The "GR-PEACH_Audio_Playback_7InchLCD_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.
Dependencies: GR-PEACH_video R_BSP TLV320_RBSP USBHost_custom
Fork of GR-PEACH_Audio_Playback_Sample by
Note
For a sample program of without LCD Board, please refer to GR-PEACH_Audio_Playback_Sample.
Introduction
The "GR-PEACH_Audio_Playback_7InchLCD_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.
1. Overview of the Sample Code
1.1 Software Block Diagram
Figure 1.1 shows the software block diagram.
1.2 Pin Definitions
Table 1.1 shows the pins used in this sample code.
2. Sample Code Operating Environment
In order to operate this sample code, GR-PEACH, Audio Camera Shield and 7.1 inch LCD Shield must be needed. For details on Audio Camera Shield and 7.1 inch LCD Shield, please refer to the following links, respectively:
- Audio Camera Shield
https://developer.mbed.org/teams/Renesas/wiki/Audio_Camera-shield - 7.1 inch LCD Shield
https://developer.mbed.org/teams/Renesas/wiki/LCD-shield
In this section, it is described that how board is configured and to control audio playback via command line and touch screen.
2.1 Operating Environment
Figure 2.1 shows the overview of the operating environment for this sample code.
Figure 2.2 and 2.3 show how to configure GR-PEACH, Audio Camera Shield and 7.1 inch LCD shield when using USB0 and USB1, respectively.
Table 2.1 lists the overview of Graphical User Interface (GUI) of this sample code.
2.2 List of User Operations
Table 2.2 shows the relationship among Audio Playback, Command Line and Onboard Switch.
3. Function Outline
Table 3.1, 3.2 and 3.3 shows the overview of functions implemented in this sample code.
3.1 Playback Control
This sample program supports the operation "play", "pause", "stop", "play next song" and "play previous song".
3.2 Trick Play Control
In order to enable/disable Repeat Mode, user need to type "repeat" on command line or click the corresponding icon shown in Table 2.2. By derault, Repeat Mode is enabled. When Repeat Mode is enabled, the first song is played back after the playback of the last song is finished. Otherwise, the playback is shopped when finishing to play back the last song.
3.3 How to see Song Information
The information of the song being played back can be seen by typing playinfo on command line. Table 3.4 lists the items user can see on the terminal.
3.4 How to analyze the folder structure in USB stick
In this sample code, the folder structure in USB stick is analyzed in the breadth-first order. Table 3.5 shows how the files in USB stick are numbered.
4.Others
4.1 Serial Communication Setting
With respect to the default serial communication related setting on mbed, please refer to the follwing link:
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication
Please set up the terminal software you would like to use on your PC in consideration of the above. For example, 9600 should be specified for the baud rate on the terminal in order to control this sample via command line.
4.2 Necessary modification when using GCC ARM Embedded
If you would like to use GCC ARM Embedded, you must revise the following linker script incorporated in mbed OS 5 package as follows:
- Linker Script to be modified
$(PROJECT_ROOT)/mbed-os/targets/TARGET_RENESAS/TARGET_RZ_A1H/device/TOOLCHAIN_GCC_ARM/RZA1H.ld
Please note that $(PROJECT_ROOT) in the above denotes the root directory of this sample code
- Before Modification
RZA1H.ld
/* Linker script for mbed RZ_A1H */ /* Linker script to configure memory regions. */ MEMORY { ROM (rx) : ORIGIN = 0x00000000, LENGTH = 0x02000000 BOOT_LOADER (rx) : ORIGIN = 0x18000000, LENGTH = 0x00004000 SFLASH (rx) : ORIGIN = 0x18004000, LENGTH = 0x07FFC000 L_TTB (rw) : ORIGIN = 0x20000000, LENGTH = 0x00004000 RAM (rwx) : ORIGIN = 0x20020000, LENGTH = 0x00700000 RAM_NC (rwx) : ORIGIN = 0x20900000, LENGTH = 0x00100000 } (snip)
- After Modification
RZA1H.ld
/* Linker script for mbed RZ_A1H */ /* Linker script to configure memory regions. */ MEMORY { ROM (rx) : ORIGIN = 0x00000000, LENGTH = 0x02000000 BOOT_LOADER (rx) : ORIGIN = 0x18000000, LENGTH = 0x00004000 SFLASH (rx) : ORIGIN = 0x18004000, LENGTH = 0x07FFC000 L_TTB (rw) : ORIGIN = 0x20000000, LENGTH = 0x00004000 RAM (rwx) : ORIGIN = 0x20020000, LENGTH = 0x00180000 RAM_NC (rwx) : ORIGIN = 0x20200000, LENGTH = 0x00680000 } (snip)
key/key.cpp
- Committer:
- Osamu Nakamura
- Date:
- 2017-04-11
- Revision:
- 6:a957aaa284f0
- Parent:
- 4:2672de88a46b
File content as of revision 6:a957aaa284f0:
/******************************************************************************* * DISCLAIMER * This software is supplied by Renesas Electronics Corporation and is only * intended for use with Renesas products. No other uses are authorized. This * software is owned by Renesas Electronics Corporation and is protected under * all applicable laws, including copyright laws. * THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES REGARDING * THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT * LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE * AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY DISCLAIMED. * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS * ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR * ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS AFFILIATES HAVE * BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * Renesas reserves the right, without notice, to make changes to this software * and to discontinue the availability of this software. By using this software, * you agree to the additional terms and conditions found by accessing the * following link: * http://www.renesas.com/disclaimer* * Copyright (C) 2015 Renesas Electronics Corporation. All rights reserved. *******************************************************************************/ #include "mbed.h" #include "rtos.h" #include "misratypes.h" #include "key.h" #include "key_cmd.h" #include "system.h" #include "display.h" #include "disp_tft.h" /*--- Macro definition of mbed-rtos mail ---*/ #define MAIL_QUEUE_SIZE (3) /* Queue size */ #define MAIL_PARAM_NUM (1) /* Elements number of mail parameter array */ /* key_mail_t */ #define MAIL_PARAM0 (0) /* Index number of mail parameter array */ /* mail_id = KEY_MAILID_DISP_MODE */ #define MAIL_DISPMODE_MODE (MAIL_PARAM0) /* Display mode */ #define RECV_MAIL_TIMEOUT_MS (0u) /*--- Macro definition of key thread ---*/ #define PROC_CYCLE_SW (10u) /* The process cycle of SW module */ #define PROC_CYCLE_TFT (50u) /* The process cycle of TFT module */ #define PROC_CYCLE_CMD (20u) /* The process cycle of command-line module */ #define PROC_CYCLE_REFRESH (50u) /* Refresh cycle of counter */ #define UNIT_TIME_MS (2u) #define PROC_CNT_SW (PROC_CYCLE_SW / UNIT_TIME_MS) /* Counter for 10ms period */ #define PROC_CNT_TFT (PROC_CYCLE_TFT / UNIT_TIME_MS) /* Counter for 50ms period */ #define PROC_CNT_CMD (PROC_CYCLE_CMD / UNIT_TIME_MS) /* Counter for 2ms period */ #define PROC_CNT_REFRESH (PROC_CYCLE_REFRESH / UNIT_TIME_MS) /* Counter for 50ms period */ /*--- Macro definition of SW module ---*/ #define SW0_ACTIVE_LEVEL (0) #define SW0_DECISION_TIME (50u) /* Time until the decision of the input status. */ #define SW0_DECISION_CNT (SW0_DECISION_TIME / PROC_CYCLE_SW) /* Counter for 50ms period */ /*--- Macro definition of Touch panel module ---*/ #define TP_IIC_DEV_ADR (0x55 << 1) /* I2C device address */ #define TP_REG_ADR_NUM (6u) /* The number of the reading of the register. */ /* Register address */ #define TP_REG_ADR_FINGER (0u) /* Number of touch points[3:0] */ #define TP_REG_ADR_STATUS (2u) /* 1st Touch valid / 1st Touch X Position[11:8] / 1st Touch Y Position[11:8] */ #define TP_REG_ADR_TOUCH_XL (3u) /* 1st Touch X Position[7:0] */ #define TP_REG_ADR_TOUCH_YL (4u) /* 1st Touch Y Position[7:0] */ /* Mask for the register */ #define TP_MASK_FINGER (0x0Fu) /* Used in the finger register */ #define TP_MASK_TOUCH_YH (0x07u) /* Used in the status register for Y Position */ #define TP_MASK_TOUCH_XH (0x70u) /* Used in the status register for X Position */ #define TP_MASK_VALID (0x80u) /* Used in the status register for valid */ #define TP_SHIFT_TOUCH_YH (8u) /* Used in combination with the upper and lower bits of the Y position */ #define TP_SHIFT_TOUCH_XH (4u) /* Used in combination with the upper and lower bits of the X position */ #define TP_TOUCH_MAX_NUM (1u) #define TP_DEFAULT_POS (0u) #define TP_RELEASE_NUM (0u) #define TP_PRESS_NUM (1u) #define TP_MAX_WIDHT (DSP_TFT_WIDTH - 1u) #define TP_MAX_HEIGHT (DSP_TFT_HEIGHT - 1u) /*--- User defined types of mbed-rtos mail ---*/ typedef enum { KEY_MAILID_DUMMY = 0, KEY_MAILID_DISP_MODE, /* Change display mode */ KEY_MAILID_NUM } KEY_MAIL_ID; typedef struct { KEY_MAIL_ID mail_id; uint32_t param[MAIL_PARAM_NUM]; } key_mail_t; /*--- User defined types ---*/ /* Control data of SW module */ typedef struct { uint32_t sampling_count; /* Sampling count for decision of input. */ bool current_status; /* Current input status. true=push, false=release. */ } sw_ctrl_t; /* Control data of TFT module */ typedef struct { uint32_t disp_mode; SYS_KeyCode prev_key_event; uint32_t prev_key_num; } tft_ctrl_t; /* Control data of key thread */ typedef struct { sw_ctrl_t sw_data; tft_ctrl_t tft_data; cmd_ctrl_t cmd_data; } key_ctrl_t; static Mail<key_mail_t, MAIL_QUEUE_SIZE> mail_box; static void sw_init_proc(sw_ctrl_t * const p_ctrl); static SYS_KeyCode sw_main_proc(sw_ctrl_t * const p_ctrl); static void tft_init_proc(tft_ctrl_t * const p_ctrl); static SYS_KeyCode tft_main_proc(tft_ctrl_t * const p_ctrl); static bool tft_get_key_code(const uint32_t disp_mode, SYS_KeyCode * const p_key_ev, uint32_t * const p_key_num); static bool send_mail(const KEY_MAIL_ID mail_id, const uint32_t param0); static bool recv_mail(KEY_MAIL_ID * const p_mail_id, uint32_t * const p_param0); void key_thread(void const *argument) { static key_ctrl_t key_data; SYS_KeyCode key_ev; SYS_KeyCode tmp_ev; uint32_t cnt = 0u; KEY_MAIL_ID mail_type; uint32_t mail_param[MAIL_PARAM_NUM]; bool result; UNUSED_ARG(argument); /* Initializes the control data of key thread. */ sw_init_proc(&key_data.sw_data); tft_init_proc(&key_data.tft_data); cmd_init_proc(&key_data.cmd_data); while(1) { key_ev = SYS_KEYCODE_NON; result = recv_mail(&mail_type, &mail_param[MAIL_PARAM0]); if (result == true) { if (mail_type == KEY_MAILID_DISP_MODE) { /* Changes display mode. */ key_data.tft_data.disp_mode = mail_param[MAIL_DISPMODE_MODE]; } } /* Is it a timing of the SW module processing? */ if((cnt % PROC_CNT_SW) == 0u) { /* Executes main process of SW module. */ tmp_ev = sw_main_proc(&key_data.sw_data); if(tmp_ev != SYS_KEYCODE_NON) { key_ev = tmp_ev; } } /* Is it a timing of TFT module processing? */ if((cnt % PROC_CNT_TFT) == 0u) { /* Executes main process of TFT module. */ tmp_ev = tft_main_proc(&key_data.tft_data); if(tmp_ev != SYS_KEYCODE_NON) { if(key_ev == SYS_KEYCODE_NON) { /* There is no input from other modules. */ key_ev = tmp_ev; } } } /* Is it a timing of command-line module processing? */ if((cnt % PROC_CNT_CMD) == 0u) { /* Executes main process of command-line module. */ tmp_ev = cmd_main_proc(&key_data.cmd_data); if(tmp_ev != SYS_KEYCODE_NON) { if(key_ev == SYS_KEYCODE_NON) { /* There is no input from other modules. */ key_ev = tmp_ev; } } } /* Is it a refresh timing of the counter? */ if(cnt >= PROC_CNT_REFRESH) { cnt = 0u; } /* When the event occurs, this mail is sent to main thread. */ if(key_ev != SYS_KEYCODE_NON) { (void) sys_notify_key_input(key_ev); } Thread::wait(UNIT_TIME_MS); cnt++; } } bool key_notify_disp_mode(const uint32_t disp_mode) { bool ret = false; ret = send_mail(KEY_MAILID_DISP_MODE, disp_mode); return ret; } /** Initialises SW module * * @param p_ctrl Pointer to the control data of SW module. */ static void sw_init_proc(sw_ctrl_t * const p_ctrl) { if (p_ctrl != NULL) { p_ctrl->sampling_count = 0u; p_ctrl->current_status = false; } } /** Executes the main processing of SW module * * @param p_ctrl Pointer to the control data of SW module. * * @returns * Key code. */ static SYS_KeyCode sw_main_proc(sw_ctrl_t * const p_ctrl) { SYS_KeyCode key_ev = SYS_KEYCODE_NON; int32_t pin_level; static DigitalIn sw0(P6_0); if (p_ctrl != NULL) { pin_level = sw0.read(); if (pin_level == SW0_ACTIVE_LEVEL) { /* SW0 is pushed. */ if (p_ctrl->sampling_count < SW0_DECISION_CNT) { p_ctrl->sampling_count++; if (p_ctrl->sampling_count == SW0_DECISION_CNT) { key_ev = SYS_KEYCODE_PLAYPAUSE; } } p_ctrl->current_status = true; } else { /* SW0 is released. */ p_ctrl->sampling_count = 0u; p_ctrl->current_status = false; } } return key_ev; } /** Initialises TFT module * * @param p_ctrl Pointer to the control data of TFT module. */ static void tft_init_proc(tft_ctrl_t * const p_ctrl) { if (p_ctrl != NULL) { /* Initialization of the TFT key variables. */ /* Initializes it to a status pushing down an invalid key. */ /* This is to detect the edge of pushing down a key after having released all keys. */ p_ctrl->disp_mode = 0u; p_ctrl->prev_key_event = SYS_KEYCODE_NON; p_ctrl->prev_key_num = TP_PRESS_NUM; } } /** Executes the main processing of TFT module * * @param p_ctrl Pointer to the control data of TFT module. * * @returns * Key code. */ static SYS_KeyCode tft_main_proc(tft_ctrl_t * const p_ctrl) { SYS_KeyCode key_ev = SYS_KEYCODE_NON; SYS_KeyCode cur_key_ev; uint32_t cur_key_num; bool result; if (p_ctrl != NULL) { result = tft_get_key_code(p_ctrl->disp_mode, &cur_key_ev, &cur_key_num); if (result == true) { if ((p_ctrl->prev_key_num == cur_key_num) && (p_ctrl->prev_key_event == cur_key_ev)) { /* The touch position on the touch panel did not change. */ } else { /* The touch position on the touch panel changed. */ if ((p_ctrl->prev_key_num == TP_RELEASE_NUM) && (cur_key_num == TP_PRESS_NUM)) { /* Press check */ if (cur_key_ev != SYS_KEYCODE_NON) { key_ev = cur_key_ev; /* Notify the touched TFT key information. */ (void) dsp_notify_tft_key(key_ev); } p_ctrl->prev_key_event = cur_key_ev; } else { /* Release check */ key_ev = SYS_KEYCODE_NON; if (p_ctrl->prev_key_event != SYS_KEYCODE_NON) { /* Notify the touched TFT key information. */ (void) dsp_notify_tft_key(key_ev); } p_ctrl->prev_key_event = SYS_KEYCODE_NON; } } p_ctrl->prev_key_num = cur_key_num; } else { p_ctrl->prev_key_event = SYS_KEYCODE_NON; p_ctrl->prev_key_num = 0u; } } return key_ev; } /** Gets the key code of the touch panel via IIC communication. * * @param disp_mode Display mode * @param p_key_ev Pointer to variable to store the event code of the detected key * @param p_key_num Pointer to variable to store the number of the detected key * * @returns * Returns true if the API is successful. Returns false if the API fails. */ static bool tft_get_key_code(const uint32_t disp_mode, SYS_KeyCode * const p_key_ev, uint32_t * const p_key_num) { bool ret = false; SYS_KeyCode touch_ev; uint32_t touch_num; uint32_t valid; uint32_t data_h; uint32_t data_l; uint32_t pos_x; uint32_t pos_y; int32_t i2c_err; char_t tp_buf[TP_REG_ADR_NUM]; static I2C tft_i2c(I2C_SDA, I2C_SCL); if ((p_key_ev != NULL) && (p_key_num != NULL)) { i2c_err = tft_i2c.read(TP_IIC_DEV_ADR, tp_buf, sizeof(tp_buf)); if (i2c_err == 0) { /* Touch num check */ touch_num = (uint32_t) tp_buf[TP_REG_ADR_FINGER] & TP_MASK_FINGER; if (touch_num == TP_TOUCH_MAX_NUM) { /* Valid check */ valid = (uint32_t) tp_buf[TP_REG_ADR_STATUS] & TP_MASK_VALID; if (valid == TP_MASK_VALID) { /* X position */ data_h = (uint32_t) tp_buf[TP_REG_ADR_STATUS] & TP_MASK_TOUCH_XH; data_l = (uint32_t) tp_buf[TP_REG_ADR_TOUCH_XL]; pos_x = (data_h << TP_SHIFT_TOUCH_XH) | data_l; /* Converts the touch position into TFT display position. */ if (pos_x > TP_MAX_WIDHT) { pos_x = TP_DEFAULT_POS; } /* Y position */ data_h = (uint32_t) tp_buf[TP_REG_ADR_STATUS] & TP_MASK_TOUCH_YH; data_l = (uint32_t) tp_buf[TP_REG_ADR_TOUCH_YL]; pos_y = (data_h << TP_SHIFT_TOUCH_YH) | data_l; /* Converts the touch position into TFT display position. */ if (pos_y > TP_MAX_HEIGHT) { pos_y = TP_DEFAULT_POS; } /* Converts TFT display position into the key code. */ touch_ev = dsp_convert_key(disp_mode, pos_x, pos_y); } else { touch_ev = SYS_KEYCODE_NON; } } else { touch_ev = SYS_KEYCODE_NON; } ret = true; *p_key_ev = touch_ev; *p_key_num = touch_num; } } return ret; } /** Sends the mail to key thread * * @param mail_id Mail ID * @param param0 Parameter 0 of this mail * * @returns * Results of process. true is success. false is failure. */ static bool send_mail(const KEY_MAIL_ID mail_id, const uint32_t param0) { bool ret = false; osStatus stat; key_mail_t * const p_mail = mail_box.alloc(); if (p_mail != NULL) { p_mail->mail_id = mail_id; p_mail->param[MAIL_PARAM0] = param0; stat = mail_box.put(p_mail); if (stat == osOK) { ret = true; } else { (void) mail_box.free(p_mail); } } return ret; } /** Receives the mail to key thread * * @param p_mail_id Pointer to the variable to store the mail ID * @param p_param0 Pointer to the variable to store the parameter 0 of this mail * * @returns * Results of process. true is success. false is failure. */ static bool recv_mail(KEY_MAIL_ID * const p_mail_id, uint32_t * const p_param0) { bool ret = false; osEvent evt; key_mail_t *p_mail; if ((p_mail_id != NULL) && (p_param0 != NULL)) { evt = mail_box.get(RECV_MAIL_TIMEOUT_MS); if (evt.status == osEventMail) { p_mail = (key_mail_t *)evt.value.p; if (p_mail != NULL) { *p_mail_id = p_mail->mail_id; *p_param0 = p_mail->param[MAIL_PARAM0]; ret = true; } (void) mail_box.free(p_mail); } } return ret; }