Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/FastMathFunctions/arm_sqrt_q15.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,131 @@
+/* ----------------------------------------------------------------------     
+* Copyright (C) 2011 ARM Limited. All rights reserved.  
+*     
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*     
+* Project:      CMSIS DSP Library  
+* Title:        arm_sqrt_q15.c     
+*     
+* Description:    Q15 square root function.    
+*     
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+* 
+* Version 1.0.0 2011/03/08 
+*     Alpha release. 
+* 
+* Version 1.0.1 2011/09/30 
+*     Beta release.  
+*     
+* -------------------------------------------------------------------- */
+#include "arm_math.h"
+#include "arm_common_tables.h"
+
+
+/**     
+ * @ingroup groupFastMath     
+ */
+
+/**     
+ * @addtogroup SQRT     
+ * @{     
+ */
+
+  /**    
+   * @brief  Q15 square root function.    
+   * @param[in]   in     input value.  The range of the input value is [0 +1) or 0x0000 to 0x7FFF.    
+   * @param[out]  *pOut  square root of input value.    
+   * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if    
+   * <code>in</code> is negative value and returns zero output for negative values.    
+   */
+
+arm_status arm_sqrt_q15(
+  q15_t in,
+  q15_t * pOut)
+{
+  q15_t number, temp1, var1, signBits1, half;
+  q31_t bits_val1;
+  float32_t temp_float1;
+
+  number = in;
+
+  /* If the input is a positive number then compute the signBits. */
+  if(number > 0)
+  {
+    signBits1 = __CLZ(number) - 17;
+
+    /* Shift by the number of signBits1 */
+    if((signBits1 % 2) == 0)
+    {
+      number = number << signBits1;
+    }
+    else
+    {
+      number = number << (signBits1 - 1);
+    }
+
+    /* Calculate half value of the number */
+    half = number >> 1;
+    /* Store the number for later use */
+    temp1 = number;
+
+    /*Convert to float */
+    temp_float1 = number * 3.051757812500000e-005f;
+    /*Store as integer */
+    bits_val1 = *(int *) &temp_float1;
+    /* Subtract the shifted value from the magic number to give intial guess */
+    bits_val1 = 0x5f3759df - (bits_val1 >> 1);  // gives initial guess  
+    /* Store as float */
+    temp_float1 = *(float *) &bits_val1;
+    /* Convert to integer format */
+    var1 = (q31_t) (temp_float1 * 16384);
+
+    /* 1st iteration */
+    var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
+                                     ((q15_t)
+                                      ((((q15_t)
+                                         (((q31_t) var1 * var1) >> 15)) *
+                                        (q31_t) half) >> 15))) >> 15)) << 2;
+    /* 2nd iteration */
+    var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
+                                     ((q15_t)
+                                      ((((q15_t)
+                                         (((q31_t) var1 * var1) >> 15)) *
+                                        (q31_t) half) >> 15))) >> 15)) << 2;
+    /* 3rd iteration */
+    var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
+                                     ((q15_t)
+                                      ((((q15_t)
+                                         (((q31_t) var1 * var1) >> 15)) *
+                                        (q31_t) half) >> 15))) >> 15)) << 2;
+
+    /* Multiply the inverse square root with the original value */
+    var1 = ((q15_t) (((q31_t) temp1 * var1) >> 15)) << 1;
+
+    /* Shift the output down accordingly */
+    if((signBits1 % 2) == 0)
+    {
+      var1 = var1 >> (signBits1 / 2);
+    }
+    else
+    {
+      var1 = var1 >> ((signBits1 - 1) / 2);
+    }
+    *pOut = var1;
+
+    return (ARM_MATH_SUCCESS);
+  }
+  /* If the number is a negative number then store zero as its square root value */
+  else
+  {
+    *pOut = 0;
+    return (ARM_MATH_ARGUMENT_ERROR);
+  }
+}
+
+/**     
+ * @} end of SQRT group     
+ */