Test of pmic GPA with filter

Dependencies:   mbed

Fork of nucf446-cuboid-balance1_strong by RT2_Cuboid_demo

Committer:
pmic
Date:
Tue Apr 10 12:24:57 2018 +0000
Revision:
26:492c7ab05e67
Parent:
25:e46687840dd6
correct new functinality

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 8:d68e177e2571 1 /*
pmic 8:d68e177e2571 2 GPA: frequency point wise gain and phase analyser to measure the frequency
pmic 23:26a1ccd0a856 3 respone of a dynamical system
pmic 16:e6fc0af484c2 4
pmic 8:d68e177e2571 5 hint: the measurements should only be perfomed in closed loop
pmic 8:d68e177e2571 6 assumption: the system is at the desired steady state of interest when
pmic 8:d68e177e2571 7 the measurment starts
pmic 16:e6fc0af484c2 8
pmic 8:d68e177e2571 9 exc(2) C: controller
pmic 8:d68e177e2571 10 | P: plant
pmic 16:e6fc0af484c2 11 v
pmic 8:d68e177e2571 12 exc(1) --> o ->| C |--->o------->| P |----------> out
pmic 24:33ded7d7bcbd 13 ^ - | |
pmic 8:d68e177e2571 14 | --> inp | exc: excitation signal (E)
pmic 8:d68e177e2571 15 | | inp: input plant (U)
pmic 8:d68e177e2571 16 -------------------------------- out: output plant (Y)
pmic 16:e6fc0af484c2 17
pmic 25:e46687840dd6 18 instantiate option 1: (logarithmic equaly spaced frequency points)
pmic 24:33ded7d7bcbd 19
pmic 8:d68e177e2571 20 GPA(float fMin, float fMax, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1)
pmic 24:33ded7d7bcbd 21
pmic 8:d68e177e2571 22 fMin: minimal desired frequency that should be measured in Hz
pmic 8:d68e177e2571 23 fMax: maximal desired frequency that should be measured in Hz
pmic 8:d68e177e2571 24 NfexcDes: number of logarithmic equaly spaced frequency points
pmic 8:d68e177e2571 25 NperMin: minimal number of periods that are used for each frequency point
pmic 23:26a1ccd0a856 26 NmeasMin: minimal number of samples that are used for each frequency point
pmic 8:d68e177e2571 27 Ts: sampling time
pmic 16:e6fc0af484c2 28 Aexc0: excitation amplitude at fMin
pmic 8:d68e177e2571 29 Aexc1: excitation amplitude at fMax
pmic 24:33ded7d7bcbd 30
pmic 24:33ded7d7bcbd 31 instantiate option 2: (for a second, refined frequency grid measurement)
pmic 24:33ded7d7bcbd 32
pmic 26:492c7ab05e67 33 GPA(float f0, float f1, float *fexcDes, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1)
pmic 24:33ded7d7bcbd 34
pmic 24:33ded7d7bcbd 35 f0: frequency point for the calculation of Aexc0 in Hz (should be chosen like in the first measurement)
pmic 24:33ded7d7bcbd 36 f1: frequency point for the calculation of Aexc1 in Hz (should be chosen like in the first measurement)
pmic 24:33ded7d7bcbd 37 *fexcDes: sorted frequency point array in Hz
pmic 26:492c7ab05e67 38 NfexcDes: length of fexcDes
pmic 25:e46687840dd6 39
pmic 25:e46687840dd6 40 instantiate option 3: (for an arbitary but sorted frequency grid measurement)
pmic 25:e46687840dd6 41
pmic 26:492c7ab05e67 42 GPA(float *fexcDes, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1)
pmic 25:e46687840dd6 43
pmic 25:e46687840dd6 44 *fexcDes: sorted frequency point array in Hz
pmic 25:e46687840dd6 45 Aexc0: excitation amplitude at fexcDes[0]
pmic 25:e46687840dd6 46 Aexc1: excitation amplitude at fexcDes[NfexcDes-1]
pmic 26:492c7ab05e67 47 NfexcDes: length of fexcDes
pmic 16:e6fc0af484c2 48
pmic 24:33ded7d7bcbd 49 hints: the amplitude drops with 1/fexc, if you're using Axc1 = Aexc0/fMax then d/dt exc = const.,
pmic 24:33ded7d7bcbd 50 this is recommended if your controller does not have a rolloff. if a desired frequency point
pmic 24:33ded7d7bcbd 51 is not measured try to increase Nmeas.
pmic 16:e6fc0af484c2 52
pmic 23:26a1ccd0a856 53 pseudo code for a closed loop measurement with a controller C:
pmic 16:e6fc0af484c2 54
pmic 8:d68e177e2571 55 excitation input at (1):
pmic 23:26a1ccd0a856 56
pmic 23:26a1ccd0a856 57 - measuring the plant P and the closed loop tf T = PC/(1 + PC):
pmic 23:26a1ccd0a856 58 desTorque = pi_w(omega_desired - omega + excWobble);
pmic 23:26a1ccd0a856 59 inpWobble = desTorque;
pmic 23:26a1ccd0a856 60 outWobble = omega;
pmic 23:26a1ccd0a856 61 excWobble = Wobble(excWobble, outWobble);
pmic 23:26a1ccd0a856 62
pmic 23:26a1ccd0a856 63 - measuring the controller C and the closed loop tf SC = C/(1 + PC)
pmic 23:26a1ccd0a856 64 desTorque = pi_w(omega_desired - omega + excWobble);
pmic 23:26a1ccd0a856 65 inpWobble = n_soll + excWobble - omega;
pmic 23:26a1ccd0a856 66 outWobble = desTorque;
pmic 23:26a1ccd0a856 67 excWobble = Wobble(inpWobble, outWobble);
pmic 16:e6fc0af484c2 68
pmic 8:d68e177e2571 69 excitation input at (2):
pmic 23:26a1ccd0a856 70
pmic 23:26a1ccd0a856 71 - measuring the plant P and the closed loop tf SP = P/(1 + PC):
pmic 23:26a1ccd0a856 72 desTorque = pi_w(omega_desired - omega) + excWobble;
pmic 23:26a1ccd0a856 73 inpWobble = desTorque;
pmic 23:26a1ccd0a856 74 outWobble = omega;
pmic 23:26a1ccd0a856 75 excWobble = Wobble(excWobble, outWobble);
pmic 16:e6fc0af484c2 76
pmic 8:d68e177e2571 77 usage:
pmic 23:26a1ccd0a856 78 exc(k+1) = myGPA(inp(k), out(k)) does update the internal states of the
pmic 23:26a1ccd0a856 79 gpa at the timestep k and returns the excitation signal for the timestep
pmic 23:26a1ccd0a856 80 k+1. the results are plotted to a terminal (putty) over a serial
pmic 23:26a1ccd0a856 81 connection and look as follows:
pmic 8:d68e177e2571 82 -----------------------------------------------------------------------------------------
pmic 8:d68e177e2571 83 fexc[Hz] |Gyu| ang(Gyu) |Gye| ang(Gye) |E| |U| |Y|
pmic 8:d68e177e2571 84 -----------------------------------------------------------------------------------------
pmic 23:26a1ccd0a856 85 1.000e+00 2.924e+01 -1.572e+00 1.017e+00 -4.983e-02 5.000e+00 1.739e-01 5.084e+00
pmic 16:e6fc0af484c2 86
pmic 8:d68e177e2571 87 in matlab you can use:
pmic 8:d68e177e2571 88 dataNucleo = [... insert measurement data here ...];
pmic 8:d68e177e2571 89 g = frd(dataNucleo(:,2).*exp(1i*dataNucleo(:,3)), dataNucleo(:,1), Ts, 'Units', 'Hz');
pmic 8:d68e177e2571 90 gcl = frd(dataNucleo(:,4).*exp(1i*dataNucleo(:,5)), dataNucleo(:,1), Ts, 'Units', 'Hz');
pmic 16:e6fc0af484c2 91
pmic 8:d68e177e2571 92 if you're evaluating more than one measurement which contain equal frequency points try:
pmic 8:d68e177e2571 93 dataNucleo = [dataNucleo1; dataNucleo2];
pmic 8:d68e177e2571 94 [~, ind] = unique(dataNucleo(:,1),'stable');
pmic 8:d68e177e2571 95 dataNucleo = dataNucleo(ind,:);
pmic 16:e6fc0af484c2 96
pmic 8:d68e177e2571 97 autor: M.E. Peter
pmic 16:e6fc0af484c2 98 */
pmic 8:d68e177e2571 99
pmic 6:da0c9587ecae 100 #include "GPA.h"
pmic 6:da0c9587ecae 101 #include "mbed.h"
pmic 6:da0c9587ecae 102 #include "math.h"
pmic 22:715d351d0be7 103 #define pi 3.141592653589793
pmic 6:da0c9587ecae 104
pmic 6:da0c9587ecae 105 using namespace std;
pmic 6:da0c9587ecae 106
pmic 6:da0c9587ecae 107 GPA::GPA(float fMin, float fMax, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1)
pmic 6:da0c9587ecae 108 {
pmic 6:da0c9587ecae 109 this->NfexcDes = NfexcDes;
pmic 6:da0c9587ecae 110 this->NperMin = NperMin;
pmic 6:da0c9587ecae 111 this->NmeasMin = NmeasMin;
pmic 22:715d351d0be7 112 this->Ts = (double)Ts;
pmic 6:da0c9587ecae 113
pmic 6:da0c9587ecae 114 // calculate logarithmic spaced frequency points
pmic 22:715d351d0be7 115 fexcDes = (double*)malloc(NfexcDes*sizeof(double));
pmic 22:715d351d0be7 116 fexcDesLogspace((double)fMin, (double)fMax, NfexcDes);
pmic 6:da0c9587ecae 117
pmic 6:da0c9587ecae 118 // calculate coefficients for decreasing amplitude (1/fexc)
pmic 22:715d351d0be7 119 this->aAexcDes = ((double)Aexc1 - (double)Aexc0)/(1.0/fexcDes[NfexcDes-1] - 1.0/fexcDes[0]);
pmic 22:715d351d0be7 120 this->bAexcDes = (double)Aexc0 - aAexcDes/fexcDes[0];
pmic 6:da0c9587ecae 121
pmic 22:715d351d0be7 122 fnyq = 1.0/2.0/(double)Ts;
pmic 22:715d351d0be7 123 pi2 = 2.0*pi;
pmic 22:715d351d0be7 124 pi2Ts = pi2*(double)Ts;
pmic 22:715d351d0be7 125 piDiv2 = pi/2.0;
pmic 6:da0c9587ecae 126
pmic 22:715d351d0be7 127 sU = (double*)malloc(3*sizeof(double));
pmic 22:715d351d0be7 128 sY = (double*)malloc(3*sizeof(double));
pmic 6:da0c9587ecae 129 reset();
pmic 6:da0c9587ecae 130 }
pmic 6:da0c9587ecae 131
pmic 26:492c7ab05e67 132 GPA::GPA(float f0, float f1, float *fexcDes, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1)
pmic 24:33ded7d7bcbd 133 {
pmic 24:33ded7d7bcbd 134 // convert fexcDes from float to double, it is assumed that it is sorted
pmic 26:492c7ab05e67 135 this->NfexcDes = NfexcDes;
pmic 24:33ded7d7bcbd 136 this->fexcDes = (double*)malloc(NfexcDes*sizeof(double));
pmic 24:33ded7d7bcbd 137 for(int i = 0; i < NfexcDes; i++) {
pmic 24:33ded7d7bcbd 138 this->fexcDes[i] = (double)fexcDes[i];
pmic 24:33ded7d7bcbd 139 }
pmic 24:33ded7d7bcbd 140 this->NperMin = NperMin;
pmic 24:33ded7d7bcbd 141 this->NmeasMin = NmeasMin;
pmic 24:33ded7d7bcbd 142 this->Ts = (double)Ts;
pmic 24:33ded7d7bcbd 143
pmic 24:33ded7d7bcbd 144 // calculate coefficients for decreasing amplitude (1/fexc)
pmic 24:33ded7d7bcbd 145 this->aAexcDes = ((double)Aexc1 - (double)Aexc0)/(1.0/(double)f1 - 1.0/(double)f0);
pmic 24:33ded7d7bcbd 146 this->bAexcDes = (double)Aexc0 - aAexcDes/fexcDes[0];
pmic 24:33ded7d7bcbd 147
pmic 24:33ded7d7bcbd 148 fnyq = 1.0/2.0/(double)Ts;
pmic 24:33ded7d7bcbd 149 pi2 = 2.0*pi;
pmic 24:33ded7d7bcbd 150 pi2Ts = pi2*(double)Ts;
pmic 24:33ded7d7bcbd 151 piDiv2 = pi/2.0;
pmic 24:33ded7d7bcbd 152
pmic 24:33ded7d7bcbd 153 sU = (double*)malloc(3*sizeof(double));
pmic 24:33ded7d7bcbd 154 sY = (double*)malloc(3*sizeof(double));
pmic 24:33ded7d7bcbd 155 reset();
pmic 24:33ded7d7bcbd 156 }
pmic 24:33ded7d7bcbd 157
pmic 26:492c7ab05e67 158 GPA::GPA(float *fexcDes, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1)
pmic 25:e46687840dd6 159 {
pmic 25:e46687840dd6 160 // convert fexcDes from float to double, it is assumed that it is sorted
pmic 26:492c7ab05e67 161 this->NfexcDes = NfexcDes;
pmic 25:e46687840dd6 162 this->fexcDes = (double*)malloc(NfexcDes*sizeof(double));
pmic 25:e46687840dd6 163 for(int i = 0; i < NfexcDes; i++) {
pmic 25:e46687840dd6 164 this->fexcDes[i] = (double)fexcDes[i];
pmic 25:e46687840dd6 165 }
pmic 25:e46687840dd6 166 this->NperMin = NperMin;
pmic 25:e46687840dd6 167 this->NmeasMin = NmeasMin;
pmic 25:e46687840dd6 168 this->Ts = (double)Ts;
pmic 25:e46687840dd6 169
pmic 25:e46687840dd6 170 // calculate coefficients for decreasing amplitude (1/fexc)
pmic 25:e46687840dd6 171 this->aAexcDes = ((double)Aexc1 - (double)Aexc0)/(1.0/this->fexcDes[NfexcDes-1] - 1.0/this->fexcDes[0]);
pmic 25:e46687840dd6 172 this->bAexcDes = (double)Aexc0 - aAexcDes/fexcDes[0];
pmic 25:e46687840dd6 173
pmic 25:e46687840dd6 174 fnyq = 1.0/2.0/(double)Ts;
pmic 25:e46687840dd6 175 pi2 = 2.0*pi;
pmic 25:e46687840dd6 176 pi2Ts = pi2*(double)Ts;
pmic 25:e46687840dd6 177 piDiv2 = pi/2.0;
pmic 25:e46687840dd6 178
pmic 25:e46687840dd6 179 sU = (double*)malloc(3*sizeof(double));
pmic 25:e46687840dd6 180 sY = (double*)malloc(3*sizeof(double));
pmic 25:e46687840dd6 181 reset();
pmic 25:e46687840dd6 182 }
pmic 25:e46687840dd6 183
pmic 6:da0c9587ecae 184 GPA::~GPA() {}
pmic 6:da0c9587ecae 185
pmic 6:da0c9587ecae 186 void GPA::reset()
pmic 6:da0c9587ecae 187 {
pmic 6:da0c9587ecae 188 Nmeas = 0;
pmic 6:da0c9587ecae 189 Nper = 0;
pmic 22:715d351d0be7 190 fexc = 0.0;
pmic 22:715d351d0be7 191 fexcPast = 0.0;
pmic 6:da0c9587ecae 192 ii = 1; // iterating through desired frequency points
pmic 6:da0c9587ecae 193 jj = 1; // iterating through measurement points w.r.t. reachable frequency
pmic 22:715d351d0be7 194 scaleG = 0.0;
pmic 22:715d351d0be7 195 cr = 0.0;
pmic 22:715d351d0be7 196 ci = 0.0;
pmic 6:da0c9587ecae 197 for(int i = 0; i < 3; i++) {
pmic 22:715d351d0be7 198 sU[i] = 0.0;
pmic 22:715d351d0be7 199 sY[i] = 0.0;
pmic 6:da0c9587ecae 200 }
pmic 22:715d351d0be7 201 sinarg = 0.0;
pmic 6:da0c9587ecae 202 NmeasTotal = 0;
pmic 22:715d351d0be7 203 Aexc = 0.0;
pmic 22:715d351d0be7 204 pi2Tsfexc = 0.0;
pmic 6:da0c9587ecae 205 }
pmic 6:da0c9587ecae 206
pmic 22:715d351d0be7 207 float GPA::update(double inp, double out)
pmic 6:da0c9587ecae 208 {
pmic 6:da0c9587ecae 209 // a new frequency point has been reached
pmic 6:da0c9587ecae 210 if(jj == 1) {
pmic 6:da0c9587ecae 211 // get a new unique frequency point
pmic 6:da0c9587ecae 212 while(fexc == fexcPast) {
pmic 6:da0c9587ecae 213 // measurement finished
pmic 6:da0c9587ecae 214 if(ii > NfexcDes) {
pmic 6:da0c9587ecae 215 return 0.0f;
pmic 6:da0c9587ecae 216 }
pmic 6:da0c9587ecae 217 calcGPAmeasPara(fexcDes[ii - 1]);
pmic 6:da0c9587ecae 218 // secure fexc is not higher or equal to nyquist frequency
pmic 6:da0c9587ecae 219 if(fexc >= fnyq) {
pmic 6:da0c9587ecae 220 fexc = fexcPast;
pmic 6:da0c9587ecae 221 }
pmic 6:da0c9587ecae 222 // no frequency found
pmic 6:da0c9587ecae 223 if(fexc == fexcPast) {
pmic 6:da0c9587ecae 224 ii += 1;
pmic 6:da0c9587ecae 225 } else {
pmic 6:da0c9587ecae 226 Aexc = aAexcDes/fexc + bAexcDes;
pmic 6:da0c9587ecae 227 pi2Tsfexc = pi2Ts*fexc;
pmic 6:da0c9587ecae 228 }
pmic 6:da0c9587ecae 229 }
pmic 16:e6fc0af484c2 230 // secure sinarg starts at 0 (numerically maybe not given)
pmic 22:715d351d0be7 231 sinarg = 0.0;
pmic 6:da0c9587ecae 232 // filter scaling
pmic 22:715d351d0be7 233 scaleG = 1.0/sqrt((double)Nmeas);
pmic 6:da0c9587ecae 234 // filter coefficients
pmic 6:da0c9587ecae 235 cr = cos(pi2Tsfexc);
pmic 6:da0c9587ecae 236 ci = sin(pi2Tsfexc);
pmic 6:da0c9587ecae 237 // filter storage
pmic 6:da0c9587ecae 238 for(int i = 0; i < 3; i++) {
pmic 22:715d351d0be7 239 sU[i] = 0.0;
pmic 22:715d351d0be7 240 sY[i] = 0.0;
pmic 6:da0c9587ecae 241 }
pmic 6:da0c9587ecae 242 }
pmic 6:da0c9587ecae 243 // filter step for signal su
pmic 22:715d351d0be7 244 sU[0] = scaleG*inp + 2.0*cr*sU[1] - sU[2];
pmic 6:da0c9587ecae 245 sU[2] = sU[1];
pmic 6:da0c9587ecae 246 sU[1] = sU[0];
pmic 6:da0c9587ecae 247 // filter step for signal sy
pmic 22:715d351d0be7 248 sY[0] = scaleG*out + 2.0*cr*sY[1] - sY[2];
pmic 6:da0c9587ecae 249 sY[2] = sY[1];
pmic 6:da0c9587ecae 250 sY[1] = sY[0];
pmic 6:da0c9587ecae 251 // measurement of frequencypoint is finished
pmic 6:da0c9587ecae 252 if(jj == Nmeas) {
pmic 6:da0c9587ecae 253 jj = 1;
pmic 7:87b823282bf0 254 ii += 1;
pmic 16:e6fc0af484c2 255 fexcPast = fexc;
pmic 6:da0c9587ecae 256 // calculate the one point dft
pmic 22:715d351d0be7 257 double Ureal = 2.0*scaleG*(cr*sU[1] - sU[2]);
pmic 22:715d351d0be7 258 double Uimag = 2.0*scaleG*ci*sU[1];
pmic 22:715d351d0be7 259 double Yreal = 2.0*scaleG*(cr*sY[1] - sY[2]);
pmic 22:715d351d0be7 260 double Yimag = 2.0*scaleG*ci*sY[1];
pmic 6:da0c9587ecae 261 // calculate magnitude and angle
pmic 22:715d351d0be7 262 float Umag = (float)(sqrt(Ureal*Ureal + Uimag*Uimag));
pmic 22:715d351d0be7 263 float Ymag = (float)(sqrt(Yreal*Yreal + Yimag*Yimag));
pmic 22:715d351d0be7 264 float absGyu = (float)(Ymag/Umag);
pmic 22:715d351d0be7 265 float angGyu = (float)(atan2(Yimag, Yreal) - atan2(Uimag, Ureal));
pmic 22:715d351d0be7 266 float absGye = (float)(Ymag/Aexc);
pmic 22:715d351d0be7 267 float angGye = (float)(atan2(Yimag, Yreal) + piDiv2);
pmic 6:da0c9587ecae 268 // user info
pmic 16:e6fc0af484c2 269 if(ii == 2) {
pmic 6:da0c9587ecae 270 printLine();
pmic 6:da0c9587ecae 271 printf(" fexc[Hz] |Gyu| ang(Gyu) |Gye| ang(Gye) |E| |U| |Y|\r\n");
pmic 6:da0c9587ecae 272 printLine();
pmic 6:da0c9587ecae 273 }
pmic 23:26a1ccd0a856 274 printf("%11.3e %10.3e %10.3e %10.3e %10.3e %10.3e %10.3e %10.3e\r\n", (float)fexc, absGyu, angGyu, absGye, angGye, (float)Aexc, Umag, Ymag);
pmic 6:da0c9587ecae 275 } else {
pmic 6:da0c9587ecae 276 jj += 1;
pmic 6:da0c9587ecae 277 }
pmic 6:da0c9587ecae 278 sinarg = fmod(sinarg + pi2Tsfexc, pi2);
pmic 6:da0c9587ecae 279 NmeasTotal += 1;
pmic 22:715d351d0be7 280 return (float)(Aexc*sin(sinarg));
pmic 6:da0c9587ecae 281 }
pmic 6:da0c9587ecae 282
pmic 22:715d351d0be7 283 void GPA::fexcDesLogspace(double fMin, double fMax, int NfexcDes)
pmic 6:da0c9587ecae 284 {
pmic 6:da0c9587ecae 285 // calculate logarithmic spaced frequency points
pmic 22:715d351d0be7 286 double Gain = log10(fMax/fMin)/((double)NfexcDes - 1.0);
pmic 22:715d351d0be7 287 double expon = 0.0;
pmic 6:da0c9587ecae 288 for(int i = 0; i < NfexcDes; i++) {
pmic 22:715d351d0be7 289 fexcDes[i] = fMin*pow(10.0, expon);
pmic 6:da0c9587ecae 290 expon += Gain;
pmic 6:da0c9587ecae 291 }
pmic 6:da0c9587ecae 292 }
pmic 6:da0c9587ecae 293
pmic 22:715d351d0be7 294 void GPA::calcGPAmeasPara(double fexcDes_i)
pmic 6:da0c9587ecae 295 {
pmic 6:da0c9587ecae 296 // Nmeas has to be an integer
pmic 6:da0c9587ecae 297 Nper = NperMin;
pmic 22:715d351d0be7 298 Nmeas = (int)floor((double)Nper/fexcDes_i/Ts + 0.5);
pmic 6:da0c9587ecae 299 // secure that the minimal number of measurements is fullfilled
pmic 6:da0c9587ecae 300 int Ndelta = NmeasMin - Nmeas;
pmic 6:da0c9587ecae 301 if(Ndelta > 0) {
pmic 22:715d351d0be7 302 Nper = (int)ceil((double)NmeasMin*fexcDes_i*Ts);
pmic 22:715d351d0be7 303 Nmeas = (int)floor((double)Nper/fexcDes_i/Ts + 0.5);
pmic 6:da0c9587ecae 304 }
pmic 6:da0c9587ecae 305 // evaluating reachable frequency
pmic 22:715d351d0be7 306 fexc = (double)Nper/(double)Nmeas/Ts;
pmic 6:da0c9587ecae 307 }
pmic 6:da0c9587ecae 308
pmic 6:da0c9587ecae 309 void GPA::printLine()
pmic 6:da0c9587ecae 310 {
pmic 6:da0c9587ecae 311 printf("-----------------------------------------------------------------------------------------\r\n");
pmic 6:da0c9587ecae 312 }
pmic 6:da0c9587ecae 313
pmic 6:da0c9587ecae 314 void GPA::printGPAfexcDes()
pmic 6:da0c9587ecae 315 {
pmic 6:da0c9587ecae 316 printLine();
pmic 6:da0c9587ecae 317 for(int i = 0; i < NfexcDes; i++) {
pmic 22:715d351d0be7 318 printf("%9.4f\r\n", (float)fexcDes[i]);
pmic 6:da0c9587ecae 319 }
pmic 6:da0c9587ecae 320 }
pmic 6:da0c9587ecae 321
pmic 6:da0c9587ecae 322 void GPA::printGPAmeasPara()
pmic 6:da0c9587ecae 323 {
pmic 6:da0c9587ecae 324 printLine();
pmic 6:da0c9587ecae 325 printf(" fexcDes[Hz] fexc[Hz] Aexc Nmeas Nper\r\n");
pmic 6:da0c9587ecae 326 printLine();
pmic 6:da0c9587ecae 327 for(int i = 0; i < NfexcDes; i++) {
pmic 6:da0c9587ecae 328 calcGPAmeasPara(fexcDes[i]);
pmic 6:da0c9587ecae 329 if(fexc == fexcPast || fexc >= fnyq) {
pmic 22:715d351d0be7 330 fexc = 0.0;
pmic 6:da0c9587ecae 331 Nmeas = 0;
pmic 6:da0c9587ecae 332 Nper = 0;
pmic 22:715d351d0be7 333 Aexc = 0.0;
pmic 6:da0c9587ecae 334 } else {
pmic 6:da0c9587ecae 335 Aexc = aAexcDes/fexc + bAexcDes;
pmic 6:da0c9587ecae 336 fexcPast = fexc;
pmic 6:da0c9587ecae 337 }
pmic 6:da0c9587ecae 338 NmeasTotal += Nmeas;
pmic 22:715d351d0be7 339 printf("%12.2e %9.2e %10.2e %7i %6i \r\n", (float)fexcDes[i], (float)fexc, (float)Aexc, Nmeas, Nper);
pmic 6:da0c9587ecae 340 }
pmic 6:da0c9587ecae 341 printGPAmeasTime();
pmic 6:da0c9587ecae 342 reset();
pmic 6:da0c9587ecae 343 }
pmic 6:da0c9587ecae 344
pmic 6:da0c9587ecae 345 void GPA::printGPAmeasTime()
pmic 6:da0c9587ecae 346 {
pmic 6:da0c9587ecae 347 printLine();
pmic 6:da0c9587ecae 348 printf(" number of data points: %9i\r\n", NmeasTotal);
pmic 22:715d351d0be7 349 printf(" measurment time in sec: %9.2f\r\n", (float)((double)NmeasTotal*Ts));
pmic 26:492c7ab05e67 350 }
pmic 26:492c7ab05e67 351
pmic 26:492c7ab05e67 352 void GPA::printNfexcDes()
pmic 26:492c7ab05e67 353 {
pmic 26:492c7ab05e67 354 printLine();
pmic 26:492c7ab05e67 355 printf(" number of frequancy points: %2i\r\n", NfexcDes);
pmic 26:492c7ab05e67 356 }