AT command firmware for MultiTech Dot devices.

Fork of mDot_AT_firmware by MultiTech

Dot Library Not Included!

Because these example programs can be used for both mDot and xDot devices, the LoRa stack is not included. The libmDot library should be imported if building for mDot devices. The libxDot library should be imported if building for xDot devices. The AT firmware was last tested with mbed-os-5.4.7. Using a version past mbed-os-5.4.7 will cause the build to fail. The library used with the AT firmware has to match the mbed-os version.

Dot Library Version 3 Updates

Dot Library versions 3.x.x require a channel plan to be injected into the stack. The Dot-Examples and Dot-AT-Firmware do this by defining a macro called "CHANNEL_PLAN" that controls the channel plan that will be used in the examples. Available channel plans will be in the Dot Library repository in the plans folder.

Revision 20 and earlier of Dot-Examples and revision 15 and earlier of Dot-AT-Firmware should be used with Dot Library versions prior to 3.0.0.

Fota Library

Th Fota Library must be added to compile for mDot 3.1.0 with Fota support. Latest dev libraries and 3.2.0 release will include Fota with libmDot/libxDot.

AT Firmware Description

This AT Firmware is what ships on mDot and xDot devices. It provides an AT command interface for using the mDot or xDot for LoRa communication.

AT command documentation can be found on Multitech.com.

The firmware changelog can be found here. The library changelog can be found here.

Dot Libraries

Dot Library Limitations

The commit messages in libmDot-mbed5 and libmDot-dev-mbed5 specify the version of the Dot library the commit contains and the version of mbed-os it was compiled against. We recommend building your application with the version of mbed-os specified in the commit message of the version of the Dot library you're using. This will ensure that you don't run into any runtime issues caused by differences in the mbed-os versions.

Stable and development libraries are available for both mDot and xDot platforms. The library chosen must match the target platform. Compiling for the mDot platform with the xDot library or vice versa will not succeed.

mDot Library

Development library for mDot.

libmDot-dev

Stable library for mDot.

libmDot

xDot Library

Development library for xDot.

libxDot-dev

Stable library for xDot.

libxDot

CommandTerminal/CommandTerminal.cpp

Committer:
Jason Reiss
Date:
2020-11-19
Revision:
28:c222ca8383f4
Parent:
27:5fafd3b26ac3
Child:
34:3b696c2b1e4b

File content as of revision 28:c222ca8383f4:

#include "ctype.h"
#include "CommandFactory.h"
#include "CommandTerminal.h"
#include "Command.h"
#include "MTSLog.h"
#include "ChannelPlan.h"
#include <cstdarg>
#include <deque>
#include "mts_at_version.h"

#if defined(TARGET_XDOT_L151CC)
#include "xdot_low_power.h"
#endif

#if defined(TARGET_MTS_MDOT_F411RE)
const char CommandTerminal::banner[] = "\r\n\nMultiTech Systems LoRa XBee Module\r\n\n";
#else
const char CommandTerminal::banner[] = "\r\n\nMultiTech Systems LoRa xDot Module\r\n\n";
#endif
const char CommandTerminal::helpline[] = "Enter '?' for help\r\n";

const char CommandTerminal::newline[] = "\r\n";

// Command error text...
const char CommandTerminal::command_error[] = "Command not found!\r\n";

// Response texts...
const char CommandTerminal::help[] = "\r\nHelp\r\n";
const char CommandTerminal::cmd_error[] = "Invalid command\r\n";
const char CommandTerminal::connect[] = "\r\nCONNECT\r\n";
const char CommandTerminal::no_carrier[] = "\r\nNO CARRIER\r\n";
const char CommandTerminal::done[] = "\r\nOK\r\n";
const char CommandTerminal::error[] = "\r\nERROR\r\n";

// Escape sequence...
const char CommandTerminal::escape_sequence[] = "+++";

mts::ATSerial* CommandTerminal::_serialp = NULL;
mDot* CommandTerminal::_dot = NULL;

CommandTerminal::RadioEvent* CommandTerminal::_events = new RadioEvent();

static bool serial_data_mode = false;
static bool peer_to_peer = false;
static bool command_processing = false;
static bool urc_enabled = false;

std::string CommandTerminal::_errorMessage = "";

static uint8_t _battery_level = 0xFF;

static uint8_t f_data[252]; //max payload 242 plus 10 bytes for format
static uint32_t _rxAddress = 0;
static uint32_t _rxFcnt = 0;

#if defined(TARGET_MTS_MDOT_F411RE)
DigitalOut _packet_rx_pin(D12);
DigitalOut _join_status_pin(A2);
#else
DigitalOut _packet_rx_pin(GPIO1);
DigitalOut _join_status_pin(GPIO0);
#endif

void CommandTerminal::setErrorMessage(const char* message) {
    _errorMessage.assign(message);
}

void CommandTerminal::setErrorMessage(const std::string& message) {
    _errorMessage.assign(message);
}

CommandTerminal::CommandTerminal(mts::ATSerial& serial) :
  _serial(serial),
  _mode(mDot::COMMAND_MODE),
  _sleep_standby(true),
#if defined(TARGET_MTS_MDOT_F411RE)
  _xbee_on_sleep(XBEE_ON_SLEEP),
#else
  _xbee_on_sleep(GPIO2),
#endif
  _autoOTAEnabled(false)
{
    _serialp = &serial;
}

void free_mem() {
    // In order to get free mem within RTOS
    // we need to get the main thread's stack pointer
    // and subtract it with the top of the heap
    // ------+-------------------+   Last Address of RAM (INITIAL_SP)
    //       | Scheduler Stack   |
    //       +-------------------+
    //       | Main Thread Stack |
    //       |         |         |
    //       |         v         |
    //       +-------------------+ <- bottom_of_stack/__get_MSP()
    // RAM   |                   |
    //       |  Available RAM    |
    //       |                   |
    //       +-------------------+ <- top_of_heap
    //       |         ^         |
    //       |         |         |
    //       |       Heap        |
    //       +-------------------+ <- __end__ / HEAP_START (linker defined var)
    //       | ZI                |
    //       +-------------------+
    //       | ZI: Shell Stack   |
    //       +-------------------+
    //       | ZI: Idle Stack    |
    //       +-------------------+
    //       | ZI: Timer Stack   |
    //       +-------------------+
    //       | RW                |
    // ------+===================+  First Address of RAM
    //       |                   |
    // Flash |                   |
    //

    uint32_t bottom_of_stack = __get_MSP();
    char* top_of_heap =  (char *) malloc(sizeof(char));
    uint32_t diff = bottom_of_stack - (uint32_t) top_of_heap;

    free((void *) top_of_heap);

    CommandTerminal::Serial()->writef("%lu bytes\r\n", diff);
}

void CommandTerminal::init() {
    _dot->setEvents(_events);
}

#if MTS_CMD_TERM_VERBOSE
void CommandTerminal::printHelp() {
    const char* name = NULL;
    const char* text = NULL;
    const char* desc = NULL;
    const char* tab = "\t";

    std::string header("Command");
    header.append(tab);
    header.append(tab);
    header.append("Name");
    header.append(tab);
    header.append(tab);
    header.append(tab);
    header.append("Description");

    write(newline);
    write(header.c_str());
    write(newline);
    write(newline);

    Command *cmd = NULL;
    for (int i = 0; i < CommandFactory::NUMBER_OF_CMDS; i++) {
        cmd = CommandFactory::Create(static_cast<CommandFactory::CmdId_t>(i));
        name = cmd->name();
        text = cmd->text();
        desc = cmd->desc();
        write(text);
        if (strlen(text) < 8)
            write(tab);
        write(tab);
        write(name);
        if (strlen(name) < 8)
            write(tab);
        if (strlen(name) < 16)
            write(tab);
        write(tab);
        write(desc);
        write(newline);

        delete cmd;
    }

    write(newline);
}
#endif

bool CommandTerminal::writeable() {
    return _serialp->writeable();
}

bool CommandTerminal::readable() {
    return _serialp->readable();
}

char CommandTerminal::read() {
    char ch;
    _serialp->read(ch);
    return ch;
}

void CommandTerminal::write(const char* message) {
    while (!writeable())
        ;
    _serialp->write(message, strlen(message));
}

void CommandTerminal::writef(const char* format, ...) {
    char buff[256];

    va_list ap;
    va_start(ap, format);
    int size = vsnprintf(buff, 256, format, ap);
    while (!writeable())
        ;
    _serialp->write(buff, size);
    va_end(ap);
}

void CommandTerminal::serialLoop() {
    Timer serial_read_timer;
    std::vector<uint8_t> serial_buffer;
    std::vector<uint8_t> data;
    std::chrono::milliseconds timeout(0);
    std::chrono::milliseconds elapsed_time_ms;

    serial_read_timer.start();

    if (_dot->getStartUpMode() == mDot::SERIAL_MODE) {
        _xbee_on_sleep = GPIO_PIN_SET;

        timeout = std::chrono::milliseconds(_dot->getWakeDelay());
        elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(serial_read_timer.elapsed_time());

        // wait for timeout or start of serial data
        while (!readable() && elapsed_time_ms < timeout && !_serialp->escaped()) {
            ThisThread::sleep_for(2ms);
            elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(serial_read_timer.elapsed_time());
        }
    }

    if (!readable() && _events->SendAck()) {
        logDebug("SERIAL NOT READABLE and ACK REQUESTED");
        goto L_SEND;
    }

    if (readable() && !_serialp->escaped()) {

        serial_read_timer.reset();
        timeout = std::chrono::milliseconds(_dot->getWakeTimeout());

        while (true) {
            elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(serial_read_timer.elapsed_time());
            if ((elapsed_time_ms >= timeout) ) {

                break;
            }
            if (serial_buffer.size() >= _dot->getNextTxMaxSize())  {
                break;
            }
            if  (_serialp->escaped())  {
                break;
            }
            if (readable()) {
                serial_buffer.push_back(read());
                serial_read_timer.reset();
            } else {
                ThisThread::sleep_for(5ms);
            }
        }

        serial_read_timer.stop(), serial_read_timer.reset();

        if (!serial_buffer.empty()) {
            if (_dot->getStartUpMode() == mDot::SERIAL_MODE)
                 _xbee_on_sleep = GPIO_PIN_RESET;

L_SEND:
            // wait for any duty cycle limit to expire
            while (_dot->getNextTxMs() > 0 && !_serialp->escaped()) {
                ThisThread::sleep_for(10ms);
            }

            if (_dot->getIsIdle()) {
                logDebug("Received serial data, sending out radio.");
                if(_dot->getRxOutput() == mDot::EXTENDED || _dot->getRxOutput() == mDot::EXTENDED_HEX) {
                    formatPacketSDSend(serial_buffer);
                }

                if (_dot->send(serial_buffer, false) != mDot::MDOT_OK) {
                    logDebug("Send failed.");
                    // If the data should be tossed after send failure, clear buffer
                    if (_dot->getSerialClearOnError()) {
                        serial_buffer.clear();
                    }
                } else {

                    // wait for send to finish
                    do {
                        ThisThread::sleep_for(50ms);
                    } while (!_dot->getIsIdle() && !_serialp->escaped());

                    // call recv to wait for any packet before sending again
                    if (!_serialp->escaped()) {
                        data.clear();
                        _dot->recv(data);
                    }

                    // Clear the serial buffer if send is success
                    serial_buffer.clear();

                    // In P2P and Class B & C mode pending data will be sent automatically without uplink
                    if (peer_to_peer != true && _dot->getClass() == "A") {
                        if (_dot->getDataPending()) {
                            logDebug("Data is pending");
                            goto L_SEND;
                        }
                        if (_dot->getAckRequested()) {
                            logDebug("Ack requested");
                            goto L_SEND;
                        }
                        if (_dot->hasMacCommands()) {
                            logDebug("Pending MAC answers");
                            goto L_SEND;
                        }
                    }
                }
            } else {
                logDebug("Radio is busy, cannot send.\r\n");
                ThisThread::sleep_for(10ms);
            }

        } else {
            logDebug("No data received from serial to send.\r\n");
        }
    }

    if (!_serialp->readable() && _dot->getStartUpMode() == mDot::SERIAL_MODE && !_serialp->escaped()) {
        sleep(true);
    }

    if (_serialp->escaped()) {
        _serialp->clearEscaped();
        _serialp->rxClear();
        serial_data_mode = false;
        _mode = mDot::COMMAND_MODE;
        logDebug("Exit Serial Mode");
        write(done);
        return;
    }

    if (!_dot->getNetworkJoinStatus()) {
        serial_data_mode = false;
        _mode = mDot::COMMAND_MODE;
        logDebug("Exit Serial Mode");
        write(no_carrier);
        return;
    }
}

bool CommandTerminal::autoJoinCheck() {

    std::string escape_buffer;
    int sleep = 1000;
    Timer tmr;
    tmr.start();
    int cnt = 0;

    while (!_dot->getNetworkJoinStatus()) {
        if (!serial_data_mode) {
            write("\r\nJoining network... ");
        }
        logInfo("Joining network... ");

        if (_dot->getNextTxMs() > 0) {
            if (!serial_data_mode) {
                writef("\r\nWaiting %lu s before next join attempt\r\n", _dot->getNextTxMs() / 1000);
            }
            logInfo("Waiting %lu s before next join attempt", _dot->getNextTxMs() / 1000);

            tmr.reset();
            while (_dot->getNextTxMs() > 0 && !_serial.escaped()) {
                osDelay(20);
            }
        }

        if (!_serial.escaped() && _dot->joinNetworkOnce() == mDot::MDOT_OK) {
            if (!serial_data_mode) {
                write("Network Joined\r\n");
                write(done);
            }
            logInfo("Network Joined");
            return false;
        }

        if (!serial_data_mode) {
            write("Network Join failed\r\n");
            write(error);
        }
        logInfo("Network Join failed");

        if (!_serial.escaped() && _dot->getFrequencySubBand() != 0 && _dot->getJoinRetries() > 0 && cnt++ > _dot->getJoinRetries()) {
            cnt = 0;

            if (lora::ChannelPlan::IsPlanFixed(_dot->getFrequencyBand())) {
                uint8_t band = ((_dot->getFrequencySubBand()) % 8) + 1;
                logWarning("Join retries exhausted, switching to sub band %u", band);
                _dot->setFrequencySubBand(band);
            }
        }

        tmr.reset();
        while (tmr.read_ms() < sleep && !_serial.escaped()) {
            osDelay(10);
        }

        if (_serial.escaped()) {
            _serial.clearEscaped();
            serial_data_mode = false;
            _mode = mDot::COMMAND_MODE;
            if (!serial_data_mode) {
                write("Join Canceled\r\n");
                write(done);
            }
            logInfo("Join Canceled\r\n");
            return true;
        }
    }

    return false;
}

#define CMD_DEFS_COUNT  (13)
#define CMD_DEFS_VARIANT_SIZE  (4)
#define CMD_DEFS_LABEL_SIZE  (7)

struct CommandDefinition {
    const char label[CMD_DEFS_LABEL_SIZE];
    const char var[CMD_DEFS_VARIANT_SIZE];
    uint8_t max_args;
    CommandFactory::CmdId_t id;
};

// Table of commands handled locally
static const CommandDefinition cmd_defs[CMD_DEFS_COUNT] = {
    {"", "", 0, CommandFactory::eAT},
    {"E", "?01", 0, CommandFactory::eATE},
    {"V", "?01", 0, CommandFactory::eATVERBOSE},
    {"&K", "?03", 0, CommandFactory::eATK},
    {"+URC", "?", 1, CommandFactory::eURC},
    {"+LW", "?", 0, CommandFactory::eLW},
    {"+SD", "?", 0, CommandFactory::eSD},
    {"&W", "", 0, CommandFactory::eATW},
    {"&WP", "", 0, CommandFactory::eATWP},
    {"+SS", "", 0, CommandFactory::eSS},
    {"+DP", "?", 0, CommandFactory::eDP},
    {"+SLEEP", "", 1, CommandFactory::eSLEEP},
    {"+MEM", "?", 0, CommandFactory::eMEM}
};



void CommandTerminal::start() {

    char ch;
    bool running = true;
    bool echo = _dot->getEcho();
    std::string command;
#if defined(TARGET_MTS_MDOT_F411RE)
    std::deque<std::string> history;
    int history_index = -1;
#endif
    std::vector<std::string> args;
    bool join_canceled = false;

    _autoOTAEnabled = _dot->getJoinMode() == mDot::AUTO_OTA;

    if (_dot->getStartUpMode() == mDot::SERIAL_MODE) {

        serial_data_mode = true;
        _mode = mDot::SERIAL_MODE;

        std::string escape_buffer;
        char ch;

        if (!_dot->getStandbyFlag()) {
            // wake up from power-on/reset

            int escape_timeout = 1000;
            Timer tmr;
            Timer escape_tmr;

            // wait one second for possible escape by user pressing '+' key
            tmr.reset();
            tmr.start();
            escape_tmr.reset();
            escape_tmr.start();
            while (tmr.read_ms() < escape_timeout) {
                if (_serial.readable()) {
                    _serial.read(&ch, 1);
                    escape_buffer += ch;
                }

                if (escape_buffer.find("+") != std::string::npos) {
                    logInfo("Escape detected");
                    join_canceled = true;
                    serial_data_mode = false;
                    _mode = mDot::COMMAND_MODE;
                    command.clear();
                    break;
                }

                if (escape_tmr.read_ms() > escape_timeout)
                    escape_buffer.clear();

                osDelay(1);
            }
        }

        if (_mode == mDot::SERIAL_MODE && !_dot->getNetworkJoinStatus() && _dot->getJoinMode() == mDot::OTA) {
            if (_dot->joinNetworkOnce() != mDot::MDOT_OK) {
                serial_data_mode = false;
                _mode = mDot::COMMAND_MODE;

                logWarning("Start Up Mode set to SERIAL_MODE, but join failed.");
                _serial.writef("Network Not Joined\r\n");
                _serial.writef(error);
            }
        }
    }

    if (_dot->getJoinMode() == mDot::PEER_TO_PEER) {
        peer_to_peer = true;
        Fota::getInstance()->enable(false);
        CommandTerminal::Dot()->clearMacCommands();
        CommandTerminal::Dot()->setTxDataRate(CommandTerminal::Dot()->getTxDataRate());
    } else {
        peer_to_peer = false;
    }
    //Run terminal session
    while (running) {

        if (_events != NULL && CommandTerminal::Dot()->getTestModeEnabled() && _events->PacketReceived && _events->RxPort == 224) {
            _events->handleTestModePacket();
            return;
        }

        // wait for input to reduce at command idle current
        while (!readable() || _mode == mDot::SERIAL_MODE) {
            if (!join_canceled && _autoOTAEnabled) {
                join_canceled = autoJoinCheck();
                if (join_canceled)
                    command.clear();
            }

            if (!_autoOTAEnabled || (!join_canceled && _autoOTAEnabled)) {
                switch (_mode) {
                    case mDot::SERIAL_MODE:
                        // signal wakeup, read serial and output to radio
                        serialLoop();
                        continue;
                        break;
                    default:
                        break;
                }
            }

            ch = '\0';

            if (_mode != mDot::SERIAL_MODE) {
                ThisThread::sleep_for(10ms);
            }
            _serial.escaped();
        }

        // read characters
        if (readable()) {
            ch = read();

            if (ch == '\b' || ch == 0x7f) {
                if (!command.empty()) {
                    writef("\b \b");
                    command.erase(command.size() - 1);
                }
                continue;
            } else if (ch == 0x1b || ch == 0x09) {
                osDelay(20);
                // catch escape sequence, or tab
                char ch1 = 0x00, ch2 = 0x00;

                if (readable()) {
                    ch1 = read();
                    if (readable())
                        ch2 = read();

#if defined(TARGET_MTS_MDOT_F411RE)
                    if (ch1 == 0x5b && ch2 == 0x41) {
                        // up key
                        for (size_t i = 0; i < command.size() + 1; i++) {
                            writef("\b \b");
                        }
                        if (history.size() > 0) {
                            if (++history_index >= int(history.size() - 1))
                                history_index = history.size() - 1;

                            command = history[history_index];
                            writef("%s", history[history_index].c_str());
                        } else {
                            command.clear();
                        }
                    } else if (ch1 == 0x5b && ch2 == 0x42) {

                        // down key
                        for (size_t i = 0; i < command.size() + 1; i++) {
                            writef("\b \b");
                        }

                        if (--history_index < 0) {
                            history_index = -1;
                            command.clear();
                        } else {
                            command = history[history_index];
                            writef("%s", history[history_index].c_str());
                        }
                    }
#endif
                }
                while (readable())
                    read();
                continue;
            } else {
                command += ch;
            }

            // echo chars if enabled
            if (echo && !(ch == '\r' || ch == '\n'))
                writef("%c", ch);
        }

        // look for end of command line
        if (command.find("\n") != std::string::npos || command.find("\r") != std::string::npos) {
            // remove new line or cr character
            command.erase(command.size() - 1);
            write("\r"); // match standard modem output
            write(newline);
        } else {
            continue;
        }

        // trim whitespace from command
        mts::Text::trim(command, "\r\n\t ");

        if (command.size() < 1) {
            command.clear();
            continue;
        }

        _packet_rx_pin = 0;
        command_processing = true;

        // parse command and args
        args.clear();

        // find first '=' character
        size_t delim_index = command.find("=");
        if (delim_index != std::string::npos) {
            args.push_back(command.substr(0, delim_index));
        } else {
            // find first ' ' character
            delim_index = command.find(" ");
            if (delim_index != std::string::npos) {
                args.push_back(command.substr(0, delim_index));
            } else {
                args.push_back(command);
            }
        }

        if (delim_index != std::string::npos) {
            std::vector<std::string> params = mts::Text::split(command.substr(delim_index + 1), ",");
            args.insert(args.end(), params.begin(), params.end());
        }

        args[0] = mts::Text::toUpper(args[0]);
        bool handled = false;

        // print help
        if ((args[0].find("?") == 0 || args[0].find("HELP") == 0) && args.size() == 1) {
#if MTS_CMD_TERM_VERBOSE
            printHelp();
#endif
            command.clear();
            handled = true;
        } else if (args[0].find("AT") == 0) {
            const CommandDefinition* def = NULL;    // Command to handle if matched
            char variant = '\0';                    // Variant character
            for (int d = 0; (d < CMD_DEFS_COUNT) && (def == NULL); ++d) {
                size_t label_size = 2 + strlen(cmd_defs[d].label);
                if (args[0].find(cmd_defs[d].label) == 2) {
                    // Label found following "AT"
                    for (int v = 0; v < CMD_DEFS_VARIANT_SIZE; ++v) {
                        if ((args[0][label_size] == cmd_defs[d].var[v]) &&
                            (args[0][label_size] == '\0' || args[0][label_size + 1] == '\0')) {
                            // Check for variant characters following label, this includes a NULL
                            def = &cmd_defs[d];
                            variant = cmd_defs[d].var[v];
                            break;
                        }
                    }
                }
            }
            if (def != NULL) {
                handled = true;
                if (args.size() == 2 && args[1].length() == 1 && args[1][0] == '?') {
                    handled = false;
                } else if (args.size() - 1 > def->max_args) {
#if MTS_CMD_TERM_VERBOSE
                    write("Invalid argument\r\n");
#endif
                    write(error);
                } else {
                    switch (def->id) {
                        case CommandFactory::eAT:
                            write(done);
                            break;
                        case CommandFactory::eATE:
                            if (variant == '1' || variant == '0') {
                                _dot->setEcho(variant == '1');
                                echo = _dot->getEcho();
                            } else {
                                writef("%d\r\n", _dot->getEcho());
                            }
                            write(done);
                            break;
                        case CommandFactory::eATVERBOSE:
                            if (variant == '1' || variant == '0') {
                                _dot->setVerbose(variant == '1');
                            } else {
                                writef("%d\r\n", _dot->getVerbose());
                            }
                            write(done);
                            break;
                        case CommandFactory::eATK:
                            if (variant == '3' || variant == '0') {
                                _dot->setFlowControl(variant == '3');
                            } else {
                                writef("%d\r\n", (_dot->getFlowControl() ? 3 : 0));
                            }
                            write(done);
                            break;
                        case CommandFactory::eURC:
                            if (args.size() == 1) {
                                writef("%d\r\n", urc_enabled);
                                write(done);
                            } else if (args[1].length() == 1) {
                                if (args[1][0] != '?' && args[1][0] != '0' && args[1][0] != '1') {
#if MTS_CMD_TERM_VERBOSE
                                    write("Invalid argument\r\n");
#endif
                                    write(error);
                                } else if (args[1][0] == '?') {
#if MTS_CMD_TERM_VERBOSE
                                    write("(0:disable,1:enable)\r\n");
                                    write(done);
#else
                                    write(error);
#endif
                                } else {
                                    urc_enabled = (args[1][0] == '1');
                                    write(done);
                                }
                            } else {
                                write(error);
                            }
                            break;
                        case CommandFactory::eLW:
                            writef("%s\r\n", _dot->getMACVersion());
                            write(done);
                            break;
                        case CommandFactory::eMEM:
                            free_mem();
                            write(done);
                            break;
                        case CommandFactory::eSD:
                            if (_dot->getNetworkJoinStatus()) {
                                logDebug("Enter Serial Mode");
                                write(connect);
                                serial_data_mode = true;
                                _serialp->clearEscaped();
                                _mode = mDot::SERIAL_MODE;
                            } else {
                                logDebug("Network Not Joined");
                                write("Network Not Joined\r\n");
                                write(error);
                            }
                            break;
                        case CommandFactory::eATW:
                            if (!_dot->saveConfig()) {
#if MTS_CMD_TERM_VERBOSE
                                write("Failed to save to flash");
#endif
                                write(error);
                            } else {
                                write(done);
                            }
                            break;
                        case CommandFactory::eATWP:
                            if (!_dot->saveProtectedConfig()) {
#if MTS_CMD_TERM_VERBOSE
                                write("Failed to save to flash");
#endif
                                write(error);
                            } else {
                                write(done);
                            }
                            break;
                        case CommandFactory::eSS:
                            _dot->saveNetworkSession();
                            write(done);
                            break;
                        case CommandFactory::eDP:
                            writef("%d\r\n", _dot->getDataPending());
                            write(done);
                            break;
                        case CommandFactory::eSLEEP: {
                            bool temp_sleep_standby;
                            bool valid = false;
                            if ((args.size() > 1) && (args[1].length() == 1)) {
                                if ((args[1][0] != '?' && args[1][0] != '0' && args[1][0] != '1')) {
#if MTS_CMD_TERM_VERBOSE
                                    write("Invalid argument\r\n");
#endif
                                    write(error);
                                } else if (args[1][0] == '?') {
#if MTS_CMD_TERM_VERBOSE
                                    write("(0:deepsleep,1:sleep)\r\n");
                                    write(done);
#else
                                    write(error);
#endif
                                } else {
                                    valid = true;
                                    temp_sleep_standby = (args[1][0] == '0');
                                }
                            } else if (args.size() == 1) {
                                valid = true;
                                temp_sleep_standby = _sleep_standby;
                            } else {
                                write(error);
                            }

                            if (valid) {
                                if (!_dot->getIsIdle()) {
                                    write("Dot is not idle\r\n");
                                    write(error);
                                } else {
                                    _sleep_standby = temp_sleep_standby;
#if defined(TARGET_MTS_MDOT_F411RE)
                                    //Read the board ID. If all 0's, it is revision B. This hardware does not support deep sleep.
                                    DigitalIn ID2(PC_4);
                                    DigitalIn ID1(PC_5);
                                    DigitalIn ID0(PD_2);
                                    if(ID2 == 0 && ID1 == 0 && ID0 == 0 && _sleep_standby == 1){
                                        _sleep_standby = 0;
                                        logWarning("This hardware version does not support deep sleep. Using sleep mode instead.");
                                    }
#endif
                                    write(done);
                                    if (_dot->getBaud() < 9600)
                                        osDelay(20);
                                    else if (_dot->getBaud() > 57600)
                                        osDelay(2);
                                    else
                                        osDelay(5);
                                    this->sleep(_sleep_standby);
                                    osDelay(1);
                                }
                            }
                            break;
                        }
                        default:
                            handled = false;
                            // Unhandled command
                            // Will only reach here if the table contains commands that do not have explicit cases
                            break;
                    }
                }
#ifdef MTS_RADIO_DEBUG_COMMANDS
            } else if (args[0].find("AT+TM!") == 0 && args[0].length() == 6) {
                handled = true;
                if ((args.size() > 1) && (args[1].length() == 1)) {
                    if (args[1][0] == '0' || args[1][0] == '1') {
                        _dot->setTestModeEnabled(args[1][0] == '1');
                        write(done);
                    } else {
                        write(error);
                    }
                } else {
                    writef("%d\r\n", _dot->getTestModeEnabled());
                    write(done);
                }
#endif
            }
        }

        if (!handled) {
            bool found = false;
            bool query = false;

            std::string lookfor = args[0];

#if MTS_CMD_TERM_VERBOSE
            // per command help
            if ((args[0].find("?") == 0 || args[0].find("HELP") == 0)) {
                lookfor = mts::Text::toUpper(args[1]);
            }
#endif
            // trim off any trailing '?' and mark as a query command
            if (args[0].rfind("?") == args[0].length() - 1) {
                query = true;
                lookfor = args[0].substr(0, args[0].length() - 1);
            }

            // search for command
            Command *cmd = NULL;
            for (int i = 0; i < CommandFactory::NUMBER_OF_CMDS; i++) {
                cmd = CommandFactory::Create(static_cast<CommandFactory::CmdId_t>(i));

                // match CMD or CMD? syntax if command is queryable
                if (lookfor == cmd->text() && (!query || (query && cmd->queryable()))) {
                    found = true;
                    _errorMessage.clear();
#if MTS_CMD_TERM_VERBOSE
                    if (args[0] == "HELP") {
                        writef("%s%s", cmd->help().c_str(), newline);
                        write(done);
                    }
                    else if (args.size() > 1 && args[1] == "?") {
                        writef("%s%s", cmd->usage().c_str(), newline);
                        write(done);
                    } else if (!cmd->verify(args)) {
#else
                    if (args.size() > 1 && args[1] == "?") {
                        write(error);
                    } else if (!cmd->verify(args)) {
#endif
                        if (!_errorMessage.empty()) {
                            writef("%s%s", _errorMessage.c_str(), newline);
                        }
                        write(error);
                    } else {
                        _errorMessage.clear();
                        if (cmd->action(args) == 0) {
                            writef("%s", done);
                        } else {
                            // Action was not successful
                            if (_errorMessage.empty()) {
                                // If no error message was set, check for error recorded in mdot
                                std::string dot_error = _dot->getLastError();
                                if (!dot_error.empty()) {
                                    writef("%s%s", dot_error.c_str(), newline);
                                }
                            } else {
                                // Command set an error message
                                writef("%s%s", _errorMessage.c_str(), newline);
                            }
                            write(error);
                        }
                    }
                }

                delete cmd;

                if (found) {
                    break;
                }
            }

            if (!found) {
                write(command_error);
                write(error);
            }
        }


        _join_status_pin = CommandTerminal::Dot()->getNetworkJoinStatus();
        command_processing = false;


#if defined(TARGET_MTS_MDOT_F411RE)
        if (history.size() == 0 || history.front() != command)
            history.push_front(command);
        history_index = -1;
        command.clear();

        while (history.size() > 10)
            history.pop_back();
#else
        command.clear();
#endif
    }
}

void CommandTerminal::sleep(bool standby) {
    _xbee_on_sleep = GPIO_PIN_RESET;

    _serial.rxClear();
    _serial.txClear();

#if defined(TARGET_XDOT_L151CC)
    xdot_save_gpio_state();

    /* GPIO Ports Clock Enable */
    __GPIOA_CLK_ENABLE();
    __GPIOB_CLK_ENABLE();
    __GPIOC_CLK_ENABLE();
    __GPIOH_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct;

    // UART1_TX, UART1_RTS & UART1_CTS to analog nopull - RX could be a wakeup source
    GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_11 | GPIO_PIN_12;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    // I2C_SDA & I2C_SCL to analog nopull
    GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_9;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

    // SPI_MOSI, SPI_MISO, SPI_SCK, & SPI_NSS to analog nopull
    GPIO_InitStruct.Pin = GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

    // iterate through potential wake pins - leave the configured wake pin alone if one is needed
    if (_dot->getWakePin() != WAKE || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_0;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }
    if (_dot->getWakePin() != GPIO0 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_4;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }
    if (_dot->getWakePin() != GPIO1 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_5;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }
    if (_dot->getWakePin() != GPIO2 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_0;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
    }
    if (_dot->getWakePin() != GPIO3 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_2;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
    }
    if (_dot->getWakePin() != UART1_RX || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_10;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }
#else
    uint32_t portA[6];
    uint32_t portB[6];
    uint32_t portC[6];
    uint32_t portD[6];
    uint32_t portH[6];

    //Save the GPIO state.
    portA[0] = GPIOA->MODER;
    portA[1] = GPIOA->OTYPER;
    portA[2] = GPIOA->OSPEEDR;
    portA[3] = GPIOA->PUPDR;
    portA[4] = GPIOA->AFR[0];
    portA[5] = GPIOA->AFR[1];

    portB[0] = GPIOB->MODER;
    portB[1] = GPIOB->OTYPER;
    portB[2] = GPIOB->OSPEEDR;
    portB[3] = GPIOB->PUPDR;
    portB[4] = GPIOB->AFR[0];
    portB[5] = GPIOB->AFR[1];

    portC[0] = GPIOC->MODER;
    portC[1] = GPIOC->OTYPER;
    portC[2] = GPIOC->OSPEEDR;
    portC[3] = GPIOC->PUPDR;
    portC[4] = GPIOC->AFR[0];
    portC[5] = GPIOC->AFR[1];

    portD[0] = GPIOD->MODER;
    portD[1] = GPIOD->OTYPER;
    portD[2] = GPIOD->OSPEEDR;
    portD[3] = GPIOD->PUPDR;
    portD[4] = GPIOD->AFR[0];
    portD[5] = GPIOD->AFR[1];

    portH[0] = GPIOH->MODER;
    portH[1] = GPIOH->OTYPER;
    portH[2] = GPIOH->OSPEEDR;
    portH[3] = GPIOH->PUPDR;
    portH[4] = GPIOH->AFR[0];
    portH[5] = GPIOH->AFR[1];

    /* GPIO Ports Clock Enable */
    __GPIOA_CLK_ENABLE();
    __GPIOB_CLK_ENABLE();
    __GPIOC_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct;

    // Set port A pins to analog nopull
    GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_6 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10
                | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    // Set port B pins to analog nopull
    GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_4;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

    // Set port C pins to analog nopull
    GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_13;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

    // iterate through potential wake pins - leave the configured wake pin alone if one is needed
    // XBEE_DIN - PA3
    // XBEE_DIO2 - PA5
    // XBEE_DIO3 - PA4
    // XBEE_DIO4 - PA7
    // XBEE_DIO5 - PC1
    // XBEE_DIO6 - PA1
    // XBEE_DIO7 - PA0
    // XBEE_SLEEPRQ - PA11

    if (_dot->getWakePin() != XBEE_DIN || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_3;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }

    if (_dot->getWakePin() != XBEE_DIO2 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_5;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }

    if (_dot->getWakePin() != XBEE_DIO3 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_4;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }

         if (_dot->getWakePin() != XBEE_DIO4 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_7;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }

     if (_dot->getWakePin() != XBEE_DIO5 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_1;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
    }

     if (_dot->getWakePin() != XBEE_DIO6 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_1;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }

     if (_dot->getWakePin() != XBEE_DIO7 || _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_0;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }

     if (_dot->getWakePin() != XBEE_SLEEPRQ|| _dot->getWakeMode() == mDot::RTC_ALARM) {
        GPIO_InitStruct.Pin = GPIO_PIN_11;
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    }

#endif
    _dot->sleep(_dot->getWakeInterval(), _dot->getWakeMode(), standby);

#if defined(TARGET_XDOT_L151CC)
    xdot_restore_gpio_state();
#else
    //Restore the GPIO state.
    GPIOA->MODER = portA[0];
    GPIOA->OTYPER = portA[1];
    GPIOA->OSPEEDR = portA[2];
    GPIOA->PUPDR = portA[3];
    GPIOA->AFR[0] = portA[4];
    GPIOA->AFR[1] = portA[5];

    GPIOB->MODER = portB[0];
    GPIOB->OTYPER = portB[1];
    GPIOB->OSPEEDR = portB[2];
    GPIOB->PUPDR = portB[3];
    GPIOB->AFR[0] = portB[4];
    GPIOB->AFR[1] = portB[5];

    GPIOC->MODER = portC[0];
    GPIOC->OTYPER = portC[1];
    GPIOC->OSPEEDR = portC[2];
    GPIOC->PUPDR = portC[3];
    GPIOC->AFR[0] = portC[4];
    GPIOC->AFR[1] = portC[5];

    GPIOD->MODER = portD[0];
    GPIOD->OTYPER = portD[1];
    GPIOD->OSPEEDR = portD[2];
    GPIOD->PUPDR = portD[3];
    GPIOD->AFR[0] = portD[4];
    GPIOD->AFR[1] = portD[5];

    GPIOH->MODER = portH[0];
    GPIOH->OTYPER = portH[1];
    GPIOH->OSPEEDR = portH[2];
    GPIOH->PUPDR = portH[3];
    GPIOH->AFR[0] = portH[4];
    GPIOH->AFR[1] = portH[5];
#endif

    _serial.rxClear();
    _serial.txClear();
    Fota::getInstance()->fixEventQueue();
}

std::string CommandTerminal::formatPacketData(const std::vector<uint8_t>& data, const uint8_t& format) {
    switch(format) {
        case(mDot::HEXADECIMAL):
            return mts::Text::bin2hexString(data);

        case(mDot::BINARY):
            return std::string(data.begin(), data.end());

        case(mDot::EXTENDED):
            return formatPacket(data, false);

        case(mDot::EXTENDED_HEX):
            return formatPacket(data, true);

        default:
            return "";
    }
}

bool CommandTerminal::waitForEscape(int timeout, mDot* dot, WaitType wait) {
    Timer timer;

    timer.start();
    while (timer.read_ms() < timeout) {

        if (dot != NULL) {
            if (wait == WAIT_SEND && (!dot->getIsTransmitting())) {
                return false;
            }
        }

        if (_serialp != NULL && _serialp->escaped()) {
            _serialp->clearEscaped();
            return true;
        }

        osDelay(10);
    }

    return false;
}

void CommandTerminal::wakeup(void) {
}

void CommandTerminal::RadioEvent::RxDone(uint8_t *payload, uint16_t size, int16_t rssi, int16_t snr, lora::DownlinkControl ctrl, uint8_t slot) {
    mDotEvent::RxDone(payload, size, rssi, snr, ctrl, slot);
    logDebug("RadioEvent - RxDone");
}

void CommandTerminal::RadioEvent::RxTimeout(uint8_t slot) {
    mDotEvent::RxTimeout(slot);
    _packet_rx_pin = 0;
}

void CommandTerminal::RadioEvent::PacketRx(uint8_t port, uint8_t *payload, uint16_t size, int16_t rssi, int16_t snr, lora::DownlinkControl ctrl, uint8_t slot, uint8_t retries, uint32_t address, uint32_t fcnt, bool dupRx) {
    mDotEvent::PacketRx(port, payload, size, rssi, snr, ctrl, slot, retries, address, fcnt, dupRx);
    _rxAddress = address;
    _rxFcnt = fcnt;

    if(port == 200 || port == 201 || port == 202) {
        Fota::getInstance()->processCmd(payload, port, size);
        if (CommandTerminal::Dot()->getRxOutput() < mDot::EXTENDED) {
            return;
        }
    }

    _packet_rx_pin = 1;

    if (serial_data_mode && port != 0) {
        if (size > 0) {
            while (!CommandTerminal::Serial()->writeable()) ;
            if (CommandTerminal::Dot()->getRxOutput() >= mDot::EXTENDED) {
                formatPacket(RxPayload, size, CommandTerminal::Dot()->getRxOutput()  == mDot::EXTENDED_HEX);
            } else {
                CommandTerminal::Serial()->write((char*) RxPayload, RxPayloadSize);
            }
        }
        if (!CommandTerminal::Serial()->readable()
            && (_dot->getAckRequested()
                || (peer_to_peer == false && _dot->hasMacCommands()))
            && (peer_to_peer || _dot->getClass() == "C" || _dot->getSettings()->Session.Class == lora::CLASS_B)) {
            _sendAck = true;
        }
    } else if (urc_enabled) {
        if (!command_processing) {
            while (!CommandTerminal::Serial()->writeable()) ;
            if (CommandTerminal::Dot()->getRxOutput() >= mDot::EXTENDED) {
                formatPacket(RxPayload, size, CommandTerminal::Dot()->getRxOutput() == mDot::EXTENDED_HEX);
            } else {
                CommandTerminal::Serial()->write("RECV\r\n", 6);
            }
        }
    }
}

void CommandTerminal::RadioEvent::handleTestModePacket() {
#ifdef MTS_RADIO_DEBUG_COMMANDS
    static uint32_t last_rx_seq = 0;
    bool start_test = false;

    std::string packet = mts::Text::bin2hexString(RxPayload, RxPayloadSize);

    start_test = RxPayloadSize == 4;
    start_test = start_test && (RxPayload[0] == 0x01);
    start_test = start_test && (RxPayload[1] == 0x01);
    start_test = start_test && (RxPayload[2] == 0x01);
    start_test = start_test && (RxPayload[3] == 0x01);

    if (start_test) {
        CommandTerminal::Dot()->getSettings()->Test.TestMode = true;

        last_rx_seq = CommandTerminal::Dot()->getSettings()->Session.UplinkCounter;

        uint16_t testDownlinkCounter = 0;
        uint32_t txPeriod = 5000;
        bool testConfirmed = false;

        // init counter
        std::vector<uint8_t> data;
        uint8_t savedPort = CommandTerminal::Dot()->getAppPort();
        uint8_t savedAcks = CommandTerminal::Dot()->getAck();
        bool savedAdr = CommandTerminal::Dot()->getAdr();

        CommandTerminal::Dot()->setAck(0);
        CommandTerminal::Dot()->setAdr(true);
        CommandTerminal::Dot()->setAppPort(224);

        Timer sentTimer;
        sentTimer.start();
        while (CommandTerminal::Dot()->getSettings()->Test.TestMode) {
TEST_START:
            if (RxPort == 224) {
                data.clear();

                switch (RxPayload[0]) {
                    case 0x00: { // PackageVersionReq
                        data.push_back(0x00);
                        data.push_back(0x06);
                        data.push_back(0x01);
                        break;
                    }
                    case 0x01: { // DutResetReq
                        if (RxPayloadSize == 1) {
                            CommandTerminal::Dot()->resetCpu();
                        }
                        break;
                    }
                    case 0x02: { // DutJoinReq
                        if (RxPayloadSize == 1) {
                            CommandTerminal::Dot()->joinNetworkOnce();
                        }
                        break;
                    }
                    case 0x03: { // SwitchClassReq
                        std::string cls = "A";
                        if (RxPayload[1] > 0 && RxPayload[1] < 3) {
                            cls = RxPayload[1] == 0x01 ? "B" : "C";
                        }
                        CommandTerminal::Dot()->setClass(cls);
                        break;
                    }
                    case 0x04: { // ADR Enabled/Disable
                        if (RxPayload[1] == 1)
                            CommandTerminal::Dot()->setAdr(true);
                        else
                            CommandTerminal::Dot()->setAdr(false);
                        break;
                    }
                    case 0x05: { // RegionalDutyCycleCtrlReq
                        if (RxPayload[1] == 0)
                            CommandTerminal::Dot()->setDisableDutyCycle(true);
                        else
                            CommandTerminal::Dot()->setDisableDutyCycle(false);

                        break;
                    }
                    case 0x06: { // TxPeriodicityChangeReq
                        if (RxPayload[1] < 2)
                            // 0, 1 => 5s
                            txPeriod = 5000U;
                        else if (RxPayload[1] < 8)
                            // 2 - 7 => 10s - 60s
                            txPeriod = (RxPayload[1] - 1) * 10000U;
                        else if (RxPayload[1] < 11) {
                            // 8, 9, 10 => 120s, 240s, 480s
                            txPeriod = 120 * (1 << (RxPayload[1] - 8)) * 1000U;
                        }
                        break;
                    }
                    case 0x07: { // TxFramesCtrl
                        if (RxPayload[1] == 0) {
                            // NO-OP
                        } else if (RxPayload[1] == 1) {
                            testConfirmed = false;
                            CommandTerminal::Dot()->getSettings()->Network.AckEnabled = 0;
                            CommandTerminal::Dot()->getSettings()->Session.Redundancy = 0;
                        } else if (RxPayload[1] == 2) {
                            testConfirmed = true;
                            CommandTerminal::Dot()->getSettings()->Network.AckEnabled = 8;
                            CommandTerminal::Dot()->getSettings()->Session.Redundancy = 8;
                        }
                        break;
                    }
                    case 0x08: { // EchoPayloadReq
                        data.push_back(0x08);
                        for (size_t i = 1; i < RxPayloadSize; i++) {
                            data.push_back(RxPayload[i] + 1);
                        }
                        break;
                    }
                    case 0x09: { // RxAppCntReq
                        data.push_back(0x09);
                        data.push_back(testDownlinkCounter >> 8);
                        data.push_back(testDownlinkCounter & 0xFF);
                        break;
                    }
                    case 0x0A: { // RxAppCntResetReq
                        testDownlinkCounter = 0;
                        break;
                    }
                    case 0x20: { // LinkCheckReq
                        CommandTerminal::Dot()->addMacCommand(lora::MOTE_MAC_LINK_CHECK_REQ, 0, 0);
                        break;
                    }
                    case 0x21: { // DeviceTimeReq
                        CommandTerminal::Dot()->addDeviceTimeRequest();
                        break;
                    }
                    case 0x22: { // PingSlotInfo
                        CommandTerminal::Dot()->setPingPeriodicity(RxPayload[1]);
                        CommandTerminal::Dot()->addMacCommand(lora::MOTE_MAC_PING_SLOT_INFO_REQ, RxPayload[1], 0);
                        break;
                    }
                    case 0x7D: { // TxCw
                        uint32_t freq = 0;
                        uint16_t timeout = 0;
                        uint8_t power = 0;

                        timeout = RxPayload[1] << 8 | RxPayload[2];
                        freq = (RxPayload[3] << 16 | RxPayload[4] << 8 | RxPayload[5]) * 100;
                        power = RxPayload[6];

                        CommandTerminal::Dot()->sendContinuous(true, timeout * 1000, freq, power);
                        break;
                    }
                    case 0x7E: { // DutFPort224DisableReq
                        _dot->setTestModeEnabled(false);
                        CommandTerminal::Dot()->getSettings()->Test.TestMode = false;
                        _dot->saveConfig();
                        break;
                    }
                    case 0x7F: { // DutVersionReq
                        std::string version = AT_APPLICATION_VERSION;
                        int temp = 0;

                        data.push_back(0x7F);
                        int ret = sscanf(&version[0], "%d", &temp);
                        data.push_back(temp); // AT_APP_VERSION_MAJOR; // MAJOR
                        ret = sscanf(&version[2], "%d", &temp);
                        data.push_back(temp); // AT_APP_VERSION_MINOR; // MINOR
                        ret = sscanf(&version[4], "%d", &temp);
                        data.push_back(temp); // AT_APP_VERSION_PATCH; // PATCH
                        break;
                    }
                    default: {
                        break;
                    }
                }
            }

            do {
                if (std::chrono::duration_cast<std::chrono::milliseconds>(sentTimer.elapsed_time()).count() < txPeriod)
                    osDelay(txPeriod - std::chrono::duration_cast<std::chrono::milliseconds>(sentTimer.elapsed_time()).count());

                sentTimer.reset();

                if (CommandTerminal::Dot()->send(data, testConfirmed) == mDot::MDOT_MAX_PAYLOAD_EXCEEDED) {
                    data.clear();
                    RxPort = 0;
                    goto TEST_START;
                }

                if (PacketReceived) {
                    last_rx_seq = CommandTerminal::Dot()->getSettings()->Session.UplinkCounter;
                } else if ( CommandTerminal::Dot()->getSettings()->Session.UplinkCounter - last_rx_seq > 160) {
                    CommandTerminal::Dot()->setAck(savedAcks);
                    CommandTerminal::Dot()->setAppPort(savedPort);
                    CommandTerminal::Dot()->setAdr(savedAdr);
                    CommandTerminal::Dot()->getSettings()->Test.TestMode = false;
                    start_test = false;
                    break;
                }

                data.clear();

            } while (CommandTerminal::Dot()->recv(data) != mDot::MDOT_OK);

            if (RxPort != 0 || RxPayloadSize == 0)
                testDownlinkCounter++;
        }
    }
#endif
}

uint8_t CommandTerminal::getBatteryLevel() {
    return _battery_level;
}

void CommandTerminal::setBatteryLevel(uint8_t battery_level) {
    _battery_level = battery_level;
}

void CommandTerminal::formatPacket(uint8_t* payload, uint16_t size, bool hex) {

    if(_dot->getAckRequested()) {
        f_data[0] = 0;
    } else {
        f_data[0] = 1;
    }

    f_data[1] = _rxAddress & 0xFF;
    f_data[2] = (_rxAddress >> 8) & 0xFF;
    f_data[3] = (_rxAddress >> 16) & 0xFF;
    f_data[4] = (_rxAddress >> 24) & 0xFF;
    f_data[5] = _rxFcnt & 0xFF;
    f_data[6] = (_rxFcnt >> 8) & 0xFF;
    f_data[7] = (_rxFcnt >> 16) & 0xFF;
    f_data[8] = (_rxFcnt >> 24) & 0xFF;
    f_data[9] = _events->RxPort;

    for(int i = 0; i < size; i++)
        f_data[i+10] = payload[i];

    if (hex) {
        std::string data = "RECV " + mts::Text::bin2hexString(f_data, size + 10) + "\r\n";
        CommandTerminal::Serial()->write(data.c_str(), data.size());
    } else {
        CommandTerminal::Serial()->write((char*)f_data, size + 10);
    }
}


std::string CommandTerminal::formatPacket(std::vector<uint8_t> payload, bool hex) {

    if(_dot->getAckRequested()) {
        f_data[0] = 0;
    } else {
        f_data[0] = 1;
    }

    f_data[1] = _rxAddress & 0xFF;
    f_data[2] = (_rxAddress >> 8) & 0xFF;
    f_data[3] = (_rxAddress >> 16) & 0xFF;
    f_data[4] = (_rxAddress >> 24) & 0xFF;
    f_data[5] = _rxFcnt & 0xFF;
    f_data[6] = (_rxFcnt >> 8) & 0xFF;
    f_data[7] = (_rxFcnt >> 16) & 0xFF;
    f_data[8] = (_rxFcnt >> 24) & 0xFF;
    f_data[9] = _events->RxPort;

    for(size_t i = 0; i < payload.size(); i++)
        f_data[i+10] = payload.at(i);

    if (hex) {
        return mts::Text::bin2hexString(f_data, payload.size() + 10);
    } else {
        return std::string((char*)f_data, payload.size() + 10);
    }

}



void CommandTerminal::formatPacketSDSend(std::vector<uint8_t> &payload) {
    if (_dot->getRxOutput() == mDot::EXTENDED_HEX) {
        int temp;
        std::vector<uint8_t> converted;

        for (size_t i=0; i < payload.size(); i+=2) {
            if (sscanf((char*)&payload[i], "%2x", &temp) == 1) {
                logDebug("Converted %s to %d", payload[i] + payload[i+1], temp);
                converted.push_back((uint8_t)temp);
            }
        }

        payload = converted;
    }

    if(payload.size() >= 3) {
        _dot->setAppPort(payload[0]);
        _dot->setRepeat(0);
        _dot->setAck(0);
        switch(payload[1]) {
            case 0:
                _dot->setAck(payload[2]);
                break;
            case 1:
                _dot->setRepeat(payload[2]);
                break;
            default:
                break;
        }
        payload.erase(payload.begin(), payload.begin()+3);
    }

}



CommandTerminal::~CommandTerminal() {
    delete _events;
}