Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
cmsis_dsp/FastMathFunctions/arm_sqrt_q15.c@1:fdd22bb7aa52, 2012-11-28 (annotated)
- Committer:
- emilmont
- Date:
- Wed Nov 28 12:30:09 2012 +0000
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
DSP library code
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
emilmont | 1:fdd22bb7aa52 | 1 | /* ---------------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 2 | * Copyright (C) 2011 ARM Limited. All rights reserved. |
emilmont | 1:fdd22bb7aa52 | 3 | * |
emilmont | 1:fdd22bb7aa52 | 4 | * $Date: 15. February 2012 |
emilmont | 1:fdd22bb7aa52 | 5 | * $Revision: V1.1.0 |
emilmont | 1:fdd22bb7aa52 | 6 | * |
emilmont | 1:fdd22bb7aa52 | 7 | * Project: CMSIS DSP Library |
emilmont | 1:fdd22bb7aa52 | 8 | * Title: arm_sqrt_q15.c |
emilmont | 1:fdd22bb7aa52 | 9 | * |
emilmont | 1:fdd22bb7aa52 | 10 | * Description: Q15 square root function. |
emilmont | 1:fdd22bb7aa52 | 11 | * |
emilmont | 1:fdd22bb7aa52 | 12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
emilmont | 1:fdd22bb7aa52 | 13 | * |
emilmont | 1:fdd22bb7aa52 | 14 | * Version 1.1.0 2012/02/15 |
emilmont | 1:fdd22bb7aa52 | 15 | * Updated with more optimizations, bug fixes and minor API changes. |
emilmont | 1:fdd22bb7aa52 | 16 | * |
emilmont | 1:fdd22bb7aa52 | 17 | * Version 1.0.0 2011/03/08 |
emilmont | 1:fdd22bb7aa52 | 18 | * Alpha release. |
emilmont | 1:fdd22bb7aa52 | 19 | * |
emilmont | 1:fdd22bb7aa52 | 20 | * Version 1.0.1 2011/09/30 |
emilmont | 1:fdd22bb7aa52 | 21 | * Beta release. |
emilmont | 1:fdd22bb7aa52 | 22 | * |
emilmont | 1:fdd22bb7aa52 | 23 | * -------------------------------------------------------------------- */ |
emilmont | 1:fdd22bb7aa52 | 24 | #include "arm_math.h" |
emilmont | 1:fdd22bb7aa52 | 25 | #include "arm_common_tables.h" |
emilmont | 1:fdd22bb7aa52 | 26 | |
emilmont | 1:fdd22bb7aa52 | 27 | |
emilmont | 1:fdd22bb7aa52 | 28 | /** |
emilmont | 1:fdd22bb7aa52 | 29 | * @ingroup groupFastMath |
emilmont | 1:fdd22bb7aa52 | 30 | */ |
emilmont | 1:fdd22bb7aa52 | 31 | |
emilmont | 1:fdd22bb7aa52 | 32 | /** |
emilmont | 1:fdd22bb7aa52 | 33 | * @addtogroup SQRT |
emilmont | 1:fdd22bb7aa52 | 34 | * @{ |
emilmont | 1:fdd22bb7aa52 | 35 | */ |
emilmont | 1:fdd22bb7aa52 | 36 | |
emilmont | 1:fdd22bb7aa52 | 37 | /** |
emilmont | 1:fdd22bb7aa52 | 38 | * @brief Q15 square root function. |
emilmont | 1:fdd22bb7aa52 | 39 | * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. |
emilmont | 1:fdd22bb7aa52 | 40 | * @param[out] *pOut square root of input value. |
emilmont | 1:fdd22bb7aa52 | 41 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
emilmont | 1:fdd22bb7aa52 | 42 | * <code>in</code> is negative value and returns zero output for negative values. |
emilmont | 1:fdd22bb7aa52 | 43 | */ |
emilmont | 1:fdd22bb7aa52 | 44 | |
emilmont | 1:fdd22bb7aa52 | 45 | arm_status arm_sqrt_q15( |
emilmont | 1:fdd22bb7aa52 | 46 | q15_t in, |
emilmont | 1:fdd22bb7aa52 | 47 | q15_t * pOut) |
emilmont | 1:fdd22bb7aa52 | 48 | { |
emilmont | 1:fdd22bb7aa52 | 49 | q15_t number, temp1, var1, signBits1, half; |
emilmont | 1:fdd22bb7aa52 | 50 | q31_t bits_val1; |
emilmont | 1:fdd22bb7aa52 | 51 | float32_t temp_float1; |
emilmont | 1:fdd22bb7aa52 | 52 | |
emilmont | 1:fdd22bb7aa52 | 53 | number = in; |
emilmont | 1:fdd22bb7aa52 | 54 | |
emilmont | 1:fdd22bb7aa52 | 55 | /* If the input is a positive number then compute the signBits. */ |
emilmont | 1:fdd22bb7aa52 | 56 | if(number > 0) |
emilmont | 1:fdd22bb7aa52 | 57 | { |
emilmont | 1:fdd22bb7aa52 | 58 | signBits1 = __CLZ(number) - 17; |
emilmont | 1:fdd22bb7aa52 | 59 | |
emilmont | 1:fdd22bb7aa52 | 60 | /* Shift by the number of signBits1 */ |
emilmont | 1:fdd22bb7aa52 | 61 | if((signBits1 % 2) == 0) |
emilmont | 1:fdd22bb7aa52 | 62 | { |
emilmont | 1:fdd22bb7aa52 | 63 | number = number << signBits1; |
emilmont | 1:fdd22bb7aa52 | 64 | } |
emilmont | 1:fdd22bb7aa52 | 65 | else |
emilmont | 1:fdd22bb7aa52 | 66 | { |
emilmont | 1:fdd22bb7aa52 | 67 | number = number << (signBits1 - 1); |
emilmont | 1:fdd22bb7aa52 | 68 | } |
emilmont | 1:fdd22bb7aa52 | 69 | |
emilmont | 1:fdd22bb7aa52 | 70 | /* Calculate half value of the number */ |
emilmont | 1:fdd22bb7aa52 | 71 | half = number >> 1; |
emilmont | 1:fdd22bb7aa52 | 72 | /* Store the number for later use */ |
emilmont | 1:fdd22bb7aa52 | 73 | temp1 = number; |
emilmont | 1:fdd22bb7aa52 | 74 | |
emilmont | 1:fdd22bb7aa52 | 75 | /*Convert to float */ |
emilmont | 1:fdd22bb7aa52 | 76 | temp_float1 = number * 3.051757812500000e-005f; |
emilmont | 1:fdd22bb7aa52 | 77 | /*Store as integer */ |
emilmont | 1:fdd22bb7aa52 | 78 | bits_val1 = *(int *) &temp_float1; |
emilmont | 1:fdd22bb7aa52 | 79 | /* Subtract the shifted value from the magic number to give intial guess */ |
emilmont | 1:fdd22bb7aa52 | 80 | bits_val1 = 0x5f3759df - (bits_val1 >> 1); // gives initial guess |
emilmont | 1:fdd22bb7aa52 | 81 | /* Store as float */ |
emilmont | 1:fdd22bb7aa52 | 82 | temp_float1 = *(float *) &bits_val1; |
emilmont | 1:fdd22bb7aa52 | 83 | /* Convert to integer format */ |
emilmont | 1:fdd22bb7aa52 | 84 | var1 = (q31_t) (temp_float1 * 16384); |
emilmont | 1:fdd22bb7aa52 | 85 | |
emilmont | 1:fdd22bb7aa52 | 86 | /* 1st iteration */ |
emilmont | 1:fdd22bb7aa52 | 87 | var1 = ((q15_t) ((q31_t) var1 * (0x3000 - |
emilmont | 1:fdd22bb7aa52 | 88 | ((q15_t) |
emilmont | 1:fdd22bb7aa52 | 89 | ((((q15_t) |
emilmont | 1:fdd22bb7aa52 | 90 | (((q31_t) var1 * var1) >> 15)) * |
emilmont | 1:fdd22bb7aa52 | 91 | (q31_t) half) >> 15))) >> 15)) << 2; |
emilmont | 1:fdd22bb7aa52 | 92 | /* 2nd iteration */ |
emilmont | 1:fdd22bb7aa52 | 93 | var1 = ((q15_t) ((q31_t) var1 * (0x3000 - |
emilmont | 1:fdd22bb7aa52 | 94 | ((q15_t) |
emilmont | 1:fdd22bb7aa52 | 95 | ((((q15_t) |
emilmont | 1:fdd22bb7aa52 | 96 | (((q31_t) var1 * var1) >> 15)) * |
emilmont | 1:fdd22bb7aa52 | 97 | (q31_t) half) >> 15))) >> 15)) << 2; |
emilmont | 1:fdd22bb7aa52 | 98 | /* 3rd iteration */ |
emilmont | 1:fdd22bb7aa52 | 99 | var1 = ((q15_t) ((q31_t) var1 * (0x3000 - |
emilmont | 1:fdd22bb7aa52 | 100 | ((q15_t) |
emilmont | 1:fdd22bb7aa52 | 101 | ((((q15_t) |
emilmont | 1:fdd22bb7aa52 | 102 | (((q31_t) var1 * var1) >> 15)) * |
emilmont | 1:fdd22bb7aa52 | 103 | (q31_t) half) >> 15))) >> 15)) << 2; |
emilmont | 1:fdd22bb7aa52 | 104 | |
emilmont | 1:fdd22bb7aa52 | 105 | /* Multiply the inverse square root with the original value */ |
emilmont | 1:fdd22bb7aa52 | 106 | var1 = ((q15_t) (((q31_t) temp1 * var1) >> 15)) << 1; |
emilmont | 1:fdd22bb7aa52 | 107 | |
emilmont | 1:fdd22bb7aa52 | 108 | /* Shift the output down accordingly */ |
emilmont | 1:fdd22bb7aa52 | 109 | if((signBits1 % 2) == 0) |
emilmont | 1:fdd22bb7aa52 | 110 | { |
emilmont | 1:fdd22bb7aa52 | 111 | var1 = var1 >> (signBits1 / 2); |
emilmont | 1:fdd22bb7aa52 | 112 | } |
emilmont | 1:fdd22bb7aa52 | 113 | else |
emilmont | 1:fdd22bb7aa52 | 114 | { |
emilmont | 1:fdd22bb7aa52 | 115 | var1 = var1 >> ((signBits1 - 1) / 2); |
emilmont | 1:fdd22bb7aa52 | 116 | } |
emilmont | 1:fdd22bb7aa52 | 117 | *pOut = var1; |
emilmont | 1:fdd22bb7aa52 | 118 | |
emilmont | 1:fdd22bb7aa52 | 119 | return (ARM_MATH_SUCCESS); |
emilmont | 1:fdd22bb7aa52 | 120 | } |
emilmont | 1:fdd22bb7aa52 | 121 | /* If the number is a negative number then store zero as its square root value */ |
emilmont | 1:fdd22bb7aa52 | 122 | else |
emilmont | 1:fdd22bb7aa52 | 123 | { |
emilmont | 1:fdd22bb7aa52 | 124 | *pOut = 0; |
emilmont | 1:fdd22bb7aa52 | 125 | return (ARM_MATH_ARGUMENT_ERROR); |
emilmont | 1:fdd22bb7aa52 | 126 | } |
emilmont | 1:fdd22bb7aa52 | 127 | } |
emilmont | 1:fdd22bb7aa52 | 128 | |
emilmont | 1:fdd22bb7aa52 | 129 | /** |
emilmont | 1:fdd22bb7aa52 | 130 | * @} end of SQRT group |
emilmont | 1:fdd22bb7aa52 | 131 | */ |