This driver is a stripped down version of the Radiohead 1.45 driver, and covers fewer radios. Threading and an event queue have been added to make the ISR's more stable across architectures. Specifically The STM32L4 parts

Dependents:   Threaded_LoRa_Modem

RH_RF69.h

Committer:
rlanders73
Date:
2021-06-23
Revision:
7:250d1c72df36
Parent:
0:ab4e012489ef

File content as of revision 7:250d1c72df36:

// RH_RF69.h
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2014 Mike McCauley
// $Id: RH_RF69.h,v 1.29 2015/05/17 00:11:26 mikem Exp $
//
///


#ifndef RH_RF69_h
#define RH_RF69_h

#include <RHGenericSPI.h>
#include <RHSPIDriver.h>

// The crystal oscillator frequency of the RF69 module
#define RH_RF69_FXOSC 32000000.0

// The Frequency Synthesizer step = RH_RF69_FXOSC / 2^^19
#define RH_RF69_FSTEP  (RH_RF69_FXOSC / 524288)

// This is the maximum number of interrupts the driver can support
// Most Arduinos can handle 2, Megas can handle more
#define RH_RF69_NUM_INTERRUPTS 3

// This is the bit in the SPI address that marks it as a write
#define RH_RF69_SPI_WRITE_MASK 0x80

// Max number of octets the RH_RF69 Rx and Tx FIFOs can hold
#define RH_RF69_FIFO_SIZE 66

// Maximum encryptable payload length the RF69 can support
#define RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN 64

// The length of the headers we add.
// The headers are inside the RF69's payload and are therefore encrypted if encryption is enabled
#define RH_RF69_HEADER_LEN 4

// This is the maximum message length that can be supported by this driver. Limited by
// the size of the FIFO, since we are unable to support on-the-fly filling and emptying 
// of the FIFO.
// Can be pre-defined to a smaller size (to save SRAM) prior to including this header
// Here we allow for 4 bytes of address and header and payload to be included in the 64 byte encryption limit.
// the one byte payload length is not encrpyted
#ifndef RH_RF69_MAX_MESSAGE_LEN
#define RH_RF69_MAX_MESSAGE_LEN (RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN - RH_RF69_HEADER_LEN)
#endif

// Keep track of the mode the RF69 is in
#define RH_RF69_MODE_IDLE         0
#define RH_RF69_MODE_RX           1
#define RH_RF69_MODE_TX           2

// This is the default node address,
#define RH_RF69_DEFAULT_NODE_ADDRESS 0

// Register names
#define RH_RF69_REG_00_FIFO                                 0x00
#define RH_RF69_REG_01_OPMODE                               0x01
#define RH_RF69_REG_02_DATAMODUL                            0x02
#define RH_RF69_REG_03_BITRATEMSB                           0x03
#define RH_RF69_REG_04_BITRATELSB                           0x04
#define RH_RF69_REG_05_FDEVMSB                              0x05
#define RH_RF69_REG_06_FDEVLSB                              0x06
#define RH_RF69_REG_07_FRFMSB                               0x07
#define RH_RF69_REG_08_FRFMID                               0x08
#define RH_RF69_REG_09_FRFLSB                               0x09
#define RH_RF69_REG_0A_OSC1                                 0x0a
#define RH_RF69_REG_0B_AFCCTRL                              0x0b
#define RH_RF69_REG_0C_RESERVED                             0x0c
#define RH_RF69_REG_0D_LISTEN1                              0x0d
#define RH_RF69_REG_0E_LISTEN2                              0x0e
#define RH_RF69_REG_0F_LISTEN3                              0x0f
#define RH_RF69_REG_10_VERSION                              0x10
#define RH_RF69_REG_11_PALEVEL                              0x11
#define RH_RF69_REG_12_PARAMP                               0x12
#define RH_RF69_REG_13_OCP                                  0x13
#define RH_RF69_REG_14_RESERVED                             0x14
#define RH_RF69_REG_15_RESERVED                             0x15
#define RH_RF69_REG_16_RESERVED                             0x16
#define RH_RF69_REG_17_RESERVED                             0x17
#define RH_RF69_REG_18_LNA                                  0x18
#define RH_RF69_REG_19_RXBW                                 0x19
#define RH_RF69_REG_1A_AFCBW                                0x1a
#define RH_RF69_REG_1B_OOKPEAK                              0x1b
#define RH_RF69_REG_1C_OOKAVG                               0x1c
#define RH_RF69_REG_1D_OOKFIX                               0x1d
#define RH_RF69_REG_1E_AFCFEI                               0x1e
#define RH_RF69_REG_1F_AFCMSB                               0x1f
#define RH_RF69_REG_20_AFCLSB                               0x20
#define RH_RF69_REG_21_FEIMSB                               0x21
#define RH_RF69_REG_22_FEILSB                               0x22
#define RH_RF69_REG_23_RSSICONFIG                           0x23
#define RH_RF69_REG_24_RSSIVALUE                            0x24
#define RH_RF69_REG_25_DIOMAPPING1                          0x25
#define RH_RF69_REG_26_DIOMAPPING2                          0x26
#define RH_RF69_REG_27_IRQFLAGS1                            0x27
#define RH_RF69_REG_28_IRQFLAGS2                            0x28
#define RH_RF69_REG_29_RSSITHRESH                           0x29
#define RH_RF69_REG_2A_RXTIMEOUT1                           0x2a
#define RH_RF69_REG_2B_RXTIMEOUT2                           0x2b
#define RH_RF69_REG_2C_PREAMBLEMSB                          0x2c
#define RH_RF69_REG_2D_PREAMBLELSB                          0x2d
#define RH_RF69_REG_2E_SYNCCONFIG                           0x2e
#define RH_RF69_REG_2F_SYNCVALUE1                           0x2f
// another 7 sync word bytes follow, 30 through 36 inclusive
#define RH_RF69_REG_37_PACKETCONFIG1                        0x37
#define RH_RF69_REG_38_PAYLOADLENGTH                        0x38
#define RH_RF69_REG_39_NODEADRS                             0x39
#define RH_RF69_REG_3A_BROADCASTADRS                        0x3a
#define RH_RF69_REG_3B_AUTOMODES                            0x3b
#define RH_RF69_REG_3C_FIFOTHRESH                           0x3c
#define RH_RF69_REG_3D_PACKETCONFIG2                        0x3d
#define RH_RF69_REG_3E_AESKEY1                              0x3e
// Another 15 AES key bytes follow
#define RH_RF69_REG_4E_TEMP1                                0x4e
#define RH_RF69_REG_4F_TEMP2                                0x4f
#define RH_RF69_REG_58_TESTLNA                              0x58
#define RH_RF69_REG_5A_TESTPA1                              0x5a
#define RH_RF69_REG_5C_TESTPA2                              0x5c
#define RH_RF69_REG_6F_TESTDAGC                             0x6f
#define RH_RF69_REG_71_TESTAFC                              0x71

// These register masks etc are named wherever possible
// corresponding to the bit and field names in the RFM69 Manual

// RH_RF69_REG_01_OPMODE
#define RH_RF69_OPMODE_SEQUENCEROFF                         0x80
#define RH_RF69_OPMODE_LISTENON                             0x40
#define RH_RF69_OPMODE_LISTENABORT                          0x20
#define RH_RF69_OPMODE_MODE                                 0x1c
#define RH_RF69_OPMODE_MODE_SLEEP                           0x00
#define RH_RF69_OPMODE_MODE_STDBY                           0x04
#define RH_RF69_OPMODE_MODE_FS                              0x08
#define RH_RF69_OPMODE_MODE_TX                              0x0c
#define RH_RF69_OPMODE_MODE_RX                              0x10

// RH_RF69_REG_02_DATAMODUL
#define RH_RF69_DATAMODUL_DATAMODE                          0x60
#define RH_RF69_DATAMODUL_DATAMODE_PACKET                   0x00
#define RH_RF69_DATAMODUL_DATAMODE_CONT_WITH_SYNC           0x40
#define RH_RF69_DATAMODUL_DATAMODE_CONT_WITHOUT_SYNC        0x60
#define RH_RF69_DATAMODUL_MODULATIONTYPE                    0x18
#define RH_RF69_DATAMODUL_MODULATIONTYPE_FSK                0x00
#define RH_RF69_DATAMODUL_MODULATIONTYPE_OOK                0x08
#define RH_RF69_DATAMODUL_MODULATIONSHAPING                 0x03
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_NONE        0x00
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT1_0       0x01
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT0_5       0x02
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT0_3       0x03
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_NONE        0x00
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_BR          0x01
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_2BR         0x02

// RH_RF69_REG_11_PALEVEL
#define RH_RF69_PALEVEL_PA0ON                               0x80
#define RH_RF69_PALEVEL_PA1ON                               0x40
#define RH_RF69_PALEVEL_PA2ON                               0x20
#define RH_RF69_PALEVEL_OUTPUTPOWER                         0x1f

// RH_RF69_REG_23_RSSICONFIG
#define RH_RF69_RSSICONFIG_RSSIDONE                         0x02
#define RH_RF69_RSSICONFIG_RSSISTART                        0x01

// RH_RF69_REG_25_DIOMAPPING1
#define RH_RF69_DIOMAPPING1_DIO0MAPPING                     0xc0
#define RH_RF69_DIOMAPPING1_DIO0MAPPING_00                  0x00
#define RH_RF69_DIOMAPPING1_DIO0MAPPING_01                  0x40
#define RH_RF69_DIOMAPPING1_DIO0MAPPING_10                  0x80
#define RH_RF69_DIOMAPPING1_DIO0MAPPING_11                  0xc0

#define RH_RF69_DIOMAPPING1_DIO1MAPPING                     0x30
#define RH_RF69_DIOMAPPING1_DIO1MAPPING_00                  0x00
#define RH_RF69_DIOMAPPING1_DIO1MAPPING_01                  0x10
#define RH_RF69_DIOMAPPING1_DIO1MAPPING_10                  0x20
#define RH_RF69_DIOMAPPING1_DIO1MAPPING_11                  0x30

#define RH_RF69_DIOMAPPING1_DIO2MAPPING                     0x0c
#define RH_RF69_DIOMAPPING1_DIO2MAPPING_00                  0x00
#define RH_RF69_DIOMAPPING1_DIO2MAPPING_01                  0x04
#define RH_RF69_DIOMAPPING1_DIO2MAPPING_10                  0x08
#define RH_RF69_DIOMAPPING1_DIO2MAPPING_11                  0x0c

#define RH_RF69_DIOMAPPING1_DIO3MAPPING                     0x03
#define RH_RF69_DIOMAPPING1_DIO3MAPPING_00                  0x00
#define RH_RF69_DIOMAPPING1_DIO3MAPPING_01                  0x01
#define RH_RF69_DIOMAPPING1_DIO3MAPPING_10                  0x02
#define RH_RF69_DIOMAPPING1_DIO3MAPPING_11                  0x03

// RH_RF69_REG_26_DIOMAPPING2
#define RH_RF69_DIOMAPPING2_DIO4MAPPING                     0xc0
#define RH_RF69_DIOMAPPING2_DIO4MAPPING_00                  0x00
#define RH_RF69_DIOMAPPING2_DIO4MAPPING_01                  0x40
#define RH_RF69_DIOMAPPING2_DIO4MAPPING_10                  0x80
#define RH_RF69_DIOMAPPING2_DIO4MAPPING_11                  0xc0

#define RH_RF69_DIOMAPPING2_DIO5MAPPING                     0x30
#define RH_RF69_DIOMAPPING2_DIO5MAPPING_00                  0x00
#define RH_RF69_DIOMAPPING2_DIO5MAPPING_01                  0x10
#define RH_RF69_DIOMAPPING2_DIO5MAPPING_10                  0x20
#define RH_RF69_DIOMAPPING2_DIO5MAPPING_11                  0x30

#define RH_RF69_DIOMAPPING2_CLKOUT                          0x07
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_                   0x00
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_2                  0x01
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_4                  0x02
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_8                  0x03
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_16                 0x04
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_32                 0x05
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_RC                 0x06
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_OFF                0x07

// RH_RF69_REG_27_IRQFLAGS1
#define RH_RF69_IRQFLAGS1_MODEREADY                         0x80
#define RH_RF69_IRQFLAGS1_RXREADY                           0x40
#define RH_RF69_IRQFLAGS1_TXREADY                           0x20
#define RH_RF69_IRQFLAGS1_PLLLOCK                           0x10
#define RH_RF69_IRQFLAGS1_RSSI                              0x08
#define RH_RF69_IRQFLAGS1_TIMEOUT                           0x04
#define RH_RF69_IRQFLAGS1_AUTOMODE                          0x02
#define RH_RF69_IRQFLAGS1_SYNADDRESSMATCH                   0x01

// RH_RF69_REG_28_IRQFLAGS2
#define RH_RF69_IRQFLAGS2_FIFOFULL                          0x80
#define RH_RF69_IRQFLAGS2_FIFONOTEMPTY                      0x40
#define RH_RF69_IRQFLAGS2_FIFOLEVEL                         0x20
#define RH_RF69_IRQFLAGS2_FIFOOVERRUN                       0x10
#define RH_RF69_IRQFLAGS2_PACKETSENT                        0x08
#define RH_RF69_IRQFLAGS2_PAYLOADREADY                      0x04
#define RH_RF69_IRQFLAGS2_CRCOK                             0x02

// RH_RF69_REG_2E_SYNCCONFIG
#define RH_RF69_SYNCCONFIG_SYNCON                           0x80
#define RH_RF69_SYNCCONFIG_FIFOFILLCONDITION_MANUAL         0x40
#define RH_RF69_SYNCCONFIG_SYNCSIZE                         0x38
#define RH_RF69_SYNCCONFIG_SYNCSIZE_1                       0x00
#define RH_RF69_SYNCCONFIG_SYNCSIZE_2                       0x08
#define RH_RF69_SYNCCONFIG_SYNCSIZE_3                       0x10
#define RH_RF69_SYNCCONFIG_SYNCSIZE_4                       0x18
#define RH_RF69_SYNCCONFIG_SYNCSIZE_5                       0x20
#define RH_RF69_SYNCCONFIG_SYNCSIZE_6                       0x28
#define RH_RF69_SYNCCONFIG_SYNCSIZE_7                       0x30
#define RH_RF69_SYNCCONFIG_SYNCSIZE_8                       0x38
#define RH_RF69_SYNCCONFIG_SYNCSIZE_SYNCTOL                 0x07

// RH_RF69_REG_37_PACKETCONFIG1
#define RH_RF69_PACKETCONFIG1_PACKETFORMAT_VARIABLE         0x80
#define RH_RF69_PACKETCONFIG1_DCFREE                        0x60
#define RH_RF69_PACKETCONFIG1_DCFREE_NONE                   0x00
#define RH_RF69_PACKETCONFIG1_DCFREE_MANCHESTER             0x20
#define RH_RF69_PACKETCONFIG1_DCFREE_WHITENING              0x40
#define RH_RF69_PACKETCONFIG1_DCFREE_RESERVED               0x60
#define RH_RF69_PACKETCONFIG1_CRC_ON                        0x10
#define RH_RF69_PACKETCONFIG1_CRCAUTOCLEAROFF               0x08
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING              0x06
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NONE         0x00
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NODE         0x02
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NODE_BC      0x04
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_RESERVED     0x06

// RH_RF69_REG_3C_FIFOTHRESH
#define RH_RF69_FIFOTHRESH_TXSTARTCONDITION_NOTEMPTY        0x80
#define RH_RF69_FIFOTHRESH_FIFOTHRESHOLD                    0x7f

// RH_RF69_REG_3D_PACKETCONFIG2
#define RH_RF69_PACKETCONFIG2_INTERPACKETRXDELAY            0xf0
#define RH_RF69_PACKETCONFIG2_RESTARTRX                     0x04
#define RH_RF69_PACKETCONFIG2_AUTORXRESTARTON               0x02
#define RH_RF69_PACKETCONFIG2_AESON                         0x01

// RH_RF69_REG_4E_TEMP1
#define RH_RF69_TEMP1_TEMPMEASSTART                         0x08
#define RH_RF69_TEMP1_TEMPMEASRUNNING                       0x04

// RH_RF69_REG_5A_TESTPA1
#define RH_RF69_TESTPA1_NORMAL                              0x55
#define RH_RF69_TESTPA1_BOOST                               0x5d

// RH_RF69_REG_5C_TESTPA2
#define RH_RF69_TESTPA2_NORMAL                              0x70
#define RH_RF69_TESTPA2_BOOST                               0x7c

// RH_RF69_REG_6F_TESTDAGC
#define RH_RF69_TESTDAGC_CONTINUOUSDAGC_NORMAL              0x00
#define RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAON  0x20
#define RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAOFF 0x30

// Define this to include Serial printing in diagnostic routines
#define RH_RF69_HAVE_SERIAL


/////////////////////////////////////////////////////////////////////
/// \class RH_RF69 RH_RF69.h <RH_RF69.h>
/// \brief Driver to send and receive unaddressed, unreliable datagrams via an RF69 and compatible radio transceiver.
///
/// Works with 
/// - the excellent Moteino and Moteino-USB 
/// boards from LowPowerLab http://lowpowerlab.com/moteino/
/// - compatible chips and modules such as RFM69W, RFM69HW, RFM69CW, RFM69HCW (Semtech SX1231, SX1231H),
/// - RFM69 modules from http://www.hoperfusa.com such as http://www.hoperfusa.com/details.jsp?pid=145
/// - Anarduino MiniWireless -CW and -HW boards http://www.anarduino.com/miniwireless/ including
///  the marvellous high powered MinWireless-HW (with 20dBm output for excellent range)
///
/// \par Overview
///
/// This class provides basic functions for sending and receiving unaddressed, 
/// unreliable datagrams of arbitrary length to 64 octets per packet.
///
/// Manager classes may use this class to implement reliable, addressed datagrams and streams, 
/// mesh routers, repeaters, translators etc.
///
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and 
/// modulation scheme.
///
/// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF
/// RF69B and compatible radio modules, such as the RFM69 module.
///
/// The Hope-RF (http://www.hoperf.com) RF69 is a low-cost ISM transceiver
/// chip. It supports FSK, GFSK, OOK over a wide range of frequencies and
/// programmable data rates. It also suports AES encryption of up to 64 octets
/// of payload It is available prepackaged on modules such as the RFM69W. And
/// such modules can be prepacked on processor boards such as the Moteino from
/// LowPowerLabs (which is what we used to develop the RH_RF69 driver)
///
/// This Driver provides functions for sending and receiving messages of up
/// to 60 octets on any frequency supported by the RF69, in a range of
/// predefined data rates and frequency deviations.  Frequency can be set with
/// 61Hz precision to any frequency from 240.0MHz to 960.0MHz. Caution: most modules only support a more limited
/// range of frequencies due to antenna tuning.
///
/// Up to 2 RF69B modules can be connected to an Arduino (3 on a Mega),
/// permitting the construction of translators and frequency changers, etc.
///
/// The following modulation types are suppported with a range of modem configurations for 
/// common data rates and frequency deviations:
/// - GFSK Gaussian Frequency Shift Keying
/// - FSK Frequency Shift Keying
///
/// Support for other RF69 features such as on-chip temperature measurement, 
/// transmitter power control etc is also provided.
///
/// Tested on USB-Moteino with arduino-1.0.5
/// on OpenSuSE 13.1
///
/// \par Packet Format
///
/// All messages sent and received by this RH_RF69 Driver conform to this packet format:
///
/// - 4 octets PREAMBLE
/// - 2 octets SYNC 0x2d, 0xd4 (configurable, so you can use this as a network filter)
/// - 1 octet RH_RF69 payload length
/// - 4 octets HEADER: (TO, FROM, ID, FLAGS)
/// - 0 to 60 octets DATA 
/// - 2 octets CRC computed with CRC16(IBM), computed on HEADER and DATA
///
/// For technical reasons, the message format is not protocol compatible with the
/// 'HopeRF Radio Transceiver Message Library for Arduino'
/// http://www.airspayce.com/mikem/arduino/HopeRF from the same author. Nor is
/// it compatible with messages sent by 'Virtual Wire'
/// http://www.airspayce.com/mikem/arduino/VirtualWire.pdf also from the same
/// author.  Nor is it compatible with messages sent by 'RF22'
/// http://www.airspayce.com/mikem/arduino/RF22 also from the same author.
///
/// \par Connecting RFM-69 to Arduino
///
/// We tested with Moteino, which is an Arduino Uno compatible with the RFM69W
/// module on-board. Therefore it needs no connections other than the USB
/// programming connection and an antenna to make it work.
///
/// If you have a bare RFM69W that you want to connect to an Arduino, you
/// might use these connections (untested): CAUTION: you must use a 3.3V type
/// Arduino, otherwise you will also need voltage level shifters between the
/// Arduino and the RFM69.  CAUTION, you must also ensure you connect an
/// antenna
/// 
/// \code
///                 Arduino      RFM69W
///                 GND----------GND   (ground in)
///                 3V3----------3.3V  (3.3V in)
/// interrupt 0 pin D2-----------DIO0  (interrupt request out)
///          SS pin D10----------NSS   (chip select in)
///         SCK pin D13----------SCK   (SPI clock in)
///        MOSI pin D11----------MOSI  (SPI Data in)
///        MISO pin D12----------MISO  (SPI Data out)
/// \endcode
///
/// With these connections, you can then use the default constructor RH_RF69().
/// You can override the default settings for the SS pin and the interrupt in
/// the RH_RF69 constructor if you wish to connect the slave select SS to other
/// than the normal one for your Arduino (D10 for Diecimila, Uno etc and D53
/// for Mega) or the interrupt request to other than pin D2 (Caution,
/// different processors have different constraints as to the pins available
/// for interrupts).
///
/// If you have a Teensy 3.1 and a compatible RFM69 breakout board, you will need to 
/// construct the RH_RF69 instance like this:
/// \code
/// RH_RF69 driver(15, 16);
/// \endcode
///
/// If you have a MoteinoMEGA https://lowpowerlab.com/shop/moteinomega
/// with RFM69 on board, you dont need to make any wiring connections 
/// (the RFM69 module is soldered onto the MotienoMEGA), but you must initialise the RH_RF69
/// constructor like this:
/// \code
/// RH_RF69 driver(4, 2);
/// \endcode
/// Make sure you have the MoteinoMEGA core installed in your Arduino hardware folder as described in the
/// documentation for the MoteinoMEGA.
///
/// It is possible to have 2 or more radios connected to one Arduino, provided
/// each radio has its own SS and interrupt line (SCK, SDI and SDO are common
/// to all radios)
///
/// Caution: on some Arduinos such as the Mega 2560, if you set the slave
/// select pin to be other than the usual SS pin (D53 on Mega 2560), you may
/// need to set the usual SS pin to be an output to force the Arduino into SPI
/// master mode.
///
/// Caution: Power supply requirements of the RF69 module may be relevant in some circumstances: 
/// RF69 modules are capable of pulling 45mA+ at full power, where Arduino's 3.3V line can
/// give 50mA. You may need to make provision for alternate power supply for
/// the RF69, especially if you wish to use full transmit power, and/or you have
/// other shields demanding power. Inadequate power for the RF69 is likely to cause symptoms such as:
/// -reset's/bootups terminate with "init failed" messages
/// -random termination of communication after 5-30 packets sent/received
/// -"fake ok" state, where initialization passes fluently, but communication doesn't happen
/// -shields hang Arduino boards, especially during the flashing
/// \par Interrupts
///
/// The RH_RF69 driver uses interrupts to react to events in the RF69 module,
/// such as the reception of a new packet, or the completion of transmission
/// of a packet.  The RH_RF69 driver interrupt service routine reads status from
/// and writes data to the the RF69 module via the SPI interface. It is very
/// important therefore, that if you are using the RH_RF69 driver with another
/// SPI based deviced, that you disable interrupts while you transfer data to
/// and from that other device.  Use cli() to disable interrupts and sei() to
/// reenable them.
///
/// \par Memory
///
/// The RH_RF69 driver requires non-trivial amounts of memory. The sample
/// programs above all compile to about 8kbytes each, which will fit in the
/// flash proram memory of most Arduinos. However, the RAM requirements are
/// more critical. Therefore, you should be vary sparing with RAM use in
/// programs that use the RH_RF69 driver.
///
/// It is often hard to accurately identify when you are hitting RAM limits on Arduino. 
/// The symptoms can include:
/// - Mysterious crashes and restarts
/// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements)
/// - Hanging
/// - Output from Serial.print() not appearing
/// 
/// \par Automatic Frequency Control (AFC)
///
/// The RF69 module is configured by the RH_RF69 driver to always use AFC.
///
/// \par Transmitter Power
///
/// You can control the transmitter power on the RF69 transceiver
/// with the RH_RF69::setTxPower() function. The argument can be any of
/// -18 to +13 (for RF69W) or -14 to 20 (for RF69HW) 
/// The default is 13. Eg:
/// \code
/// driver.setTxPower(-5);
/// \endcode
///
/// We have made some actual power measurements against
/// programmed power for Moteino (with RF69W)
/// - Moteino (with RF69W), USB power
/// - 10cm RG58C/U soldered direct to RFM69 module ANT and GND
/// - bnc connecteor
/// - 12dB attenuator
/// - BNC-SMA adapter
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power           Measured Power
///    dBm                         dBm
///    -18                         -17
///    -16                         -16
///    -14                         -14
///    -12                         -12
///    -10                         -9
///    -8                          -7
///    -6                          -4
///    -4                          -3
///    -2                          -2
///    0                           0.2
///    2                           3
///    4                           5
///    6                           7
///    8                           10
///    10                          13
///    12                          14
///    13                          15
///    14                         -51
///    20                         -51
/// \endcode
/// We have also made some actual power measurements against
/// programmed power for Anarduino MiniWireless with RFM69-HW
/// Anarduino MiniWireless (with RFM69-HW), USB power
/// - 10cm RG58C/U soldered direct to RFM69 module ANT and GND
/// - bnc connecteor
/// - 2x12dB attenuators
/// - BNC-SMA adapter
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power           Measured Power
///    dBm                         dBm
///    -18                         no measurable output
///    0                           no measurable output
///    13                          no measurable output
///    14                          11
///    15                          12
///    16                          12.4
///    17                          14
///    18                          15
///    19                          15.8
///    20                          17
/// \endcode
/// (Caution: we dont claim laboratory accuracy for these measurements)
/// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna.
/// Caution: although the RFM69 appears to have a PC antenna on board, you will get much better power and range even 
/// with just a 1/4 wave wire antenna.
///
/// \par Performance
///
/// Some simple speed performance tests have been conducted.
/// In general packet transmission rate will be limited by the modulation scheme.
/// Also, if your code does any slow operations like Serial printing it will also limit performance. 
/// We disabled any printing in the tests below.
/// We tested with RH_RF69::GFSK_Rb250Fd250, which is probably the fastest scheme available.
/// We tested with a 13 octet message length, over a very short distance of 10cm.
///
/// Transmission (no reply) tests with modulation RH_RF69::GFSK_Rb250Fd250 and a 
/// 13 octet message show about 152 messages per second transmitted and received.
///
/// Transmit-and-wait-for-a-reply tests with modulation RH_RF69::GFSK_Rb250Fd250 and a 
/// 13 octet message (send and receive) show about 68 round trips per second.
///
class RH_RF69 : public RHSPIDriver
{
public:

    /// \brief Defines register values for a set of modem configuration registers
    ///
    /// Defines register values for a set of modem configuration registers
    /// that can be passed to setModemRegisters() if none of the choices in
    /// ModemConfigChoice suit your need setModemRegisters() writes the
    /// register values from this structure to the appropriate RF69 registers
    /// to set the desired modulation type, data rate and deviation/bandwidth.
    typedef struct
    {
	uint8_t    reg_02;   ///< Value for register RH_RF69_REG_02_DATAMODUL
	uint8_t    reg_03;   ///< Value for register RH_RF69_REG_03_BITRATEMSB
	uint8_t    reg_04;   ///< Value for register RH_RF69_REG_04_BITRATELSB
	uint8_t    reg_05;   ///< Value for register RH_RF69_REG_05_FDEVMSB
	uint8_t    reg_06;   ///< Value for register RH_RF69_REG_06_FDEVLSB
	uint8_t    reg_19;   ///< Value for register RH_RF69_REG_19_RXBW
	uint8_t    reg_1a;   ///< Value for register RH_RF69_REG_1A_AFCBW
	uint8_t    reg_37;   ///< Value for register RH_RF69_REG_37_PACKETCONFIG1
    } ModemConfig;
  
    /// Choices for setModemConfig() for a selected subset of common
    /// modulation types, and data rates. If you need another configuration,
    /// use the register calculator.  and call setModemRegisters() with your
    /// desired settings.  
    /// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic
    /// definitions and not their integer equivalents: its possible that new values will be
    /// introduced in later versions (though we will try to avoid it).
    /// CAUTION: some of these configurations do not work corectly and are marked as such.
    typedef enum
    {
	FSK_Rb2Fd5 = 0,	   ///< FSK, Whitening, Rb = 2kbs,    Fd = 5kHz
	FSK_Rb2_4Fd4_8,    ///< FSK, Whitening, Rb = 2.4kbs,  Fd = 4.8kHz 
	FSK_Rb4_8Fd9_6,    ///< FSK, Whitening, Rb = 4.8kbs,  Fd = 9.6kHz 
	FSK_Rb9_6Fd19_2,   ///< FSK, Whitening, Rb = 9.6kbs,  Fd = 19.2kHz
	FSK_Rb19_2Fd38_4,  ///< FSK, Whitening, Rb = 19.2kbs, Fd = 38.4kHz
	FSK_Rb38_4Fd76_8,  ///< FSK, Whitening, Rb = 38.4kbs, Fd = 76.8kHz
	FSK_Rb57_6Fd120,   ///< FSK, Whitening, Rb = 57.6kbs, Fd = 120kHz
	FSK_Rb125Fd125,    ///< FSK, Whitening, Rb = 125kbs,  Fd = 125kHz
	FSK_Rb250Fd250,    ///< FSK, Whitening, Rb = 250kbs,  Fd = 250kHz
	FSK_Rb55555Fd50,   ///< FSK, Whitening, Rb = 55555kbs,Fd = 50kHz for RFM69 lib compatibility

	GFSK_Rb2Fd5,	    ///< GFSK, Whitening, Rb = 2kbs,    Fd = 5kHz
	GFSK_Rb2_4Fd4_8,    ///< GFSK, Whitening, Rb = 2.4kbs,  Fd = 4.8kHz
	GFSK_Rb4_8Fd9_6,    ///< GFSK, Whitening, Rb = 4.8kbs,  Fd = 9.6kHz
	GFSK_Rb9_6Fd19_2,   ///< GFSK, Whitening, Rb = 9.6kbs,  Fd = 19.2kHz
	GFSK_Rb19_2Fd38_4,  ///< GFSK, Whitening, Rb = 19.2kbs, Fd = 38.4kHz
	GFSK_Rb38_4Fd76_8,  ///< GFSK, Whitening, Rb = 38.4kbs, Fd = 76.8kHz
	GFSK_Rb57_6Fd120,   ///< GFSK, Whitening, Rb = 57.6kbs, Fd = 120kHz
	GFSK_Rb125Fd125,    ///< GFSK, Whitening, Rb = 125kbs,  Fd = 125kHz
	GFSK_Rb250Fd250,    ///< GFSK, Whitening, Rb = 250kbs,  Fd = 250kHz
	GFSK_Rb55555Fd50,   ///< GFSK, Whitening, Rb = 55555kbs,Fd = 50kHz

	OOK_Rb1Bw1,         ///< OOK, Whitening, Rb = 1kbs,    Rx Bandwidth = 1kHz. 
	OOK_Rb1_2Bw75,      ///< OOK, Whitening, Rb = 1.2kbs,  Rx Bandwidth = 75kHz. 
	OOK_Rb2_4Bw4_8,     ///< OOK, Whitening, Rb = 2.4kbs,  Rx Bandwidth = 4.8kHz. 
	OOK_Rb4_8Bw9_6,     ///< OOK, Whitening, Rb = 4.8kbs,  Rx Bandwidth = 9.6kHz. 
	OOK_Rb9_6Bw19_2,    ///< OOK, Whitening, Rb = 9.6kbs,  Rx Bandwidth = 19.2kHz. 
	OOK_Rb19_2Bw38_4,   ///< OOK, Whitening, Rb = 19.2kbs, Rx Bandwidth = 38.4kHz. 
	OOK_Rb32Bw64,       ///< OOK, Whitening, Rb = 32kbs,   Rx Bandwidth = 64kHz. 

//	Test,
    } ModemConfigChoice;

    /// Constructor. You can have multiple instances, but each instance must have its own
    /// interrupt and slave select pin. After constructing, you must call init() to initialise the interface
    /// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient
    /// distinct interrupt lines, one for each instance.
    /// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RF69 before
    /// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple)
    /// \param[in] interruptPin The interrupt Pin number that is connected to the RF69 DIO0 interrupt line. 
    /// Defaults to pin 2.
    /// Caution: You must specify an interrupt capable pin.
    /// On many Arduino boards, there are limitations as to which pins may be used as interrupts.
    /// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin.
    /// On other Arduinos pins 2 or 3. 
    /// See http://arduino.cc/en/Reference/attachInterrupt for more details.
    /// On Chipkit Uno32, pins 38, 2, 7, 8, 35.
    /// On other boards, any digital pin may be used.
    /// \param[in] spi Pointer to the SPI interface object to use. 
    ///                Defaults to the standard Arduino hardware SPI interface
    RH_RF69(PINS slaveSelectPin, PINS interruptPin, RHGenericSPI& spi = hardware_spi);
  
    /// Initialises this instance and the radio module connected to it.
    /// The following steps are taken:
    /// - Initialise the slave select pin and the SPI interface library
    /// - Checks the connected RF69 module can be communicated
    /// - Attaches an interrupt handler
    /// - Configures the RF69 module
    /// - Sets the frequency to 434.0 MHz
    /// - Sets the modem data rate to FSK_Rb2Fd5
    /// \return  true if everything was successful
    bool        init();

    /// Reads the on-chip temperature sensor.
    /// The RF69 must be in Idle mode (= RF69 Standby) to measure temperature.
    /// The measurement is uncalibrated and without calibration, you can expect it to be far from
    /// correct.
    /// \return The measured temperature, in degrees C from -40 to 85 (uncalibrated)
    int8_t        temperatureRead();   

    /// Sets the transmitter and receiver 
    /// centre frequency
    /// \param[in] centre Frequency in MHz. 240.0 to 960.0. Caution, RF69 comes in several
    /// different frequency ranges, and setting a frequency outside that range of your radio will probably not work
    /// \param[in] afcPullInRange Not used
    /// \return true if the selected frquency centre is within range
    bool        setFrequency(float centre, float afcPullInRange = 0.05);

    /// Reads and returns the current RSSI value. 
    /// Causes the current signal strength to be measured and returned
    /// If you want to find the RSSI
    /// of the last received message, use lastRssi() instead.
    /// \return The current RSSI value on units of 0.5dB.
    int8_t        rssiRead();

    /// Sets the parameters for the RF69 OPMODE.
    /// This is a low level device access function, and should not normally ned to be used by user code. 
    /// Instead can use stModeRx(), setModeTx(), setModeIdle()
    /// \param[in] mode RF69 OPMODE to set, one of RH_RF69_OPMODE_MODE_*.
    void           setOpMode(uint8_t mode);

    /// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running, 
    /// disables them.
    void           setModeIdle();

    /// If current mode is Tx or Idle, changes it to Rx. 
    /// Starts the receiver in the RF69.
    void           setModeRx();

    /// If current mode is Rx or Idle, changes it to Rx. F
    /// Starts the transmitter in the RF69.
    void           setModeTx();

    /// Sets the transmitter power output level.
    /// Be a good neighbour and set the lowest power level you need.
    /// Caution: legal power limits may apply in certain countries.
    /// After init(), the power will be set to 13dBm.
    /// \param[in] power Transmitter power level in dBm. For RF69W, valid values are from -18 to +13 
    /// (higher power settings disable the transmitter).
    /// For RF69HW, valid values are from +14 to +20. Caution: at +20dBm, duty cycle is limited to 1% and a 
    /// maximum VSWR of 3:1 at the antenna port.
    void           setTxPower(int8_t power);

    /// Sets all the registers required to configure the data modem in the RF69, including the data rate, 
    /// bandwidths etc. You can use this to configure the modem with custom configurations if none of the 
    /// canned configurations in ModemConfigChoice suit you.
    /// \param[in] config A ModemConfig structure containing values for the modem configuration registers.
    void           setModemRegisters(const ModemConfig* config);

    /// Select one of the predefined modem configurations. If you need a modem configuration not provided 
    /// here, use setModemRegisters() with your own ModemConfig. The default after init() is RH_RF69::GFSK_Rb250Fd250.
    /// \param[in] index The configuration choice.
    /// \return true if index is a valid choice.
    bool        setModemConfig(ModemConfigChoice index);

    /// Starts the receiver and checks whether a received message is available.
    /// This can be called multiple times in a timeout loop
    /// \return true if a complete, valid message has been received and is able to be retrieved by
    /// recv()
    bool        available();

    /// Turns the receiver on if it not already on.
    /// If there is a valid message available, copy it to buf and return true
    /// else return false.
    /// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
    /// You should be sure to call this function frequently enough to not miss any messages
    /// It is recommended that you call it in your main loop.
    /// \param[in] buf Location to copy the received message
    /// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
    /// \return true if a valid message was copied to buf
    bool        recv(uint8_t* buf, uint8_t* len);

    /// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
    /// Then loads a message into the transmitter and starts the transmitter. Note that a message length
    /// of 0 is NOT permitted. 
    /// \param[in] data Array of data to be sent
    /// \param[in] len Number of bytes of data to send (> 0)
    /// \return true if the message length was valid and it was correctly queued for transmit
    bool        send(const uint8_t* data, uint8_t len);

    /// Sets the length of the preamble
    /// in bytes. 
    /// Caution: this should be set to the same 
    /// value on all nodes in your network. Default is 4.
    /// Sets the message preamble length in REG_0?_PREAMBLE?SB
    /// \param[in] bytes Preamble length in bytes.  
    void           setPreambleLength(uint16_t bytes);

    /// Sets the sync words for transmit and receive 
    /// Caution: SyncWords should be set to the same 
    /// value on all nodes in your network. Nodes with different SyncWords set will never receive
    /// each others messages, so different SyncWords can be used to isolate different
    /// networks from each other. Default is { 0x2d, 0xd4 }.
    /// \param[in] syncWords Array of sync words, 1 to 4 octets long. NULL if no sync words to be used.
    /// \param[in] len Number of sync words to set, 1 to 4. 0 if no sync words to be used.
    void           setSyncWords(const uint8_t* syncWords = NULL, uint8_t len = 0);

    /// Enables AES encryption and sets the AES encryption key, used
    /// to encrypt and decrypt all messages. The default is disabled.
    /// \param[in] key The key to use. Must be 16 bytes long. The same key must be installed
    /// in other instances of RF69, otherwise communications will not work correctly. If key is NULL,
    /// encryption is disabled.
    void           setEncryptionKey(uint8_t* key = NULL);

    /// Returns the time in millis since the most recent preamble was received, and when the most recent
    /// RSSI measurement was made.
    uint32_t getLastPreambleTime();

    /// The maximum message length supported by this driver
    /// \return The maximum message length supported by this driver
    uint8_t maxMessageLength();

    /// Prints the value of a single register
    /// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
    /// For debugging/testing only
    /// \return true if successful
    bool printRegister(uint8_t reg);

    /// Prints the value of all the RF69 registers
    /// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
    /// For debugging/testing only
    /// \return true if successful
    bool printRegisters();

    /// Sets the radio operating mode for the case when the driver is idle (ie not
    /// transmitting or receiving), allowing you to control the idle mode power requirements
    /// at the expense of slower transitions to transmit and receive modes.
    /// By default, the idle mode is RH_RF69_OPMODE_MODE_STDBY,
    /// but eg setIdleMode(RH_RF69_OPMODE_MODE_SLEEP) will provide a much lower
    /// idle current but slower transitions. Call this function after init().
    /// \param[in] idleMode The chip operating mode to use when the driver is idle. One of RH_RF69_OPMODE_*
    void setIdleMode(uint8_t idleMode);

    /// Sets the radio into low-power sleep mode.
    /// If successful, the transport will stay in sleep mode until woken by 
    /// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
    /// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
    /// \return true if sleep mode was successfully entered.
    virtual bool    sleep();

protected:
    /// This is a low level function to handle the interrupts for one instance of RF69.
    /// Called automatically by isr*()
    /// Should not need to be called by user code.
    void           handleInterrupt();

    /// Low level function to read the FIFO and put the received data into the receive buffer
    /// Should not need to be called by user code.
    void           readFifo();

protected:
    /// Low level interrupt service routine for RF69 connected to interrupt 0
    static void         isr0();

    /// Low level interrupt service routine for RF69 connected to interrupt 1
    static void         isr1();

    /// Low level interrupt service routine for RF69 connected to interrupt 1
    static void         isr2();

    /// Array of instances connected to interrupts 0 and 1
    static RH_RF69*     _deviceForInterrupt[];

    /// Index of next interrupt number to use in _deviceForInterrupt
    static uint8_t      _interruptCount;

#if (RH_PLATFORM == RH_PLATFORM_MBED)
    /// The configured interrupt pin connected to this instance
    InterruptIn             _interruptPin;
#else
    /// The configured interrupt pin connected to this instance
    uint8_t             _interruptPin;
#endif

    /// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated)
    /// else 0xff
    uint8_t             _myInterruptIndex;

    /// The radio OP mode to use when mode is RHModeIdle
    uint8_t             _idleMode; 

    /// The reported device type
    uint8_t             _deviceType;

    /// The selected output power in dBm
    int8_t              _power;

    /// The message length in _buf
    volatile uint8_t    _bufLen;

    /// Array of octets of teh last received message or the next to transmit message
    uint8_t             _buf[RH_RF69_MAX_MESSAGE_LEN];

    /// True when there is a valid message in the Rx buffer
    volatile bool    _rxBufValid;

    /// Time in millis since the last preamble was received (and the last time the RSSI was measured)
    uint32_t            _lastPreambleTime;
};

/// @example rf69_client.pde
/// @example rf69_server.pde
/// @example rf69_reliable_datagram_client.pde
/// @example rf69_reliable_datagram_server.pde


#endif