This driver is a stripped down version of the Radiohead 1.45 driver, and covers fewer radios. Threading and an event queue have been added to make the ISR's more stable across architectures. Specifically The STM32L4 parts

Dependents:   Threaded_LoRa_Modem

RH_RF22.h

Committer:
rlanders73
Date:
2021-06-23
Revision:
7:250d1c72df36
Parent:
0:ab4e012489ef

File content as of revision 7:250d1c72df36:

// RH_RF22.h
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2011 Mike McCauley
// $Id: RH_RF22.h,v 1.27 2015/05/17 00:11:26 mikem Exp $
//

#ifndef RH_RF22_h
#define RH_RF22_h

#include <RHGenericSPI.h>
#include <RHSPIDriver.h>

// This is the maximum number of interrupts the library can support
// Most Arduinos can handle 2, Megas can handle more
#define RH_RF22_NUM_INTERRUPTS 3

// This is the bit in the SPI address that marks it as a write
#define RH_RF22_SPI_WRITE_MASK 0x80

// This is the maximum message length that can be supported by this library. Limited by
// the single message length octet in the header. 
// Yes, 255 is correct even though the FIFO size in the RF22 is only
// 64 octets. We use interrupts to refill the Tx FIFO during transmission and to empty the
// Rx FIFO during reception
// Can be pre-defined to a smaller size (to save SRAM) prior to including this header
#ifndef RH_RF22_MAX_MESSAGE_LEN
//#define RH_RF22_MAX_MESSAGE_LEN 255
#define RH_RF22_MAX_MESSAGE_LEN 50
#endif

// Max number of octets the RF22 Rx and Tx FIFOs can hold
#define RH_RF22_FIFO_SIZE 64

// These values we set for FIFO thresholds (4, 55) are actually the same as the POR values
#define RH_RF22_TXFFAEM_THRESHOLD 4
#define RH_RF22_RXFFAFULL_THRESHOLD 55

// Number of registers to be passed to setModemConfig(). Obsolete.
#define RH_RF22_NUM_MODEM_CONFIG_REGS 18

// Register names
#define RH_RF22_REG_00_DEVICE_TYPE                         0x00
#define RH_RF22_REG_01_VERSION_CODE                        0x01
#define RH_RF22_REG_02_DEVICE_STATUS                       0x02
#define RH_RF22_REG_03_INTERRUPT_STATUS1                   0x03
#define RH_RF22_REG_04_INTERRUPT_STATUS2                   0x04
#define RH_RF22_REG_05_INTERRUPT_ENABLE1                   0x05
#define RH_RF22_REG_06_INTERRUPT_ENABLE2                   0x06
#define RH_RF22_REG_07_OPERATING_MODE1                     0x07
#define RH_RF22_REG_08_OPERATING_MODE2                     0x08
#define RH_RF22_REG_09_OSCILLATOR_LOAD_CAPACITANCE         0x09
#define RH_RF22_REG_0A_UC_OUTPUT_CLOCK                     0x0a
#define RH_RF22_REG_0B_GPIO_CONFIGURATION0                 0x0b
#define RH_RF22_REG_0C_GPIO_CONFIGURATION1                 0x0c
#define RH_RF22_REG_0D_GPIO_CONFIGURATION2                 0x0d
#define RH_RF22_REG_0E_IO_PORT_CONFIGURATION               0x0e
#define RH_RF22_REG_0F_ADC_CONFIGURATION                   0x0f
#define RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET               0x10
#define RH_RF22_REG_11_ADC_VALUE                           0x11
#define RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION      0x12
#define RH_RF22_REG_13_TEMPERATURE_VALUE_OFFSET            0x13
#define RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1                0x14
#define RH_RF22_REG_15_WAKEUP_TIMER_PERIOD2                0x15
#define RH_RF22_REG_16_WAKEUP_TIMER_PERIOD3                0x16
#define RH_RF22_REG_17_WAKEUP_TIMER_VALUE1                 0x17
#define RH_RF22_REG_18_WAKEUP_TIMER_VALUE2                 0x18
#define RH_RF22_REG_19_LDC_MODE_DURATION                   0x19
#define RH_RF22_REG_1A_LOW_BATTERY_DETECTOR_THRESHOLD      0x1a
#define RH_RF22_REG_1B_BATTERY_VOLTAGE_LEVEL               0x1b
#define RH_RF22_REG_1C_IF_FILTER_BANDWIDTH                 0x1c
#define RH_RF22_REG_1D_AFC_LOOP_GEARSHIFT_OVERRIDE         0x1d
#define RH_RF22_REG_1E_AFC_TIMING_CONTROL                  0x1e
#define RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE   0x1f
#define RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE    0x20
#define RH_RF22_REG_21_CLOCK_RECOVERY_OFFSET2              0x21
#define RH_RF22_REG_22_CLOCK_RECOVERY_OFFSET1              0x22
#define RH_RF22_REG_23_CLOCK_RECOVERY_OFFSET0              0x23
#define RH_RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1    0x24
#define RH_RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0    0x25
#define RH_RF22_REG_26_RSSI                                0x26
#define RH_RF22_REG_27_RSSI_THRESHOLD                      0x27
#define RH_RF22_REG_28_ANTENNA_DIVERSITY1                  0x28
#define RH_RF22_REG_29_ANTENNA_DIVERSITY2                  0x29
#define RH_RF22_REG_2A_AFC_LIMITER                         0x2a
#define RH_RF22_REG_2B_AFC_CORRECTION_READ                 0x2b
#define RH_RF22_REG_2C_OOK_COUNTER_VALUE_1                 0x2c
#define RH_RF22_REG_2D_OOK_COUNTER_VALUE_2                 0x2d
#define RH_RF22_REG_2E_SLICER_PEAK_HOLD                    0x2e
#define RH_RF22_REG_30_DATA_ACCESS_CONTROL                 0x30
#define RH_RF22_REG_31_EZMAC_STATUS                        0x31
#define RH_RF22_REG_32_HEADER_CONTROL1                     0x32
#define RH_RF22_REG_33_HEADER_CONTROL2                     0x33
#define RH_RF22_REG_34_PREAMBLE_LENGTH                     0x34
#define RH_RF22_REG_35_PREAMBLE_DETECTION_CONTROL1         0x35
#define RH_RF22_REG_36_SYNC_WORD3                          0x36
#define RH_RF22_REG_37_SYNC_WORD2                          0x37
#define RH_RF22_REG_38_SYNC_WORD1                          0x38
#define RH_RF22_REG_39_SYNC_WORD0                          0x39
#define RH_RF22_REG_3A_TRANSMIT_HEADER3                    0x3a
#define RH_RF22_REG_3B_TRANSMIT_HEADER2                    0x3b
#define RH_RF22_REG_3C_TRANSMIT_HEADER1                    0x3c
#define RH_RF22_REG_3D_TRANSMIT_HEADER0                    0x3d
#define RH_RF22_REG_3E_PACKET_LENGTH                       0x3e
#define RH_RF22_REG_3F_CHECK_HEADER3                       0x3f
#define RH_RF22_REG_40_CHECK_HEADER2                       0x40
#define RH_RF22_REG_41_CHECK_HEADER1                       0x41
#define RH_RF22_REG_42_CHECK_HEADER0                       0x42
#define RH_RF22_REG_43_HEADER_ENABLE3                      0x43
#define RH_RF22_REG_44_HEADER_ENABLE2                      0x44
#define RH_RF22_REG_45_HEADER_ENABLE1                      0x45
#define RH_RF22_REG_46_HEADER_ENABLE0                      0x46
#define RH_RF22_REG_47_RECEIVED_HEADER3                    0x47
#define RH_RF22_REG_48_RECEIVED_HEADER2                    0x48
#define RH_RF22_REG_49_RECEIVED_HEADER1                    0x49
#define RH_RF22_REG_4A_RECEIVED_HEADER0                    0x4a
#define RH_RF22_REG_4B_RECEIVED_PACKET_LENGTH              0x4b
#define RH_RF22_REG_50_ANALOG_TEST_BUS_SELECT              0x50
#define RH_RF22_REG_51_DIGITAL_TEST_BUS_SELECT             0x51
#define RH_RF22_REG_52_TX_RAMP_CONTROL                     0x52
#define RH_RF22_REG_53_PLL_TUNE_TIME                       0x53
#define RH_RF22_REG_55_CALIBRATION_CONTROL                 0x55
#define RH_RF22_REG_56_MODEM_TEST                          0x56
#define RH_RF22_REG_57_CHARGE_PUMP_TEST                    0x57
#define RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING        0x58
#define RH_RF22_REG_59_DIVIDER_CURRENT_TRIMMING            0x59
#define RH_RF22_REG_5A_VCO_CURRENT_TRIMMING                0x5a
#define RH_RF22_REG_5B_VCO_CALIBRATION                     0x5b
#define RH_RF22_REG_5C_SYNTHESIZER_TEST                    0x5c
#define RH_RF22_REG_5D_BLOCK_ENABLE_OVERRIDE1              0x5d
#define RH_RF22_REG_5E_BLOCK_ENABLE_OVERRIDE2              0x5e
#define RH_RF22_REG_5F_BLOCK_ENABLE_OVERRIDE3              0x5f
#define RH_RF22_REG_60_CHANNEL_FILTER_COEFFICIENT_ADDRESS  0x60
#define RH_RF22_REG_61_CHANNEL_FILTER_COEFFICIENT_VALUE    0x61
#define RH_RF22_REG_62_CRYSTAL_OSCILLATOR_POR_CONTROL      0x62
#define RH_RF22_REG_63_RC_OSCILLATOR_COARSE_CALIBRATION    0x63
#define RH_RF22_REG_64_RC_OSCILLATOR_FINE_CALIBRATION      0x64
#define RH_RF22_REG_65_LDO_CONTROL_OVERRIDE                0x65
#define RH_RF22_REG_66_LDO_LEVEL_SETTINGS                  0x66
#define RH_RF22_REG_67_DELTA_SIGMA_ADC_TUNING1             0x67
#define RH_RF22_REG_68_DELTA_SIGMA_ADC_TUNING2             0x68
#define RH_RF22_REG_69_AGC_OVERRIDE1                       0x69
#define RH_RF22_REG_6A_AGC_OVERRIDE2                       0x6a
#define RH_RF22_REG_6B_GFSK_FIR_FILTER_COEFFICIENT_ADDRESS 0x6b
#define RH_RF22_REG_6C_GFSK_FIR_FILTER_COEFFICIENT_VALUE   0x6c
#define RH_RF22_REG_6D_TX_POWER                            0x6d
#define RH_RF22_REG_6E_TX_DATA_RATE1                       0x6e
#define RH_RF22_REG_6F_TX_DATA_RATE0                       0x6f
#define RH_RF22_REG_70_MODULATION_CONTROL1                 0x70
#define RH_RF22_REG_71_MODULATION_CONTROL2                 0x71
#define RH_RF22_REG_72_FREQUENCY_DEVIATION                 0x72
#define RH_RF22_REG_73_FREQUENCY_OFFSET1                   0x73
#define RH_RF22_REG_74_FREQUENCY_OFFSET2                   0x74
#define RH_RF22_REG_75_FREQUENCY_BAND_SELECT               0x75
#define RH_RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1          0x76
#define RH_RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0          0x77
#define RH_RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT    0x79
#define RH_RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE         0x7a
#define RH_RF22_REG_7C_TX_FIFO_CONTROL1                    0x7c
#define RH_RF22_REG_7D_TX_FIFO_CONTROL2                    0x7d
#define RH_RF22_REG_7E_RX_FIFO_CONTROL                     0x7e
#define RH_RF22_REG_7F_FIFO_ACCESS                         0x7f

// These register masks etc are named wherever possible
// corresponding to the bit and field names in the RF-22 Manual
// RH_RF22_REG_00_DEVICE_TYPE                      0x00
#define RH_RF22_DEVICE_TYPE_RX_TRX                 0x08
#define RH_RF22_DEVICE_TYPE_TX                     0x07

// RH_RF22_REG_02_DEVICE_STATUS                    0x02
#define RH_RF22_FFOVL                              0x80
#define RH_RF22_FFUNFL                             0x40
#define RH_RF22_RXFFEM                             0x20
#define RH_RF22_HEADERR                            0x10
#define RH_RF22_FREQERR                            0x08
#define RH_RF22_LOCKDET                            0x04
#define RH_RF22_CPS                                0x03
#define RH_RF22_CPS_IDLE                           0x00
#define RH_RF22_CPS_RX                             0x01
#define RH_RF22_CPS_TX                             0x10

// RH_RF22_REG_03_INTERRUPT_STATUS1                0x03
#define RH_RF22_IFFERROR                           0x80
#define RH_RF22_ITXFFAFULL                         0x40
#define RH_RF22_ITXFFAEM                           0x20
#define RH_RF22_IRXFFAFULL                         0x10
#define RH_RF22_IEXT                               0x08
#define RH_RF22_IPKSENT                            0x04
#define RH_RF22_IPKVALID                           0x02
#define RH_RF22_ICRCERROR                          0x01

// RH_RF22_REG_04_INTERRUPT_STATUS2                0x04
#define RH_RF22_ISWDET                             0x80
#define RH_RF22_IPREAVAL                           0x40
#define RH_RF22_IPREAINVAL                         0x20
#define RH_RF22_IRSSI                              0x10
#define RH_RF22_IWUT                               0x08
#define RH_RF22_ILBD                               0x04
#define RH_RF22_ICHIPRDY                           0x02
#define RH_RF22_IPOR                               0x01

// RH_RF22_REG_05_INTERRUPT_ENABLE1                0x05
#define RH_RF22_ENFFERR                            0x80
#define RH_RF22_ENTXFFAFULL                        0x40
#define RH_RF22_ENTXFFAEM                          0x20
#define RH_RF22_ENRXFFAFULL                        0x10
#define RH_RF22_ENEXT                              0x08
#define RH_RF22_ENPKSENT                           0x04
#define RH_RF22_ENPKVALID                          0x02
#define RH_RF22_ENCRCERROR                         0x01

// RH_RF22_REG_06_INTERRUPT_ENABLE2                0x06
#define RH_RF22_ENSWDET                            0x80
#define RH_RF22_ENPREAVAL                          0x40
#define RH_RF22_ENPREAINVAL                        0x20
#define RH_RF22_ENRSSI                             0x10
#define RH_RF22_ENWUT                              0x08
#define RH_RF22_ENLBDI                             0x04
#define RH_RF22_ENCHIPRDY                          0x02
#define RH_RF22_ENPOR                              0x01

// RH_RF22_REG_07_OPERATING_MODE                   0x07
#define RH_RF22_SWRES                              0x80
#define RH_RF22_ENLBD                              0x40
#define RH_RF22_ENWT                               0x20
#define RH_RF22_X32KSEL                            0x10
#define RH_RF22_TXON                               0x08
#define RH_RF22_RXON                               0x04
#define RH_RF22_PLLON                              0x02
#define RH_RF22_XTON                               0x01

// RH_RF22_REG_08_OPERATING_MODE2                  0x08
#define RH_RF22_ANTDIV                             0xc0
#define RH_RF22_RXMPK                              0x10
#define RH_RF22_AUTOTX                             0x08
#define RH_RF22_ENLDM                              0x04
#define RH_RF22_FFCLRRX                            0x02
#define RH_RF22_FFCLRTX                            0x01

// RH_RF22_REG_0F_ADC_CONFIGURATION                0x0f
#define RH_RF22_ADCSTART                           0x80
#define RH_RF22_ADCDONE                            0x80
#define RH_RF22_ADCSEL                             0x70
#define RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR 0x00
#define RH_RF22_ADCSEL_GPIO0_SINGLE_ENDED          0x10
#define RH_RF22_ADCSEL_GPIO1_SINGLE_ENDED          0x20
#define RH_RF22_ADCSEL_GPIO2_SINGLE_ENDED          0x30
#define RH_RF22_ADCSEL_GPIO0_GPIO1_DIFFERENTIAL    0x40
#define RH_RF22_ADCSEL_GPIO1_GPIO2_DIFFERENTIAL    0x50
#define RH_RF22_ADCSEL_GPIO0_GPIO2_DIFFERENTIAL    0x60
#define RH_RF22_ADCSEL_GND                         0x70
#define RH_RF22_ADCREF                             0x0c
#define RH_RF22_ADCREF_BANDGAP_VOLTAGE             0x00
#define RH_RF22_ADCREF_VDD_ON_3                    0x08
#define RH_RF22_ADCREF_VDD_ON_2                    0x0c
#define RH_RF22_ADCGAIN                            0x03

// RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET            0x10
#define RH_RF22_ADCOFFS                            0x0f

// RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION   0x12
#define RH_RF22_TSRANGE                            0xc0
#define RH_RF22_TSRANGE_M64_64C                    0x00
#define RH_RF22_TSRANGE_M64_192C                   0x40
#define RH_RF22_TSRANGE_0_128C                     0x80
#define RH_RF22_TSRANGE_M40_216F                   0xc0
#define RH_RF22_ENTSOFFS                           0x20
#define RH_RF22_ENTSTRIM                           0x10
#define RH_RF22_TSTRIM                             0x0f

// RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1             0x14
#define RH_RF22_WTR                                0x3c
#define RH_RF22_WTD                                0x03

// RH_RF22_REG_1D_AFC_LOOP_GEARSHIFT_OVERRIDE      0x1d
#define RH_RF22_AFBCD                              0x80
#define RH_RF22_ENAFC                              0x40
#define RH_RF22_AFCGEARH                           0x38
#define RH_RF22_AFCGEARL                           0x07

// RH_RF22_REG_1E_AFC_TIMING_CONTROL               0x1e
#define RH_RF22_SWAIT_TIMER                        0xc0
#define RH_RF22_SHWAIT                             0x38
#define RH_RF22_ANWAIT                             0x07

// RH_RF22_REG_30_DATA_ACCESS_CONTROL              0x30
#define RH_RF22_ENPACRX                            0x80
#define RH_RF22_MSBFRST                            0x00
#define RH_RF22_LSBFRST                            0x40
#define RH_RF22_CRCHDRS                            0x00
#define RH_RF22_CRCDONLY                           0x20
#define RH_RF22_SKIP2PH                            0x10
#define RH_RF22_ENPACTX                            0x08
#define RH_RF22_ENCRC                              0x04
#define RH_RF22_CRC                                0x03
#define RH_RF22_CRC_CCITT                          0x00
#define RH_RF22_CRC_CRC_16_IBM                     0x01
#define RH_RF22_CRC_IEC_16                         0x02
#define RH_RF22_CRC_BIACHEVA                       0x03

// RH_RF22_REG_32_HEADER_CONTROL1                  0x32
#define RH_RF22_BCEN                               0xf0
#define RH_RF22_BCEN_NONE                          0x00
#define RH_RF22_BCEN_HEADER0                       0x10
#define RH_RF22_BCEN_HEADER1                       0x20
#define RH_RF22_BCEN_HEADER2                       0x40
#define RH_RF22_BCEN_HEADER3                       0x80
#define RH_RF22_HDCH                               0x0f
#define RH_RF22_HDCH_NONE                          0x00
#define RH_RF22_HDCH_HEADER0                       0x01
#define RH_RF22_HDCH_HEADER1                       0x02
#define RH_RF22_HDCH_HEADER2                       0x04
#define RH_RF22_HDCH_HEADER3                       0x08

// RH_RF22_REG_33_HEADER_CONTROL2                  0x33
#define RH_RF22_HDLEN                              0x70
#define RH_RF22_HDLEN_0                            0x00
#define RH_RF22_HDLEN_1                            0x10
#define RH_RF22_HDLEN_2                            0x20
#define RH_RF22_HDLEN_3                            0x30
#define RH_RF22_HDLEN_4                            0x40
#define RH_RF22_VARPKLEN                           0x00
#define RH_RF22_FIXPKLEN                           0x08
#define RH_RF22_SYNCLEN                            0x06
#define RH_RF22_SYNCLEN_1                          0x00
#define RH_RF22_SYNCLEN_2                          0x02
#define RH_RF22_SYNCLEN_3                          0x04
#define RH_RF22_SYNCLEN_4                          0x06
#define RH_RF22_PREALEN8                           0x01

// RH_RF22_REG_6D_TX_POWER                         0x6d
// https://www.sparkfun.com/datasheets/Wireless/General/RFM22B.pdf
#define RH_RF22_PAPEAKVAL                          0x80
#define RH_RF22_PAPEAKEN                           0x40
#define RH_RF22_PAPEAKLVL                          0x30
#define RH_RF22_PAPEAKLVL6_5                       0x00
#define RH_RF22_PAPEAKLVL7                         0x10
#define RH_RF22_PAPEAKLVL7_5                       0x20
#define RH_RF22_PAPEAKLVL8                         0x30
#define RH_RF22_LNA_SW                             0x08
#define RH_RF22_TXPOW                              0x07
#define RH_RF22_TXPOW_4X31                         0x08 // Not used in RFM22B
// For RFM22B:
#define RH_RF22_TXPOW_1DBM                         0x00
#define RH_RF22_TXPOW_2DBM                         0x01
#define RH_RF22_TXPOW_5DBM                         0x02
#define RH_RF22_TXPOW_8DBM                         0x03
#define RH_RF22_TXPOW_11DBM                        0x04
#define RH_RF22_TXPOW_14DBM                        0x05 
#define RH_RF22_TXPOW_17DBM                        0x06 
#define RH_RF22_TXPOW_20DBM                        0x07 
// RFM23B only:
#define RH_RF22_RF23B_TXPOW_M8DBM                  0x00 // -8dBm
#define RH_RF22_RF23B_TXPOW_M5DBM                  0x01 // -5dBm
#define RH_RF22_RF23B_TXPOW_M2DBM                  0x02 // -2dBm
#define RH_RF22_RF23B_TXPOW_1DBM                   0x03 // 1dBm
#define RH_RF22_RF23B_TXPOW_4DBM                   0x04 // 4dBm
#define RH_RF22_RF23B_TXPOW_7DBM                   0x05 // 7dBm
#define RH_RF22_RF23B_TXPOW_10DBM                  0x06 // 10dBm
#define RH_RF22_RF23B_TXPOW_13DBM                  0x07 // 13dBm
// RFM23BP only:
#define RH_RF22_RF23BP_TXPOW_28DBM                 0x05 // 28dBm
#define RH_RF22_RF23BP_TXPOW_29DBM                 0x06 // 29dBm
#define RH_RF22_RF23BP_TXPOW_30DBM                 0x07 // 30dBm

// RH_RF22_REG_71_MODULATION_CONTROL2              0x71
#define RH_RF22_TRCLK                              0xc0
#define RH_RF22_TRCLK_NONE                         0x00
#define RH_RF22_TRCLK_GPIO                         0x40
#define RH_RF22_TRCLK_SDO                          0x80
#define RH_RF22_TRCLK_NIRQ                         0xc0
#define RH_RF22_DTMOD                              0x30
#define RH_RF22_DTMOD_DIRECT_GPIO                  0x00
#define RH_RF22_DTMOD_DIRECT_SDI                   0x10
#define RH_RF22_DTMOD_FIFO                         0x20
#define RH_RF22_DTMOD_PN9                          0x30
#define RH_RF22_ENINV                              0x08
#define RH_RF22_FD8                                0x04
#define RH_RF22_MODTYP                             0x30
#define RH_RF22_MODTYP_UNMODULATED                 0x00
#define RH_RF22_MODTYP_OOK                         0x01
#define RH_RF22_MODTYP_FSK                         0x02
#define RH_RF22_MODTYP_GFSK                        0x03


// RH_RF22_REG_75_FREQUENCY_BAND_SELECT            0x75
#define RH_RF22_SBSEL                              0x40
#define RH_RF22_HBSEL                              0x20
#define RH_RF22_FB                                 0x1f

// Define this to include Serial printing in diagnostic routines
#define RH_RF22_HAVE_SERIAL

/////////////////////////////////////////////////////////////////////
/// \class RH_RF22 RH_RF22.h <RH_RF22.h>
/// \brief Driver to send and receive unaddressed, unreliable datagrams via an RF22 and compatible radio transceiver.
///
/// Works with RF22, RF23 based radio modules, and compatible chips and modules, including:
/// - RF22 bare module: http://www.sparkfun.com/products/10153
///   (Caution, that is a 3.3V part, and requires a 3.3V CPU such as Teensy etc or level shifters)
/// - RF22 shield: http://www.sparkfun.com/products/11018 
/// - RF22 integrated board http://www.anarduino.com/miniwireless
/// - RFM23BP bare module: http://www.anarduino.com/details.jsp?pid=130 
/// - Silicon Labs Si4430/31/32 based modules. S4432 is equivalent to RF22. Si4431/30 is equivalent to RF23.
///
/// Data based on https://www.sparkfun.com/datasheets/Wireless/General/RFM22B.pdf
///
/// \par Overview
///
/// This base class provides basic functions for sending and receiving unaddressed, 
/// unreliable datagrams of arbitrary length to 255 octets per packet.
///
/// Manager classes may use this class to implement reliable, addressed datagrams and streams, 
/// mesh routers, repeaters, translators etc.
///
/// On transmission, the TO and FROM addresses default to 0x00, unless changed by a subclass. 
/// On reception the TO addressed is checked against the node address (defaults to 0x00) or the
/// broadcast address (which is 0xff). The ID and FLAGS are set to 0, and not checked by this class.
/// This permits use of the this base RH_RF22 class as an 
/// unaddressed, unreliable datagram service without the use of one the RadioHead Manager classes.
///
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and 
/// modulation scheme.
///
/// \par Details
///
/// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF
/// RF22 and RF23 based radio modules, and compatible chips and modules, 
/// including the RFM22B transceiver module such as 
/// this bare module: http://www.sparkfun.com/products/10153
/// and this shield: http://www.sparkfun.com/products/11018
/// and this module: http://www.hoperfusa.com/details.jsp?pid=131
/// and this integrated board: http://www.anarduino.com/miniwireless
/// and RF23BP modules such as this http://www.anarduino.com/details.jsp?pid=130
///
/// The Hope-RF (http://www.hoperf.com) RFM22B (http://www.hoperf.com/rf_fsk/fsk/RFM22B.htm) 
/// is a low-cost ISM transceiver module. It supports FSK, GFSK, OOK over a wide 
/// range of frequencies and programmable data rates.
/// Manual can be found at https://www.sparkfun.com/datasheets/Wireless/General/RFM22.PDF
///
/// This library provides functions for sending and receiving messages of up to 255 octets on any 
/// frequency supported by the RF22B, in a range of predefined data rates and frequency deviations. 
/// Frequency can be set with 312Hz precision to any frequency from 240.0MHz to 960.0MHz.
///
/// Up to 3 RF22B modules can be connected to an Arduino, permitting the construction of translators
/// and frequency changers, etc.
///
/// The following modulation types are suppported with a range of modem configurations for 
/// common data rates and frequency deviations:
/// - GFSK Gaussian Frequency Shift Keying
/// - FSK Frequency Shift Keying
/// - OOK On-Off Keying
///
/// Support for other RF22B features such as on-chip temperature measurement, analog-digital 
/// converter, transmitter power control etc is also provided.
///
/// Tested on Arduino Diecimila, Uno and Mega with arduino-0021, 1.0.5
/// on OpenSuSE 13.1 and avr-libc-1.6.1-1.15,
/// cross-avr-binutils-2.19-9.1, cross-avr-gcc-4.1.3_20080612-26.5.
/// With HopeRF RFM22 modules that appear to have RF22B chips on board:
///    - Device Type Code = 0x08 (RX/TRX)
///    - Version Code = 0x06
/// Works on Duo. Works with Sparkfun RFM22 Wireless shields. Works with RFM22 modules from http://www.hoperfusa.com/
/// Works with Arduino 1.0 to at least 1.0.5. Works on Maple, Flymaple, Uno32.
///
/// \par Packet Format
///
/// All messages sent and received by this Driver must conform to this packet format:
///
/// - 8 nibbles (4 octets) PREAMBLE
/// - 2 octets SYNC 0x2d, 0xd4
/// - 4 octets HEADER: (TO, FROM, ID, FLAGS)
/// - 1 octet LENGTH (0 to 255), number of octets in DATA
/// - 0 to 255 octets DATA
/// - 2 octets CRC computed with CRC16(IBM), computed on HEADER, LENGTH and DATA
///
/// For technical reasons, the message format is not protocol compatible with the 
/// 'HopeRF Radio Transceiver Message Library for Arduino' http://www.airspayce.com/mikem/arduino/HopeRF from the same author. Nor is it compatible with 
/// 'Virtual Wire' http://www.airspayce.com/mikem/arduino/VirtualWire.pdf also from the same author.
///
/// \par Connecting RFM-22 to Arduino
///
/// If you have the Sparkfun RFM22 Shield (https://www.sparkfun.com/products/11018)
/// the connections described below are done for you on the shield, no changes required, 
/// just add headers and plug it in to an Arduino (but not and Arduino Mega, see below)
///
/// The physical connection between the RF22B and the Arduino requires 3.3V,
/// the 3 x SPI pins (SCK, SDI, SDO), a Slave Select pin and an interrupt pin.
///
/// Note also that on the RFM22B (but not the RFM23B), it is required to control the TX_ANT and
/// RX_ANT pins of the RFM22 in order to control the antenna connection properly. The RH_RF22
/// driver is configured by default so that GPIO0 and GPIO1 outputs can
/// control TX_ANT and RX_ANT input pins respectively automatically. On RFM22, 
/// you must connect GPIO0
/// to TX_ANT and GPIO1 to RX_ANT for this automatic antenna switching to
/// occur.  See setGpioReversed() for more details. These connections are not required on RFM23B.
///
/// If you are using the Sparkfun RF22 shield, it will work with any 5V arduino without modification.
/// Connect the RFM-22 module to most Arduino's like this (Caution, Arduino Mega has different pins for SPI, 
/// see below).
/// \code
///                 Arduino      RFM-22B
///                 GND----------GND-\ (ground in)
///                              SDN-/ (shutdown in)
///                 3V3----------VCC   (3.3V in)
/// interrupt 0 pin D2-----------NIRQ  (interrupt request out)
///          SS pin D10----------NSEL  (chip select in)
///         SCK pin D13----------SCK   (SPI clock in)
///        MOSI pin D11----------SDI   (SPI Data in)
///        MISO pin D12----------SDO   (SPI data out)
///                           /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
///                           \--TX_ANT (TX antenna control in) RFM22B only
///                           /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
///                           \--RX_ANT (RX antenna control in) RFM22B only
/// \endcode
/// For an Arduino Mega:
/// \code
///                 Mega         RFM-22B
///                 GND----------GND-\ (ground in)
///                              SDN-/ (shutdown in)
///                 3V3----------VCC   (3.3V in)
/// interrupt 0 pin D2-----------NIRQ  (interrupt request out)
///          SS pin D53----------NSEL  (chip select in)
///         SCK pin D52----------SCK   (SPI clock in)
///        MOSI pin D51----------SDI   (SPI Data in)
///        MISO pin D50----------SDO   (SPI data out)
///                           /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
///                           \--TX_ANT (TX antenna control in) RFM22B only
///                           /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
///                           \--RX_ANT (RX antenna control in) RFM22B only
/// \endcode
/// For Chipkit Uno32. Caution: you must also ensure jumper JP4 on the Uno32 is set to RD4
/// \code
///                 Arduino      RFM-22B
///                 GND----------GND-\ (ground in)
///                              SDN-/ (shutdown in)
///                 3V3----------VCC   (3.3V in)
/// interrupt 0 pin D38----------NIRQ  (interrupt request out)
///          SS pin D10----------NSEL  (chip select in)
///         SCK pin D13----------SCK   (SPI clock in)
///        MOSI pin D11----------SDI   (SPI Data in)
///        MISO pin D12----------SDO   (SPI data out)
///                           /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
///                           \--TX_ANT (TX antenna control in) RFM22B only
///                           /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
///                           \--RX_ANT (RX antenna control in) RFM22B only
/// \endcode
/// For Teensy 3.1
/// \code
///                 Teensy      RFM-22B
///                 GND----------GND-\ (ground in)
///                              SDN-/ (shutdown in)
///                 3V3----------VCC   (3.3V in)
/// interrupt 2 pin D2-----------NIRQ  (interrupt request out)
///          SS pin D10----------NSEL  (chip select in)
///         SCK pin D13----------SCK   (SPI clock in)
///        MOSI pin D11----------SDI   (SPI Data in)
///        MISO pin D12----------SDO   (SPI data out)
///                           /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
///                           \--TX_ANT (TX antenna control in) RFM22B only
///                           /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
///                           \--RX_ANT (RX antenna control in) RFM22B only
/// \endcode
/// For connecting an Arduino to an RFM23BP module. Note that the antenna control pins are reversed 
/// compared to the RF22.
/// \code
///                 Arduino      RFM-23BP
///                 GND----------GND-\ (ground in)
///                              SDN-/ (shutdown in)
///                 5V-----------VCC   (5V in)
/// interrupt 0 pin D2-----------NIRQ  (interrupt request out)
///          SS pin D10----------NSEL  (chip select in)
///         SCK pin D13----------SCK   (SPI clock in)
///        MOSI pin D11----------SDI   (SPI Data in)
///        MISO pin D12----------SDO   (SPI data out)
///                           /--GPIO0 (GPIO0 out to control receiver antenna RXON)
///                           \--RXON   (RX antenna control in)
///                           /--GPIO1 (GPIO1 out to control transmitter antenna TXON)
///                           \--TXON   (TX antenna control in)
/// \endcode
///
/// and you can then use the default constructor RH_RF22(). 
/// You can override the default settings for the SS pin and the interrupt 
/// in the RH_RF22 constructor if you wish to connect the slave select SS to other than the normal one for your 
/// Arduino (D10 for Diecimila, Uno etc and D53 for Mega)
/// or the interrupt request to other than pin D2 (Caution, different processors have different constraints as to the 
/// pins available for interrupts).
///
/// It is possible to have 2 radios connected to one Arduino, provided each radio has its own 
/// SS and interrupt line (SCK, SDI and SDO are common to both radios)
///
/// Caution: on some Arduinos such as the Mega 2560, if you set the slave select pin to be other than the usual SS 
/// pin (D53 on  Mega 2560), you may need to set the usual SS pin to be an output to force the Arduino into SPI 
/// master mode.
///
/// Caution: Power supply requirements of the RF22 module may be relevant in some circumstances: 
/// RF22 modules are capable of pulling 80mA+ at full power, where Arduino's 3.3V line can
/// give 50mA. You may need to make provision for alternate power supply for
/// the RF22, especially if you wish to use full transmit power, and/or you have
/// other shields demanding power. Inadequate power for the RF22 is reported to cause symptoms such as:
/// - reset's/bootups terminate with "init failed" messages
/// -random termination of communication after 5-30 packets sent/received
/// -"fake ok" state, where initialization passes fluently, but communication doesn't happen
/// -shields hang Arduino boards, especially during the flashing
///
/// Caution: some RF22 breakout boards (such as the HAB-RFM22B-BOA  HAB-RFM22B-BO) reportedly 
/// have the TX_ANT and RX_ANT pre-connected to GPIO0 and GPIO1 round the wrong way. You can work with this
/// if you use setGpioReversed().
///
/// Caution: If you are using a bare RF22 module without IO level shifters, you may have difficulty connecting
/// to a 5V arduino. The RF22 module is 3.3V and its IO pins are 3.3V not 5V. Some Arduinos (Diecimila and
/// Uno) seem to work OK with this, and some (Mega) do not always work reliably. Your Mileage May Vary.
/// For best result, use level shifters, or use a RF22 shield or board with level shifters built in, 
/// such as the Sparkfun RFM22 shield http://www.sparkfun.com/products/11018. 
/// You could also use a 3.3V IO Arduino such as a Pro. 
/// It is recognised that it is difficult to connect 
/// the Sparkfun RFM22 shield to a Mega, since the SPI pins on the Mega are different to other Arduinos, 
/// But it is possible, by bending the SPI pins (D10, D11, D12, D13) on the 
/// shield out of the way before plugging it in to the Mega and jumpering the shield pins to the Mega like this:
/// \code
///   RF22 Shield        Mega
///     D10              D53
///     D13              D52
///     D11              D51
///     D12              D50
/// \endcode
/// 
/// \par Interrupts
///
/// The Driver uses interrupts to react to events in the RF22 module, 
/// such as the reception of a new packet, or the completion of transmission of a packet. 
/// The RH_RF22 interrupt service routine reads status from and writes data
/// to the the RF22 module via the SPI interface. It is very important therefore,
/// that if you are using the RF22 library with another SPI based deviced, that you
/// disable interrupts while you transfer data to and from that other device.
/// Use cli() to disable interrupts and sei() to reenable them.
///
/// \par SPI Interface
///
/// The RF22 module uses the SPI bus to communicate with the Arduino. Arduino
/// IDE includes a hardware SPI class to communicate with SPI devices using
/// the SPI facilities built into the Atmel chips, over the standard designated
/// SPI pins MOSI, MISO, SCK, which are usually on Arduino pins 11, 12 and 13
/// respectively (or 51, 50, 52 on a Mega).
///
/// By default, the RH_RF22 Driver uses the Hardware SPI interface to
/// communicate with the RF22 module. However, if your RF22 SPI is connected to
/// the Arduino through non-standard pins, or the standard Hardware SPI
/// interface will not work for you, you can instead use a bit-banged Software
/// SPI class RHSoftwareSPI, which can be configured to work on any Arduino digital IO pins.
/// See the documentation of RHSoftwareSPI for details.
///
/// The advantages of the Software SPI interface are that it can be used on
/// any Arduino pins, not just the usual dedicated hardware pins. The
/// disadvantage is that it is significantly slower then hardware.
/// If you observe reliable behaviour with the default hardware SPI RHHardwareSPI, but unreliable behaviour 
/// with Software SPI RHSoftwareSPI, it may be due to slow CPU performance.
///
/// Initialisation example with hardware SPI
/// \code
/// #include <RH_RF22.h>
/// RH_RF22 driver;
/// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
/// \endcode
///
/// Initialisation example with software SPI
/// \code
/// #include <RH_RF22.h>
/// #include <RHSoftwareSPI.h>
/// RHSoftwareSPI spi;
/// RH_RF22 driver(10, 2, spi);
/// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
/// \endcode
///
/// \par Memory
///
/// The RH_RF22 Driver requires non-trivial amounts of memory. The sample programs all compile to 
/// about 9 to 14kbytes each on Arduino, which will fit in the flash proram memory of most Arduinos. However, 
/// the RAM requirements are more critical. Most sample programs above will run on Duemilanova, 
/// but not on Diecimila. Even on Duemilanova, the RAM requirements are very close to the 
/// available memory of 2kbytes. Therefore, you should be vary sparing with RAM use in programs that use 
/// the RH_RF22 Driver on Duemilanova.
///
/// The sample RHRouter and RHMesh programs compile to about 14kbytes, 
/// and require more RAM than the others. 
/// They will not run on Duemilanova or Diecimila, but will run on Arduino Mega.
///
/// It is often hard to accurately identify when you are hitting RAM limits on Arduino. 
/// The symptoms can include:
/// - Mysterious crashes and restarts
/// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements)
/// - Hanging
/// - Output from Serial.print() not appearing
/// 
/// With an Arduino Mega, with 8 kbytes of SRAM, there is much more RAM headroom for 
/// your own elaborate programs. 
/// This library is reported to work with Arduino Pro Mini, but that has not been tested by me.
///
/// The RF22M modules use an inexpensive crystal to control the frequency synthesizer, and therfore you can expect 
/// the transmitter and receiver frequencies to be subject to the usual inaccuracies of such crystals. The RF22
/// contains an AFC circuit to compensate for differences in transmitter and receiver frequencies. 
/// It does this by altering the receiver frequency during reception by up to the pull-in frequency range. 
/// This RF22 library enables the AFC and by default sets the pull-in frequency range to
/// 0.05MHz, which should be sufficient to handle most situations. However, if you observe unexplained packet losses
/// or failure to operate correctly all the time it may be because your modules have a wider frequency difference, and
/// you may need to set the afcPullInRange to a different value, using setFrequency();
///
/// \par Transmitter Power
///
/// You can control the transmitter power on the RF22 and RF23 transceivers
/// with the RH_RF22::setTxPower() function. The argument can be any of the
/// RH_RF22_TXPOW_* (for RFM22) or RH_RF22_RF23B_TXPOW_* (for RFM23) values. 
/// The default is RH_RF22_TXPOW_8DBM/RH_RF22_RF23B_TXPOW_1DBM . Eg:
/// \code
/// driver.setTxPower(RH_RF22_TXPOW_2DBM);
/// \endcode
///
/// The RF23BP has higher power capability, there are
/// several power settings that are specific to the RF23BP only:
///
/// - RH_RF22_RF23BP_TXPOW_28DBM
/// - RH_RF22_RF23BP_TXPOW_29DBM
/// - RH_RF22_RF23BP_TXPOW_38DBM
///
/// CAUTION: the high power settings available on the RFM23BP require
/// significant power supply current.  For example at +30dBm, the typical chip
/// supply current is 550mA. This will overwhelm some small CPU board power
/// regulators and USB supplies. If you use this chip at high power make sure
/// you have an adequate supply current providing full 5V to the RFM23BP (and
/// the CPU if required), otherwise you can expect strange behaviour like
/// hanging, stopping, incorrect power levels, RF power amp overheating etc.
/// You must also ensure that the RFM23BP GPIO pins are connected to the
/// antenna switch control pins like so:
////
/// \code
/// GPIO0 <-> RXON
/// GPIO1 <-> TXON
/// \endcode
///
/// The RF output impedance of the RFM22BP module is 50 ohms.  In our
/// experiments we found that the most critical issue (besides a suitable
/// power supply) is to ensure that the antenna impedance is also near 50
/// ohms. Connecting a simple 1/4 wavelength (ie a 17.3cm single wire)
/// directly to the antenna output <b>will not work at full 30dBm power</b>,
/// and will result in the transmitter hanging and/or the power amp
/// overheating. Connect a proper 50 ohm impedance transmission line or
/// antenna, and prevent RF radiation into the radio and arduino modules,
/// in order to get full, reliable power. Our tests show that a 433MHz
/// RFM23BP feeding a 50 ohm transmission line with a VHF discone antenna at
/// the end results in full power output and the power amp transistor on the
/// RFM22BP module runnning slightly warm but not hot. We recommend you use
/// the services of a competent RF engineer when trying to use this high power
/// module.
///
/// Note: with RFM23BP, the reported maximum possible power when operating on 3.3V is 27dBm.
///
/// We have made some actual power measurements against
/// programmed power for Sparkfun RFM22 wireless module under the following conditions:
/// - Sparkfun RFM22 wireless module, Duemilanove, USB power
/// - 10cm RG58C/U soldered direct to RFM22 module ANT and GND
/// - bnc connecteor
/// - 12dB attenuator
/// - BNC-SMA adapter
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power           Measured Power
///    dBm                         dBm
///    1                           -5.6
///    2                           -3.8
///    5                           -2.2
///    8                           -0.6
///    11                           1.2
///    14                           11.6
///    17                           14.4
///    20                           18.0
/// \endcode
/// (Caution: we dont claim laboratory accuracy for these measurements)
/// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna.
///
/// \par Performance
///
/// Some simple speed performance tests have been conducted.
/// In general packet transmission rate will be limited by the modulation scheme.
/// Also, if your code does any slow operations like Serial printing it will also limit performance. 
/// We disabled any printing in the tests below.
/// We tested with RH_RF22::GFSK_Rb125Fd125, which is probably the fastest scheme available.
/// We tested with a 13 octet message length, over a very short distance of 10cm.
///
/// Transmission (no reply) tests with modulation RH_RF22::GFSK_Rb125Fd125 and a 
/// 13 octet message show about 330 messages per second transmitted.
///
/// Transmit-and-wait-for-a-reply tests with modulation RH_RF22::GFSK_Rb125Fd125 and a 
/// 13 octet message (send and receive) show about 160 round trips per second.
///
/// \par Compatibility with RF22 library
/// The RH_RF22 driver is based on our earlier RF22 library http://www.airspayce.com/mikem/arduino/RF22
/// We have tried hard to be as compatible as possible with the earlier RF22 library, but there are some differences:
/// - Different constructor.
/// - Indexes for some modem configurations have changed (we recommend you use the symbolic names, not integer indexes).
///
/// The major difference is that under RadioHead, you are
/// required to create 2 objects (ie RH_RF22 and a manager) instead of just one object under RF22
/// (ie RHMesh, RHRouter, RHReliableDatagram or RHDatagram).
/// It may be sufficient or you to change for example:
/// \code
/// RF22ReliableDatagram rf22(CLIENT_ADDRESS);
/// \endcode
/// to:
/// \code
/// RH_RF22 driver;
/// RHReliableDatagram rf22(driver, CLIENT_ADDRESS);
/// \endcode
/// and any instance of RF22_MAX_MESSAGE_LEN to RH_RF22_MAX_MESSAGE_LEN
///
/// RadioHead version 1.6 changed the way the interrupt pin number is
/// specified on Arduino and Uno32 platforms. If your code previously
/// specifed a non-default interrupt pin number in the RH_RF22 constructor,
/// you may need to review your code to specify the correct interrrupt pin
/// (and not the interrupt number as before).
class RH_RF22 : public RHSPIDriver
{
public:

    /// \brief Defines register values for a set of modem configuration registers
    ///
    /// Defines register values for a set of modem configuration registers
    /// that can be passed to setModemConfig()
    /// if none of the choices in ModemConfigChoice suit your need
    /// setModemConfig() writes the register values to the appropriate RH_RF22 registers
    /// to set the desired modulation type, data rate and deviation/bandwidth.
    /// Suitable values for these registers can be computed using the register calculator at
    /// http://www.hoperf.com/upload/rf/RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls
    typedef struct
    {
	uint8_t    reg_1c;   ///< Value for register RH_RF22_REG_1C_IF_FILTER_BANDWIDTH
	uint8_t    reg_1f;   ///< Value for register RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE
	uint8_t    reg_20;   ///< Value for register RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE
	uint8_t    reg_21;   ///< Value for register RH_RF22_REG_21_CLOCK_RECOVERY_OFFSET2 
	uint8_t    reg_22;   ///< Value for register RH_RF22_REG_22_CLOCK_RECOVERY_OFFSET1 
	uint8_t    reg_23;   ///< Value for register RH_RF22_REG_23_CLOCK_RECOVERY_OFFSET0
	uint8_t    reg_24;   ///< Value for register RH_RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1
	uint8_t    reg_25;   ///< Value for register RH_RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0 
	uint8_t    reg_2c;   ///< Value for register RH_RF22_REG_2C_OOK_COUNTER_VALUE_1 
	uint8_t    reg_2d;   ///< Value for register RH_RF22_REG_2D_OOK_COUNTER_VALUE_2
	uint8_t    reg_2e;   ///< Value for register RH_RF22_REG_2E_SLICER_PEAK_HOLD 
	uint8_t    reg_58;   ///< Value for register RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING
	uint8_t    reg_69;   ///< Value for register RH_RF22_REG_69_AGC_OVERRIDE1 
	uint8_t    reg_6e;   ///< Value for register RH_RF22_REG_6E_TX_DATA_RATE1
	uint8_t    reg_6f;   ///< Value for register RH_RF22_REG_6F_TX_DATA_RATE0 
	uint8_t    reg_70;   ///< Value for register RH_RF22_REG_70_MODULATION_CONTROL1
	uint8_t    reg_71;   ///< Value for register RH_RF22_REG_71_MODULATION_CONTROL2
	uint8_t    reg_72;   ///< Value for register RH_RF22_REG_72_FREQUENCY_DEVIATION
    } ModemConfig;
  
    /// Choices for setModemConfig() for a selected subset of common modulation types,
    /// and data rates. If you need another configuration, use the register calculator.
    /// and call setModemRegisters() with your desired settings.
    /// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic
    /// definitions and not their integer equivalents: its possible that new values will be
    /// introduced in later versions (though we will try to avoid it).
    typedef enum
    {
	UnmodulatedCarrier = 0, ///< Unmodulated carrier for testing
	FSK_PN9_Rb2Fd5,      ///< FSK, No Manchester, Rb = 2kbs, Fd = 5kHz, PN9 random modulation for testing

	FSK_Rb2Fd5,	     ///< FSK, No Manchester, Rb = 2kbs,    Fd = 5kHz
	FSK_Rb2_4Fd36,       ///< FSK, No Manchester, Rb = 2.4kbs,  Fd = 36kHz
	FSK_Rb4_8Fd45,       ///< FSK, No Manchester, Rb = 4.8kbs,  Fd = 45kHz
	FSK_Rb9_6Fd45,       ///< FSK, No Manchester, Rb = 9.6kbs,  Fd = 45kHz
	FSK_Rb19_2Fd9_6,     ///< FSK, No Manchester, Rb = 19.2kbs, Fd = 9.6kHz
	FSK_Rb38_4Fd19_6,    ///< FSK, No Manchester, Rb = 38.4kbs, Fd = 19.6kHz
	FSK_Rb57_6Fd28_8,    ///< FSK, No Manchester, Rb = 57.6kbs, Fd = 28.8kHz
	FSK_Rb125Fd125,      ///< FSK, No Manchester, Rb = 125kbs,  Fd = 125kHz
	FSK_Rb_512Fd2_5,     ///< FSK, No Manchester, Rb = 512bs,  Fd = 2.5kHz, for POCSAG compatibility
	FSK_Rb_512Fd4_5,     ///< FSK, No Manchester, Rb = 512bs,  Fd = 4.5kHz, for POCSAG compatibility

	GFSK_Rb2Fd5,         ///< GFSK, No Manchester, Rb = 2kbs,    Fd = 5kHz
	GFSK_Rb2_4Fd36,      ///< GFSK, No Manchester, Rb = 2.4kbs,  Fd = 36kHz
	GFSK_Rb4_8Fd45,      ///< GFSK, No Manchester, Rb = 4.8kbs,  Fd = 45kHz
	GFSK_Rb9_6Fd45,      ///< GFSK, No Manchester, Rb = 9.6kbs,  Fd = 45kHz
	GFSK_Rb19_2Fd9_6,    ///< GFSK, No Manchester, Rb = 19.2kbs, Fd = 9.6kHz
	GFSK_Rb38_4Fd19_6,   ///< GFSK, No Manchester, Rb = 38.4kbs, Fd = 19.6kHz
	GFSK_Rb57_6Fd28_8,   ///< GFSK, No Manchester, Rb = 57.6kbs, Fd = 28.8kHz
	GFSK_Rb125Fd125,     ///< GFSK, No Manchester, Rb = 125kbs,  Fd = 125kHz

	OOK_Rb1_2Bw75,       ///< OOK, No Manchester, Rb = 1.2kbs,  Rx Bandwidth = 75kHz
	OOK_Rb2_4Bw335,      ///< OOK, No Manchester, Rb = 2.4kbs,  Rx Bandwidth = 335kHz
	OOK_Rb4_8Bw335,      ///< OOK, No Manchester, Rb = 4.8kbs,  Rx Bandwidth = 335kHz
	OOK_Rb9_6Bw335,      ///< OOK, No Manchester, Rb = 9.6kbs,  Rx Bandwidth = 335kHz
	OOK_Rb19_2Bw335,     ///< OOK, No Manchester, Rb = 19.2kbs, Rx Bandwidth = 335kHz
	OOK_Rb38_4Bw335,     ///< OOK, No Manchester, Rb = 38.4kbs, Rx Bandwidth = 335kHz
	OOK_Rb40Bw335        ///< OOK, No Manchester, Rb = 40kbs,   Rx Bandwidth = 335kHz

    } ModemConfigChoice;

    /// \brief Defines the available choices for CRC
    /// Types of permitted CRC polynomials, to be passed to setCRCPolynomial()
    /// They deliberately have the same numeric values as the crc[1:0] field of Register
    /// RH_RF22_REG_30_DATA_ACCESS_CONTROL
    typedef enum
    {
	CRC_CCITT = 0,       ///< CCITT
	CRC_16_IBM = 1,      ///< CRC-16 (IBM) The default used by RH_RF22 driver
	CRC_IEC_16 = 2,      ///< IEC-16
	CRC_Biacheva = 3     ///< Biacheva
    } CRCPolynomial;

    /// Constructor. You can have multiple instances, but each instance must have its own
    /// interrupt and slave select pin. After constructing, you must call init() to initialise the interface
    /// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient
    /// distinct interrupt lines, one for each instance.
    /// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RH_RF22 before
    /// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple)
    /// \param[in] interruptPin The interrupt Pin number that is connected to the RF22 NIRQ interrupt line. 
    /// Defaults to pin 2, as required by sparkfun RFM22 module shields.
    /// Caution: You must specify an interrupt capable pin.
    /// On many Arduino boards, there are limitations as to which pins may be used as interrupts.
    /// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin.
    /// On other Arduinos pins 2 or 3. 
    /// See http://arduino.cc/en/Reference/attachInterrupt for more details.
    /// On Chipkit Uno32, pins 38, 2, 7, 8, 35.
    /// On other boards, any digital pin may be used.
    /// \param[in] spi Pointer to the SPI interface object to use. 
    ///                Defaults to the standard Arduino hardware SPI interface
    RH_RF22(PINS slaveSelectPin, PINS interruptPin, RHGenericSPI& spi = hardware_spi);
  
    /// Initialises this instance and the radio module connected to it.
    /// The following steps are taken:
    /// - Initialise the slave select pin and the SPI interface library
    /// - Software reset the RH_RF22 module
    /// - Checks the connected RH_RF22 module is either a RH_RF22_DEVICE_TYPE_RX_TRX or a RH_RF22_DEVICE_TYPE_TX
    /// - Attaches an interrupt handler
    /// - Configures the RH_RF22 module
    /// - Sets the frequency to 434.0 MHz
    /// - Sets the modem data rate to FSK_Rb2_4Fd36
    /// \return  true if everything was successful
    bool        init();

    /// Issues a software reset to the 
    /// RH_RF22 module. Blocks for 1ms to ensure the reset is complete.
    void           reset();

    /// Reads and returns the device status register RH_RF22_REG_02_DEVICE_STATUS
    /// \return The value of the device status register
    uint8_t        statusRead();
  
    /// Reads a value from the on-chip analog-digital converter
    /// \param[in] adcsel Selects the ADC input to measure. One of RH_RF22_ADCSEL_*. Defaults to the 
    /// internal temperature sensor
    /// \param[in] adcref Specifies the refernce voltage to use. One of RH_RF22_ADCREF_*. 
    /// Defaults to the internal bandgap voltage.
    /// \param[in] adcgain Amplifier gain selection. 
    /// \param[in] adcoffs Amplifier offseet (0 to 15).
    /// \return The analog value. 0 to 255.
    uint8_t        adcRead(uint8_t adcsel = RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR,
			   uint8_t adcref = RH_RF22_ADCREF_BANDGAP_VOLTAGE,
			   uint8_t adcgain = 0, 
			   uint8_t adcoffs = 0);

    /// Reads the on-chip temperature sensor
    /// \param[in] tsrange Specifies the temperature range to use. One of RH_RF22_TSRANGE_*
    /// \param[in] tvoffs Specifies the temperature value offset. This is actually signed value 
    /// added to the measured temperature value
    /// \return The measured temperature.
    uint8_t        temperatureRead(uint8_t tsrange = RH_RF22_TSRANGE_M64_64C, uint8_t tvoffs = 0);   

    /// Reads the wakeup timer value in registers RH_RF22_REG_17_WAKEUP_TIMER_VALUE1 
    /// and RH_RF22_REG_18_WAKEUP_TIMER_VALUE2
    /// \return The wakeup timer value 
    uint16_t       wutRead();

    /// Sets the wakeup timer period registers RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1,
    /// RH_RF22_REG_15_WAKEUP_TIMER_PERIOD2 and RH_RF22_R<EG_16_WAKEUP_TIMER_PERIOD3
    /// \param[in] wtm Wakeup timer mantissa value
    /// \param[in] wtr Wakeup timer exponent R value
    /// \param[in] wtd Wakeup timer exponent D value
    void           setWutPeriod(uint16_t wtm, uint8_t wtr = 0, uint8_t wtd = 0);

    /// Sets the transmitter and receiver centre frequency
    /// \param[in] centre Frequency in MHz. 240.0 to 960.0. Caution, some versions of RH_RF22 and derivatives 
    /// implemented more restricted frequency ranges.
    /// \param[in] afcPullInRange Sets the AF Pull In Range in MHz. Defaults to 0.05MHz (50kHz). 
    /// Range is 0.0 to 0.159375
    /// for frequencies 240.0 to 480MHz, and 0.0 to 0.318750MHz for  frequencies 480.0 to 960MHz, 
    /// \return true if the selected frquency centre + (fhch * fhs) is within range and the afcPullInRange 
    /// is within range
    bool        setFrequency(float centre, float afcPullInRange = 0.05);

    /// Sets the frequency hopping step size.
    /// \param[in] fhs Frequency Hopping step size in 10kHz increments
    /// \return true if centre + (fhch * fhs) is within limits
    bool        setFHStepSize(uint8_t fhs);

    /// Sets the frequncy hopping channel. Adds fhch * fhs to centre frequency
    /// \param[in] fhch The channel number
    /// \return true if the selected frquency centre + (fhch * fhs) is within range
    bool        setFHChannel(uint8_t fhch);

    /// Reads and returns the current RSSI value from register RH_RF22_REG_26_RSSI. Caution: this is
    /// in internal units (see figure 31 of RFM22B/23B documentation), not in dBm. If you want to find the RSSI in dBm
    /// of the last received message, use lastRssi() instead.
    /// \return The current RSSI value 
    uint8_t        rssiRead();

    /// Reads and returns the current EZMAC value from register RH_RF22_REG_31_EZMAC_STATUS
    /// \return The current EZMAC value
    uint8_t        ezmacStatusRead();

    /// Sets the parameters for the RH_RF22 Idle mode in register RH_RF22_REG_07_OPERATING_MODE. 
    /// Idle mode is the mode the RH_RF22 will be in when not transmitting or receiving. The default idle mode 
    /// is RH_RF22_XTON ie READY mode. 
    /// \param[in] mode Mask of mode bits, using RH_RF22_SWRES, RH_RF22_ENLBD, RH_RF22_ENWT, 
    /// RH_RF22_X32KSEL, RH_RF22_PLLON, RH_RF22_XTON.
    void           setOpMode(uint8_t mode);

    /// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running, 
    /// disables them.
    void           setModeIdle();

    /// If current mode is Tx or Idle, changes it to Rx. 
    /// Starts the receiver in the RH_RF22.
    void           setModeRx();

    /// If current mode is Rx or Idle, changes it to Rx. 
    /// Starts the transmitter in the RH_RF22.
    void           setModeTx();

    /// Sets the transmitter power output level in register RH_RF22_REG_6D_TX_POWER.
    /// Be a good neighbour and set the lowest power level you need.
    /// After init(), the power will be set to RH_RF22::RH_RF22_TXPOW_8DBM on RF22B
    /// or RH_RF22_RF23B_TXPOW_1DBM on an RF23B.
    /// The highest power available on RF22B is RH_RF22::RH_RF22_TXPOW_20DBM (20dBm).
    /// The highest power available on RF23B is RH_RF22::RH_RF22_RF23B_TXPOW_13DBM (13dBm).
    /// Higher powers are available on RF23BP (using RH_RF22_RF23BP_TXPOW_*), 
    /// and then only with an adequate power supply. See comments above.
    /// Caution: In some countries you may only select certain higher power levels if you
    /// are also using frequency hopping. Make sure you are aware of the legal
    /// limitations and regulations in your region.
    /// \param[in] power Transmitter power level, one of RH_RF22_*TXPOW_*
    void           setTxPower(uint8_t power);

    /// Sets all the registered required to configure the data modem in the RH_RF22, including the data rate, 
    /// bandwidths etc. You cas use this to configure the modem with custom configuraitons if none of the 
    /// canned configurations in ModemConfigChoice suit you.
    /// \param[in] config A ModemConfig structure containing values for the modem configuration registers.
    void           setModemRegisters(const ModemConfig* config);

    /// Select one of the predefined modem configurations. If you need a modem configuration not provided 
    /// here, use setModemRegisters() with your own ModemConfig.
    /// \param[in] index The configuration choice.
    /// \return true if index is a valid choice.
    bool        setModemConfig(ModemConfigChoice index);

    /// Starts the receiver and checks whether a received message is available.
    /// This can be called multiple times in a timeout loop
    /// \return true if a complete, valid message has been received and is able to be retrieved by
    /// recv()
    bool        available();

    /// Turns the receiver on if it not already on.
    /// If there is a valid message available, copy it to buf and return true
    /// else return false.
    /// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
    /// You should be sure to call this function frequently enough to not miss any messages
    /// It is recommended that you call it in your main loop.
    /// \param[in] buf Location to copy the received message
    /// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
    /// \return true if a valid message was copied to buf
    bool        recv(uint8_t* buf, uint8_t* len);

    /// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
    /// Then loads a message into the transmitter and starts the transmitter. Note that a message length
    /// of 0 is NOT permitted. 
    /// \param[in] data Array of data to be sent
    /// \param[in] len Number of bytes of data to send (> 0)
    /// \return true if the message length was valid and it was correctly queued for transmit
    bool        send(const uint8_t* data, uint8_t len);

    /// Sets the length of the preamble
    /// in 4-bit nibbles. 
    /// Caution: this should be set to the same 
    /// value on all nodes in your network. Default is 8.
    /// Sets the message preamble length in RH_RF22_REG_34_PREAMBLE_LENGTH
    /// \param[in] nibbles Preamble length in nibbles of 4 bits each.  
    void           setPreambleLength(uint8_t nibbles);

    /// Sets the sync words for transmit and receive in registers RH_RF22_REG_36_SYNC_WORD3 
    /// to RH_RF22_REG_39_SYNC_WORD0
    /// Caution: SyncWords should be set to the same 
    /// value on all nodes in your network. Nodes with different SyncWords set will never receive
    /// each others messages, so different SyncWords can be used to isolate different
    /// networks from each other. Default is { 0x2d, 0xd4 }.
    /// \param[in] syncWords Array of sync words, 1 to 4 octets long
    /// \param[in] len Number of sync words to set, 1 to 4.
    void           setSyncWords(const uint8_t* syncWords, uint8_t len);

    /// Tells the receiver to accept messages with any TO address, not just messages
    /// addressed to thisAddress or the broadcast address
    /// \param[in] promiscuous true if you wish to receive messages with any TO address
    virtual void   setPromiscuous(bool promiscuous);

    /// Sets the CRC polynomial to be used to generate the CRC for both receive and transmit
    /// otherwise the default of CRC_16_IBM will be used.
    /// \param[in] polynomial One of RH_RF22::CRCPolynomial choices CRC_*
    /// \return true if polynomial is a valid option for this radio.
    bool setCRCPolynomial(CRCPolynomial polynomial);

    /// Configures GPIO pins for reversed GPIO connections to the antenna switch.
    /// Normally on RF22 modules, GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit
    /// and GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive. The RH_RF22 driver
    /// configures the GPIO pins during init() so the antenna switch works as expected.
    /// However, some RF22 modules, such as HAB-RFM22B-BOA HAB-RFM22B-BO, also Si4432 sold by Dorji.com via Tindie.com
    /// have these GPIO pins reversed, so that GPIO0 is connected to RX_ANT.
    /// Call this function with a true argument after init() and before transmitting
    /// in order to configure the module for reversed GPIO pins.
    /// \param[in] gpioReversed Set to true if your RF22 module has reversed GPIO antenna switch connections.
    void setGpioReversed(bool gpioReversed = false);

    /// Returns the time in millis since the last preamble was received, and when the last
    /// RSSI measurement was made.
    uint32_t getLastPreambleTime();

    /// The maximum message length supported by this driver
    /// \return The maximum message length supported by this driver
    uint8_t maxMessageLength();

    /// Sets the radio into low-power sleep mode.
    /// If successful, the transport will stay in sleep mode until woken by 
    /// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
    /// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
    /// \return true if sleep mode was successfully entered.
    virtual bool    sleep();

protected:
    /// This is a low level function to handle the interrupts for one instance of RH_RF22.
    /// Called automatically by isr*()
    /// Should not need to be called.
    void           handleInterrupt();

    /// Clears the receiver buffer.
    /// Internal use only
    void           clearRxBuf();

    /// Clears the transmitter buffer
    /// Internal use only
    void           clearTxBuf();

    /// Fills the transmitter buffer with the data of a mesage to be sent
    /// \param[in] data Array of data bytes to be sent (1 to 255)
    /// \param[in] len Number of data bytes in data (> 0)
    /// \return true if the message length is valid
    bool           fillTxBuf(const uint8_t* data, uint8_t len);

    /// Appends the transmitter buffer with the data of a mesage to be sent
    /// \param[in] data Array of data bytes to be sent (0 to 255)
    /// \param[in] len Number of data bytes in data
    /// \return false if the resulting message would exceed RH_RF22_MAX_MESSAGE_LEN, else true
    bool           appendTxBuf(const uint8_t* data, uint8_t len);

    /// Internal function to load the next fragment of 
    /// the current message into the transmitter FIFO
    /// Internal use only
    void           sendNextFragment();

    ///  function to copy the next fragment from 
    /// the receiver FIF) into the receiver buffer
    void           readNextFragment();

    /// Clears the RF22 Rx and Tx FIFOs
    /// Internal use only
    void           resetFifos();

    /// Clears the RF22 Rx FIFO
    /// Internal use only
    void           resetRxFifo();

    /// Clears the RF22 Tx FIFO
    /// Internal use only
    void           resetTxFifo();

    /// This function will be called by handleInterrupt() if an RF22 external interrupt occurs. 
    /// This can only happen if external interrupts are enabled in the RF22 
    /// (which they are not by default). 
    /// Subclasses may override this function to get control when an RF22 external interrupt occurs. 
    virtual void   handleExternalInterrupt();

    /// This function will be called by handleInterrupt() if an RF22 wakeup timer interrupt occurs. 
    /// This can only happen if wakeup timer interrupts are enabled in theRF22 
    /// (which they are not by default). 
    /// Subclasses may override this function to get control when an RF22 wakeup timer interrupt occurs. 
    virtual void   handleWakeupTimerInterrupt();

    /// Start the transmission of the contents 
    /// of the Tx buffer
    void           startTransmit();

    /// ReStart the transmission of the contents 
    /// of the Tx buffer after a atransmission failure
    void           restartTransmit();

    void           setThisAddress(uint8_t thisAddress);

    /// Sets the radio operating mode for the case when the driver is idle (ie not
    /// transmitting or receiving), allowing you to control the idle mode power requirements
    /// at the expense of slower transitions to transmit and receive modes.
    /// By default, the idle mode is RH_RF22_XTON,
    /// but eg setIdleMode(RH_RF22_PLL) will provide a much lower
    /// idle current but slower transitions. Call this function after init().
    /// \param[in] idleMode The chip operating mode to use when the driver is idle. One of the valid definitions for RH_RF22_REG_07_OPERATING_MODE
    void setIdleMode(uint8_t idleMode);

protected:
    /// Low level interrupt service routine for RF22 connected to interrupt 0
    static void         isr0();

    /// Low level interrupt service routine for RF22 connected to interrupt 1
    static void         isr1();

    /// Low level interrupt service routine for RF22 connected to interrupt 1
    static void         isr2();

    /// Array of instances connected to interrupts 0 and 1
    static RH_RF22*     _deviceForInterrupt[];

    /// Index of next interrupt number to use in _deviceForInterrupt
    static uint8_t      _interruptCount;

#if (RH_PLATFORM == RH_PLATFORM_MBED)
    /// The configured interrupt pin connected to this instance
    InterruptIn             _interruptPin;
#else
    /// The configured interrupt pin connected to this instance
    uint8_t             _interruptPin;
#endif

    /// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated)
    /// else 0xff
    uint8_t             _myInterruptIndex;

    /// The radio mode to use when mode is idle
    uint8_t             _idleMode; 

    /// The device type reported by the RF22
    uint8_t             _deviceType;

    /// The selected CRC polynomial
    CRCPolynomial       _polynomial;

    // These volatile members may get changed in the interrupt service routine
    /// Number of octets in the receiver buffer
    volatile uint8_t    _bufLen;
    
    /// The receiver buffer
    uint8_t             _buf[RH_RF22_MAX_MESSAGE_LEN];

    /// True when there is a valid message in the Rx buffer
    volatile bool       _rxBufValid;

    /// Index into TX buffer of the next to send chunk
    volatile uint8_t    _txBufSentIndex;
  
    /// Time in millis since the last preamble was received (and the last time the RSSI was measured)
    uint32_t            _lastPreambleTime;
};

/// @example rf22_client.pde
/// @example rf22_server.pde

#endif