectangle that outlines all-good-pixels region in the
01164 undistorted image. See roi1, roi2 description in stereoRectify .
01165 @param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
01166 principal point should be at the image center or not. By default, the principal point is chosen to
01167 best fit a subset of the source image (determined by alpha) to the corrected image.
01168 @return new_camera_matrix Output new camera matrix.
01169 
01170 The function computes and returns the optimal new camera matrix based on the free scaling parameter.
01171 By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
01172 image pixels if there is valuable information in the corners alpha=1 , or get something in between.
01173 When alpha>0 , the undistortion result is likely to have some black pixels corresponding to
01174 "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
01175 coefficients, the computed new camera matrix, and newImageSize should be passed to
01176 initUndistortRectifyMap to produce the maps for remap .
01177  */
01178 CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
01179                                             Size imageSize, double alpha, Size newImgSize = Size(),
01180                                             CV_OUT Rect* validPixROI = 0,
01181                                             bool centerPrincipalPoint = false);
01182 
01183 /** @brief Converts points from Euclidean to homogeneous space.
01184 
01185 @param src Input vector of N-dimensional points.
01186 @param dst Output vector of N+1-dimensional points.
01187 
01188 The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
01189 point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
01190  */
01191 CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
01192 
01193 /** @brief Converts points from homogeneous to Euclidean space.
01194 
01195 @param src Input vector of N-dimensional points.
01196 @param dst Output vector of N-1-dimensional points.
01197 
01198 The function converts points homogeneous to Euclidean space using perspective projection. That is,
01199 each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
01200 output point coordinates will be (0,0,0,...).
01201  */
01202 CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
01203 
01204 /** @brief Converts points to/from homogeneous coordinates.
01205 
01206 @param src Input array or vector of 2D, 3D, or 4D points.
01207 @param dst Output vector of 2D, 3D, or 4D points.
01208 
01209 The function converts 2D or 3D points from/to homogeneous coordinates by calling either
01210 convertPointsToHomogeneous or convertPointsFromHomogeneous.
01211 
01212 @note The function is obsolete. Use one of the previous two functions instead.
01213  */
01214 CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
01215 
01216 /** @brief Calculates a fundamental matrix from the corresponding points in two images.
01217 
01218 @param points1 Array of N points from the first image. The point coordinates should be
01219 floating-point (single or double precision).
01220 @param points2 Array of the second image points of the same size and format as points1 .
01221 @param method Method for computing a fundamental matrix.
01222 -   **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
01223 -   **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
01224 -   **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
01225 -   **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
01226 @param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
01227 line in pixels, beyond which the point is considered an outlier and is not used for computing the
01228 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
01229 point localization, image resolution, and the image noise.
01230 @param param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level
01231 of confidence (probability) that the estimated matrix is correct.
01232 @param mask
01233 
01234 The epipolar geometry is described by the following equation:
01235 
01236 \f[[p_2; 1]^T F [p_1; 1] = 0\f]
01237 
01238 where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
01239 second images, respectively.
01240 
01241 The function calculates the fundamental matrix using one of four methods listed above and returns
01242 the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
01243 algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
01244 matrices sequentially).
01245 
01246 The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
01247 epipolar lines corresponding to the specified points. It can also be passed to
01248 stereoRectifyUncalibrated to compute the rectification transformation. :
01249 @code
01250     // Example. Estimation of fundamental matrix using the RANSAC algorithm
01251     int point_count = 100;
01252     vector<Point2f> points1(point_count);
01253     vector<Point2f> points2(point_count);
01254 
01255     // initialize the points here ...
01256     for( int i = 0; i < point_count; i++ )
01257     {
01258         points1[i] = ...;
01259         points2[i] = ...;
01260     }
01261 
01262     Mat fundamental_matrix =
01263      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
01264 @endcode
01265  */
01266 CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
01267                                      int method = FM_RANSAC,
01268                                      double param1 = 3., double param2 = 0.99,
01269                                      OutputArray mask = noArray() );
01270 
01271 /** @overload */
01272 CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
01273                                    OutputArray mask, int method = FM_RANSAC,
01274                                    double param1 = 3., double param2 = 0.99 );
01275 
01276 /** @brief Calculates an essential matrix from the corresponding points in two images.
01277 
01278 @param points1 Array of N (N >= 5) 2D points from the first image. The point coordinates should
01279 be floating-point (single or double precision).
01280 @param points2 Array of the second image points of the same size and format as points1 .
01281 @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
01282 Note that this function assumes that points1 and points2 are feature points from cameras with the
01283 same camera matrix.
01284 @param method Method for computing a fundamental matrix.
01285 -   **RANSAC** for the RANSAC algorithm.
01286 -   **MEDS** for the LMedS algorithm.
01287 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
01288 confidence (probability) that the estimated matrix is correct.
01289 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
01290 line in pixels, beyond which the point is considered an outlier and is not used for computing the
01291 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
01292 point localization, image resolution, and the image noise.
01293 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
01294 for the other points. The array is computed only in the RANSAC and LMedS methods.
01295 
01296 This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
01297 @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
01298 
01299 \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
01300 
01301 where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
01302 second images, respectively. The result of this function may be passed further to
01303 decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
01304  */
01305 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
01306                                  InputArray cameraMatrix, int method = RANSAC,
01307                                  double prob = 0.999, double threshold = 1.0,
01308                                  OutputArray mask = noArray() );
01309 
01310 /** @overload
01311 @param points1 Array of N (N >= 5) 2D points from the first image. The point coordinates should
01312 be floating-point (single or double precision).
01313 @param points2 Array of the second image points of the same size and format as points1 .
01314 @param focal focal length of the camera. Note that this function assumes that points1 and points2
01315 are feature points from cameras with same focal length and principal point.
01316 @param pp principal point of the camera.
01317 @param method Method for computing a fundamental matrix.
01318 -   **RANSAC** for the RANSAC algorithm.
01319 -   **LMEDS** for the LMedS algorithm.
01320 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
01321 line in pixels, beyond which the point is considered an outlier and is not used for computing the
01322 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
01323 point localization, image resolution, and the image noise.
01324 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
01325 confidence (probability) that the estimated matrix is correct.
01326 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
01327 for the other points. The array is computed only in the RANSAC and LMedS methods.
01328 
01329 This function differs from the one above that it computes camera matrix from focal length and
01330 principal point:
01331 
01332 \f[K =
01333 \begin{bmatrix}
01334 f & 0 & x_{pp}  \\
01335 0 & f & y_{pp}  \\
01336 0 & 0 & 1
01337 \end{bmatrix}\f]
01338  */
01339 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
01340                                  double focal = 1.0, Point2d pp = Point2d(0, 0),
01341                                  int method = RANSAC, double prob = 0.999,
01342                                  double threshold = 1.0, OutputArray mask = noArray() );
01343 
01344 /** @brief Decompose an essential matrix to possible rotations and translation.
01345 
01346 @param E The input essential matrix.
01347 @param R1 One possible rotation matrix.
01348 @param R2 Another possible rotation matrix.
01349 @param t One possible translation.
01350 
01351 This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
01352 possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
01353 decomposing E, you can only get the direction of the translation, so the function returns unit t.
01354  */
01355 CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
01356 
01357 /** @brief Recover relative camera rotation and translation from an estimated essential matrix and the
01358 corresponding points in two images, using cheirality check. Returns the number of inliers which pass
01359 the check.
01360 
01361 @param E The input essential matrix.
01362 @param points1 Array of N 2D points from the first image. The point coordinates should be
01363 floating-point (single or double precision).
01364 @param points2 Array of the second image points of the same size and format as points1 .
01365 @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
01366 Note that this function assumes that points1 and points2 are feature points from cameras with the
01367 same camera matrix.
01368 @param R Recovered relative rotation.
01369 @param t Recoverd relative translation.
01370 @param mask Input/output mask for inliers in points1 and points2.
01371 :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
01372 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
01373 which pass the cheirality check.
01374 This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
01375 pose hypotheses by doing cheirality check. The cheirality check basically means that the
01376 triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .
01377 
01378 This function can be used to process output E and mask from findEssentialMat. In this scenario,
01379 points1 and points2 are the same input for findEssentialMat. :
01380 @code
01381     // Example. Estimation of fundamental matrix using the RANSAC algorithm
01382     int point_count = 100;
01383     vector<Point2f> points1(point_count);
01384     vector<Point2f> points2(point_count);
01385 
01386     // initialize the points here ...
01387     for( int i = 0; i < point_count; i++ )
01388     {
01389         points1[i] = ...;
01390         points2[i] = ...;
01391     }
01392 
01393     // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
01394     Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
01395 
01396     Mat E, R, t, mask;
01397 
01398     E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
01399     recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
01400 @endcode
01401  */
01402 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
01403                             InputArray cameraMatrix, OutputArray R, OutputArray t,
01404                             InputOutputArray mask = noArray() );
01405 
01406 /** @overload
01407 @param E The input essential matrix.
01408 @param points1 Array of N 2D points from the first image. The point coordinates should be
01409 floating-point (single or double precision).
01410 @param points2 Array of the second image points of the same size and format as points1 .
01411 @param R Recovered relative rotation.
01412 @param t Recoverd relative translation.
01413 @param focal Focal length of the camera. Note that this function assumes that points1 and points2
01414 are feature points from cameras with same focal length and principal point.
01415 @param pp principal point of the camera.
01416 @param mask Input/output mask for inliers in points1 and points2.
01417 :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
01418 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
01419 which pass the cheirality check.
01420 
01421 This function differs from the one above that it computes camera matrix from focal length and
01422 principal point:
01423 
01424 \f[K =
01425 \begin{bmatrix}
01426 f & 0 & x_{pp}  \\
01427 0 & f & y_{pp}  \\
01428 0 & 0 & 1
01429 \end{bmatrix}\f]
01430  */
01431 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
01432                             OutputArray R, OutputArray t,
01433                             double focal = 1.0, Point2d pp = Point2d(0, 0),
01434                             InputOutputArray mask = noArray() );
01435 
01436 /** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
01437 
01438 @param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
01439 vector<Point2f> .
01440 @param whichImage Index of the image (1 or 2) that contains the points .
01441 @param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
01442 @param lines Output vector of the epipolar lines corresponding to the points in the other image.
01443 Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
01444 
01445 For every point in one of the two images of a stereo pair, the function finds the equation of the
01446 corresponding epipolar line in the other image.
01447 
01448 From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
01449 image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
01450 
01451 \f[l^{(2)}_i = F p^{(1)}_i\f]
01452 
01453 And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
01454 
01455 \f[l^{(1)}_i = F^T p^{(2)}_i\f]
01456 
01457 Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
01458  */
01459 CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
01460                                              InputArray F, OutputArray lines );
01461 
01462 /** @brief Reconstructs points by triangulation.
01463 
01464 @param projMatr1 3x4 projection matrix of the first camera.
01465 @param projMatr2 3x4 projection matrix of the second camera.
01466 @param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
01467 be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
01468 @param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
01469 it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
01470 @param points4D 4xN array of reconstructed points in homogeneous coordinates.
01471 
01472 The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
01473 observations with a stereo camera. Projections matrices can be obtained from stereoRectify.
01474 
01475 @note
01476    Keep in mind that all input data should be of float type in order for this function to work.
01477 
01478 @sa
01479    reprojectImageTo3D
01480  */
01481 CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
01482                                      InputArray projPoints1, InputArray projPoints2,
01483                                      OutputArray points4D );
01484 
01485 /** @brief Refines coordinates of corresponding points.
01486 
01487 @param F 3x3 fundamental matrix.
01488 @param points1 1xN array containing the first set of points.
01489 @param points2 1xN array containing the second set of points.
01490 @param newPoints1 The optimized points1.
01491 @param newPoints2 The optimized points2.
01492 
01493 The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
01494 For each given point correspondence points1[i] <-> points2[i], and a fundamental matrix F, it
01495 computes the corrected correspondences newPoints1[i] <-> newPoints2[i] that minimize the geometric
01496 error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
01497 geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
01498 \f$newPoints2^T * F * newPoints1 = 0\f$ .
01499  */
01500 CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
01501                                   OutputArray newPoints1, OutputArray newPoints2 );
01502 
01503 /** @brief Filters off small noise blobs (speckles) in the disparity map
01504 
01505 @param img The input 16-bit signed disparity image
01506 @param newVal The disparity value used to paint-off the speckles
01507 @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
01508 affected by the algorithm
01509 @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
01510 blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
01511 disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
01512 account when specifying this parameter value.
01513 @param buf The optional temporary buffer to avoid memory allocation within the function.
01514  */
01515 CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
01516                                   int maxSpeckleSize, double maxDiff,
01517                                   InputOutputArray buf = noArray() );
01518 
01519 //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
01520 CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
01521                                         int minDisparity, int numberOfDisparities,
01522                                         int SADWindowSize );
01523 
01524 //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
01525 CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
01526                                      int minDisparity, int numberOfDisparities,
01527                                      int disp12MaxDisp = 1 );
01528 
01529 /** @brief Reprojects a disparity image to 3D space.
01530 
01531 @param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
01532 floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
01533 fractional bits.
01534 @param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
01535 element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
01536 map.
01537 @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
01538 @param handleMissingValues Indicates, whether the function should handle missing values (i.e.
01539 points where the disparity was not computed). If handleMissingValues=true, then pixels with the
01540 minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
01541 to 3D points with a very large Z value (currently set to 10000).
01542 @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
01543 depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
01544 
01545 The function transforms a single-channel disparity map to a 3-channel image representing a 3D
01546 surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it
01547 computes:
01548 
01549 \f[\begin{array}{l} [X \; Y \; Z \; W]^T =  \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T  \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]
01550 
01551 The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
01552 stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
01553 perspectiveTransform .
01554  */
01555 CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
01556                                       OutputArray _3dImage, InputArray Q,
01557                                       bool handleMissingValues = false,
01558                                       int ddepth = -1 );
01559 
01560 /** @brief Calculates the Sampson Distance between two points.
01561 
01562 The function sampsonDistance calculates and returns the first order approximation of the geometric error as:
01563 \f[sd( \texttt{pt1} , \texttt{pt2} )= \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}{(\texttt{F} \cdot \texttt{pt1})(0) + (\texttt{F} \cdot \texttt{pt1})(1) + (\texttt{F}^t \cdot \texttt{pt2})(0) + (\texttt{F}^t \cdot \texttt{pt2})(1)}\f]
01564 The fundamental matrix may be calculated using the cv::findFundamentalMat function. See HZ 11.4.3 for details.
01565 @param pt1 first homogeneous 2d point
01566 @param pt2 second homogeneous 2d point
01567 @param F fundamental matrix
01568 */
01569 CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
01570 
01571 /** @brief Computes an optimal affine transformation between two 3D point sets.
01572 
01573 @param src First input 3D point set.
01574 @param dst Second input 3D point set.
01575 @param out Output 3D affine transformation matrix \f$3 \times 4\f$ .
01576 @param inliers Output vector indicating which points are inliers.
01577 @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
01578 an inlier.
01579 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
01580 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
01581 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
01582 
01583 The function estimates an optimal 3D affine transformation between two 3D point sets using the
01584 RANSAC algorithm.
01585  */
01586 CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
01587                                    OutputArray out, OutputArray inliers,
01588                                    double ransacThreshold = 3, double confidence = 0.99);
01589 
01590 /** @brief Computes an optimal affine transformation between two 2D point sets.
01591 
01592 @param from First input 2D point set.
01593 @param to Second input 2D point set.
01594 @param inliers Output vector indicating which points are inliers.
01595 @param method Robust method used to compute tranformation. The following methods are possible:
01596 -   cv::RANSAC - RANSAC-based robust method
01597 -   cv::LMEDS - Least-Median robust method
01598 RANSAC is the default method.
01599 @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
01600 a point as an inlier. Applies only to RANSAC.
01601 @param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
01602 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
01603 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
01604 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
01605 @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
01606 Passing 0 will disable refining, so the output matrix will be output of robust method.
01607 
01608 @return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
01609 could not be estimated.
01610 
01611 The function estimates an optimal 2D affine transformation between two 2D point sets using the
01612 selected robust algorithm.
01613 
01614 The computed transformation is then refined further (using only inliers) with the
01615 Levenberg-Marquardt method to reduce the re-projection error even more.
01616 
01617 @note
01618 The RANSAC method can handle practically any ratio of outliers but need a threshold to
01619 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
01620 correctly only when there are more than 50% of inliers.
01621 
01622 @sa estimateAffinePartial2D, getAffineTransform
01623 */
01624 CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
01625                                   int method = RANSAC, double ransacReprojThreshold = 3,
01626                                   size_t maxIters = 2000, double confidence = 0.99,
01627                                   size_t refineIters = 10);
01628 
01629 /** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
01630 two 2D point sets.
01631 
01632 @param from First input 2D point set.
01633 @param to Second input 2D point set.
01634 @param inliers Output vector indicating which points are inliers.
01635 @param method Robust method used to compute tranformation. The following methods are possible:
01636 -   cv::RANSAC - RANSAC-based robust method
01637 -   cv::LMEDS - Least-Median robust method
01638 RANSAC is the default method.
01639 @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
01640 a point as an inlier. Applies only to RANSAC.
01641 @param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
01642 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
01643 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
01644 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
01645 @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
01646 Passing 0 will disable refining, so the output matrix will be output of robust method.
01647 
01648 @return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
01649 empty matrix if transformation could not be estimated.
01650 
01651 The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
01652 combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
01653 estimation.
01654 
01655 The computed transformation is then refined further (using only inliers) with the
01656 Levenberg-Marquardt method to reduce the re-projection error even more.
01657 
01658 Estimated transformation matrix is:
01659 \f[ \begin{bmatrix} \cos(\theta)s & -\sin(\theta)s & tx \\
01660                 \sin(\theta)s & \cos(\theta)s & ty
01661 \end{bmatrix} \f]
01662 Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ tx, ty \f$ are
01663 translations in \f$ x, y \f$ axes respectively.
01664 
01665 @note
01666 The RANSAC method can handle practically any ratio of outliers but need a threshold to
01667 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
01668 correctly only when there are more than 50% of inliers.
01669 
01670 @sa estimateAffine2D, getAffineTransform
01671 */
01672 CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
01673                                   int method = RANSAC, double ransacReprojThreshold = 3,
01674                                   size_t maxIters = 2000, double confidence = 0.99,
01675                                   size_t refineIters = 10);
01676 
01677 /** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
01678 
01679 @param H The input homography matrix between two images.
01680 @param K The input intrinsic camera calibration matrix.
01681 @param rotations Array of rotation matrices.
01682 @param translations Array of translation matrices.
01683 @param normals Array of plane normal matrices.
01684 
01685 This function extracts relative camera motion between two views observing a planar object from the
01686 homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
01687 may return up to four mathematical solution sets. At least two of the solutions may further be
01688 invalidated if point correspondences are available by applying positive depth constraint (all points
01689 must be in front of the camera). The decomposition method is described in detail in @cite Malis .
01690  */
01691 CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
01692                                         InputArray K,
01693                                         OutputArrayOfArrays rotations,
01694                                         OutputArrayOfArrays translations,
01695                                         OutputArrayOfArrays normals);
01696 
01697 /** @brief The base class for stereo correspondence algorithms.
01698  */
01699 class CV_EXPORTS_W StereoMatcher : public Algorithm
01700 {
01701 public:
01702     enum { DISP_SHIFT = 4,
01703            DISP_SCALE = (1 << DISP_SHIFT)
01704          };
01705 
01706     /** @brief Computes disparity map for the specified stereo pair
01707 
01708     @param left Left 8-bit single-channel image.
01709     @param right Right image of the same size and the same type as the left one.
01710     @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
01711     like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
01712     has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
01713      */
01714     CV_WRAP virtual void compute( InputArray left, InputArray right,
01715                                   OutputArray disparity ) = 0;
01716 
01717     CV_WRAP virtual int getMinDisparity() const = 0;
01718     CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
01719 
01720     CV_WRAP virtual int getNumDisparities() const = 0;
01721     CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
01722 
01723     CV_WRAP virtual int getBlockSize() const = 0;
01724     CV_WRAP virtual void setBlockSize(int blockSize) = 0;
01725 
01726     CV_WRAP virtual int getSpeckleWindowSize() const = 0;
01727     CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
01728 
01729     CV_WRAP virtual int getSpeckleRange() const = 0;
01730     CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
01731 
01732     CV_WRAP virtual int getDisp12MaxDiff() const = 0;
01733     CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
01734 };
01735 
01736 
01737 /** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
01738 contributed to OpenCV by K. Konolige.
01739  */
01740 class CV_EXPORTS_W StereoBM : public StereoMatcher
01741 {
01742 public:
01743     enum { PREFILTER_NORMALIZED_RESPONSE = 0,
01744            PREFILTER_XSOBEL              = 1
01745          };
01746 
01747     CV_WRAP virtual int getPreFilterType() const = 0;
01748     CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
01749 
01750     CV_WRAP virtual int getPreFilterSize() const = 0;
01751     CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
01752 
01753     CV_WRAP virtual int getPreFilterCap() const = 0;
01754     CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
01755 
01756     CV_WRAP virtual int getTextureThreshold() const = 0;
01757     CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
01758 
01759     CV_WRAP virtual int getUniquenessRatio() const = 0;
01760     CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
01761 
01762     CV_WRAP virtual int getSmallerBlockSize() const = 0;
01763     CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
01764 
01765     CV_WRAP virtual Rect getROI1() const = 0;
01766     CV_WRAP virtual void setROI1(Rect roi1) = 0;
01767 
01768     CV_WRAP virtual Rect getROI2() const = 0;
01769     CV_WRAP virtual void setROI2(Rect roi2) = 0;
01770 
01771     /** @brief Creates StereoBM object
01772 
01773     @param numDisparities the disparity search range. For each pixel algorithm will find the best
01774     disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
01775     shifted by changing the minimum disparity.
01776     @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
01777     (as the block is centered at the current pixel). Larger block size implies smoother, though less
01778     accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
01779     chance for algorithm to find a wrong correspondence.
01780 
01781     The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
01782     a specific stereo pair.
01783      */
01784     CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
01785 };
01786 
01787 /** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
01788 one as follows:
01789 
01790 -   By default, the algorithm is single-pass, which means that you consider only 5 directions
01791 instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
01792 algorithm but beware that it may consume a lot of memory.
01793 -   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
01794 blocks to single pixels.
01795 -   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
01796 sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
01797 -   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
01798 example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
01799 check, quadratic interpolation and speckle filtering).
01800 
01801 @note
01802    -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
01803         at opencv_source_code/samples/python/stereo_match.py
01804  */
01805 class CV_EXPORTS_W StereoSGBM : public StereoMatcher
01806 {
01807 public:
01808     enum
01809     {
01810         MODE_SGBM = 0,
01811         MODE_HH   = 1,
01812         MODE_SGBM_3WAY = 2
01813     };
01814 
01815     CV_WRAP virtual int getPreFilterCap() const = 0;
01816     CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
01817 
01818     CV_WRAP virtual int getUniquenessRatio() const = 0;
01819     CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
01820 
01821     CV_WRAP virtual int getP1() const = 0;
01822     CV_WRAP virtual void setP1(int P1) = 0;
01823 
01824     CV_WRAP virtual int getP2() const = 0;
01825     CV_WRAP virtual void setP2(int P2) = 0;
01826 
01827     CV_WRAP virtual int getMode() const = 0;
01828     CV_WRAP virtual void setMode(int mode) = 0;
01829 
01830     /** @brief Creates StereoSGBM object
01831 
01832     @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
01833     rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
01834     @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
01835     zero. In the current implementation, this parameter must be divisible by 16.
01836     @param blockSize Matched block size. It must be an odd number >=1 . Normally, it should be
01837     somewhere in the 3..11 range.
01838     @param P1 The first parameter controlling the disparity smoothness. See below.
01839     @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
01840     the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
01841     between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
01842     pixels. The algorithm requires P2 > P1 . See stereo_match.cpp sample where some reasonably good
01843     P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
01844     32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
01845     @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
01846     disparity check. Set it to a non-positive value to disable the check.
01847     @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
01848     computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
01849     The result values are passed to the Birchfield-Tomasi pixel cost function.
01850     @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
01851     value should "win" the second best value to consider the found match correct. Normally, a value
01852     within the 5-15 range is good enough.
01853     @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
01854     and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
01855     50-200 range.
01856     @param speckleRange Maximum disparity variation within each connected component. If you do speckle
01857     filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
01858     Normally, 1 or 2 is good enough.
01859     @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
01860     algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
01861     huge for HD-size pictures. By default, it is set to false .
01862 
01863     The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
01864     set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
01865     to a custom value.
01866      */
01867     CV_WRAP static Ptr<StereoSGBM> create(int minDisparity, int numDisparities, int blockSize,
01868                                           int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
01869                                           int preFilterCap = 0, int uniquenessRatio = 0,
01870                                           int speckleWindowSize = 0, int speckleRange = 0,
01871                                           int mode = StereoSGBM::MODE_SGBM);
01872 };
01873 
01874 //! @} calib3d
01875 
01876 /** @brief The methods in this namespace use a so-called fisheye camera model.
01877   @ingroup calib3d_fisheye
01878 */
01879 namespace fisheye
01880 {
01881 //! @addtogroup calib3d_fisheye
01882 //! @{
01883 
01884     enum{
01885         CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
01886         CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
01887         CALIB_CHECK_COND            = 1 << 2,
01888         CALIB_FIX_SKEW              = 1 << 3,
01889         CALIB_FIX_K1                = 1 << 4,
01890         CALIB_FIX_K2                = 1 << 5,
01891         CALIB_FIX_K3                = 1 << 6,
01892         CALIB_FIX_K4                = 1 << 7,
01893         CALIB_FIX_INTRINSIC         = 1 << 8,
01894         CALIB_FIX_PRINCIPAL_POINT   = 1 << 9
01895     };
01896 
01897     /** @brief Projects points using fisheye model
01898 
01899     @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector<Point3f> ), where N is
01900     the number of points in the view.
01901     @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
01902     vector<Point2f>.
01903     @param affine
01904     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
01905     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
01906     @param alpha The skew coefficient.
01907     @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
01908     to components of the focal lengths, coordinates of the principal point, distortion coefficients,
01909     rotation vector, translation vector, and the skew. In the old interface different components of
01910     the jacobian are returned via different output parameters.
01911 
01912     The function computes projections of 3D points to the image plane given intrinsic and extrinsic
01913     camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
01914     image points coordinates (as functions of all the input parameters) with respect to the particular
01915     parameters, intrinsic and/or extrinsic.
01916      */
01917     CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
01918         InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
01919 
01920     /** @overload */
01921     CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
01922         InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
01923 
01924     /** @brief Distorts 2D points using fisheye model.
01925 
01926     @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector<Point2f> ), where N is
01927     the number of points in the view.
01928     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
01929     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
01930     @param alpha The skew coefficient.
01931     @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector<Point2f> .
01932 
01933     Note that the function assumes the camera matrix of the undistorted points to be indentity.
01934     This means if you want to transform back points undistorted with undistortPoints() you have to
01935     multiply them with \f$P^{-1}\f$.
01936      */
01937     CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
01938 
01939     /** @brief Undistorts 2D points using fisheye model
01940 
01941     @param distorted Array of object points, 1xN/Nx1 2-channel (or vector<Point2f> ), where N is the
01942     number of points in the view.
01943     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
01944     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
01945     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
01946     1-channel or 1x1 3-channel
01947     @param P New camera matrix (3x3) or new projection matrix (3x4)
01948     @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector<Point2f> .
01949      */
01950     CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
01951         InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray());
01952 
01953     /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
01954     distortion is used, if R or P is empty identity matrixes are used.
01955 
01956     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
01957     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
01958     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
01959     1-channel or 1x1 3-channel
01960     @param P New camera matrix (3x3) or new projection matrix (3x4)
01961     @param size Undistorted image size.
01962     @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
01963     for details.
01964     @param map1 The first output map.
01965     @param map2 The second output map.
01966      */
01967     CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
01968         const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
01969 
01970     /** @brief Transforms an image to compensate for fisheye lens distortion.
01971 
01972     @param distorted image with fisheye lens distortion.
01973     @param undistorted Output image with compensated fisheye lens distortion.
01974     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
01975     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
01976     @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you
01977     may additionally scale and shift the result by using a different matrix.
01978     @param new_size
01979 
01980     The function transforms an image to compensate radial and tangential lens distortion.
01981 
01982     The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
01983     (with bilinear interpolation). See the former function for details of the transformation being
01984     performed.
01985 
01986     See below the results of undistortImage.
01987        -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
01988             k_4, k_5, k_6) of distortion were optimized under calibration)
01989         -   b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
01990             k_3, k_4) of fisheye distortion were optimized under calibration)
01991         -   c\) original image was captured with fisheye lens
01992 
01993     Pictures a) and b) almost the same. But if we consider points of image located far from the center
01994     of image, we can notice that on image a) these points are distorted.
01995 
01996     ![image](pics/fisheye_undistorted.jpg)
01997      */
01998     CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
01999         InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
02000 
02001     /** @brief Estimates new camera matrix for undistortion or rectification.
02002 
02003     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
02004     @param image_size
02005     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
02006     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
02007     1-channel or 1x1 3-channel
02008     @param P New camera matrix (3x3) or new projection matrix (3x4)
02009     @param balance Sets the new focal length in range between the min focal length and the max focal
02010     length. Balance is in range of [0, 1].
02011     @param new_size
02012     @param fov_scale Divisor for new focal length.
02013      */
02014     CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
02015         OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
02016 
02017     /** @brief Performs camera calibaration
02018 
02019     @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
02020     coordinate space.
02021     @param imagePoints vector of vectors of the projections of calibration pattern points.
02022     imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
02023     objectPoints[i].size() for each i.
02024     @param image_size Size of the image used only to initialize the intrinsic camera matrix.
02025     @param K Output 3x3 floating-point camera matrix
02026     \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
02027     fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
02028     initialized before calling the function.
02029     @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
02030     @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
02031     That is, each k-th rotation vector together with the corresponding k-th translation vector (see
02032     the next output parameter description) brings the calibration pattern from the model coordinate
02033     space (in which object points are specified) to the world coordinate space, that is, a real
02034     position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
02035     @param tvecs Output vector of translation vectors estimated for each pattern view.
02036     @param flags Different flags that may be zero or a combination of the following values:
02037     -   **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
02038     fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
02039     center ( imageSize is used), and focal distances are computed in a least-squares fashion.
02040     -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
02041     of intrinsic optimization.
02042     -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
02043     -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
02044     -   **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients
02045     are set to zeros and stay zero.
02046     -   **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
02047 optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too.
02048     @param criteria Termination criteria for the iterative optimization algorithm.
02049      */
02050     CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
02051         InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
02052             TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
02053 
02054     /** @brief Stereo rectification for fisheye camera model
02055 
02056     @param K1 First camera matrix.
02057     @param D1 First camera distortion parameters.
02058     @param K2 Second camera matrix.
02059     @param D2 Second camera distortion parameters.
02060     @param imageSize Size of the image used for stereo calibration.
02061     @param R Rotation matrix between the coordinate systems of the first and the second
02062     cameras.
02063     @param tvec Translation vector between coordinate systems of the cameras.
02064     @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
02065     @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
02066     @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
02067     camera.
02068     @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
02069     camera.
02070     @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
02071     @param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
02072     the function makes the principal points of each camera have the same pixel coordinates in the
02073     rectified views. And if the flag is not set, the function may still shift the images in the
02074     horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
02075     useful image area.
02076     @param newImageSize New image resolution after rectification. The same size should be passed to
02077     initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
02078     is passed (default), it is set to the original imageSize . Setting it to larger value can help you
02079     preserve details in the original image, especially when there is a big radial distortion.
02080     @param balance Sets the new focal length in range between the min focal length and the max focal
02081     length. Balance is in range of [0, 1].
02082     @param fov_scale Divisor for new focal length.
02083      */
02084     CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
02085         OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
02086         double balance = 0.0, double fov_scale = 1.0);
02087 
02088     /** @brief Performs stereo calibration
02089 
02090     @param objectPoints Vector of vectors of the calibration pattern points.
02091     @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
02092     observed by the first camera.
02093     @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
02094     observed by the second camera.
02095     @param K1 Input/output first camera matrix:
02096     \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
02097     any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CV_CALIB_FIX_INTRINSIC are specified,
02098     some or all of the matrix components must be initialized.
02099     @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
02100     @param K2 Input/output second camera matrix. The parameter is similar to K1 .
02101     @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
02102     similar to D1 .
02103     @param imageSize Size of the image used only to initialize intrinsic camera matrix.
02104     @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
02105     @param T Output translation vector between the coordinate systems of the cameras.
02106     @param flags Different flags that may be zero or a combination of the following values:
02107     -   **fisheye::CV_CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
02108     are estimated.
02109     -   **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
02110     fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
02111     center (imageSize is used), and focal distances are computed in a least-squares fashion.
02112     -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
02113     of intrinsic optimization.
02114     -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
02115     -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
02116     -   **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
02117     zero.
02118     @param criteria Termination criteria for the iterative optimization algorithm.
02119      */
02120     CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
02121                                   InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
02122                                   OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
02123                                   TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
02124 
02125 //! @} calib3d_fisheye
02126 }
02127 
02128 } // cv
02129 
02130 #ifndef DISABLE_OPENCV_24_COMPATIBILITY
02131 #include "opencv2/calib3d/calib3d_c.h"
02132 #endif
02133 
02134 #endif