Pilot 1 working code (excluding new patient after calculation). %d changed in %f sensordata serial log.
Dependencies: ADS1015 MPU6050 PixelArray mbed
Fork of Momo_New by
Sensorplate/main.cpp
- Committer:
- ricardo_95
- Date:
- 2017-10-26
- Revision:
- 39:cff99a9b7237
- Parent:
- 38:764847892afc
- Child:
- 40:a5614befa65f
File content as of revision 39:cff99a9b7237:
/********************* CODE INFORMATON ****************************** Date of creation: 30-09-2017 Authors: Danny Eldering & Ricardo Molenaar co-authors: Menno Gravemaker (c) Copyright by Momo Medical BV. Current version name: 2.1.3 Date of modification: 18-10-2017 Purpose of this file: Code for LPC1768 microcontroller for controlling buttons, LED's and communicate to PI Update ‘what’s new in this version?’: New structure added. Readability improved. Code optimized (variables and functions). Todo: -> Fix LED issue (yellow and red flashes at random moments); -> Optimize functions / improve readability; -> Split functions in seperate files?; -> Fix when sensorplate is not connected; -> Rule 570: if statement change to turn off LED's when power is plugged out (also related to rule 106). -> For the speaker two outputs of the uC are used. Add MOSFET with external supply and control these by uC? Source file: http://mbed.com/ Information files: (1) Flowchart: (2) Table serial communication: https://docs.google.com/spreadsheets/d/1kHlithHxtoMDGvbcdH8vwSw5W5ArxlwDPsyfra1dtQM/edit?usp=drive_web (3) Technical manual CU-/software: */ /************************ CONFIG ***********************************/ #include "mbed.h" // Include files and define parameters. #include "Adafruit_ADS1015.h" #include "MPU6050.h" #include "MPU6050_belt.h" #include "neopixel.h" #define NUMBER_LED_FRONT (3) // declaren waarvoor dient #define ONE_COLOR InterruptIn button_lock(p15); // Input on intterupt base decleration. InterruptIn button_reposition(p17); InterruptIn button_mute(p16); InterruptIn button_new_patient(p18); DigitalOut LED_on_dev_board1(LED1); // Decleration of digital outputs. DigitalOut LED_on_dev_board2(LED2); DigitalOut LED_on_dev_board3(LED3); DigitalOut LED_on_dev_board4(LED4); DigitalOut speaker1(p21); // relatie aangeven! DigitalOut speaker2(p22); neopixel::PixelArray indicator_LEDs(p11); PwmOut lock_feedback_LED(p23); // Declaration of pulse with modulation outputs. PwmOut reposition_feedback_LED(p25); PwmOut mute_feedback_LED(p26); PwmOut new_patient_feedback_LED(p24); Timer button_lock_hold_timer; // Timer for time lock button should be pressed. Timer button_calibration_hold_timer; // Timer for calibration function (new patient holding 5 seconds). Timer delay_between_button_pressed; // Timer for time between two buttons (to prevent pressing buttons simultaneously). Timer speaker_timer; // Timer for speaker activation. Timer piezo_electric_sample_timer; // Timer for equally time-spaced samples. /* The code underneath this commentbox has some fixed parameters for serial/ADC reading: -> The address for the angle_device_reference_belt is set to 0x68 in the file MPU6050_belt (rule number: 19); -> The adress for the angle_device_sensorplate is set to 0x69 in the file MPU6050.h (rule number: 19); -> This is because of using the same I2C line; -> For detailed information/questions about this item, please read the technical manual or contact: Ricardo Molenaar | ricardo.molenaar@gmail.com */ I2C i2c_sensorplate_adc(p28, p27); // I2C for sensorplate. I2C i2c_power_adc(p9, p10); // I2C for accupack. MPU6050 angle_device_sensorplate(p28,p27); // i2c pins // i2c address hardcoded 0x68. MPU6050_belt angle_device_reference_belt(p28,p27); // i2c pins // i2c address hardcoded 0x69. Adafruit_ADS1115 piezo_resistive_adc1(&i2c_sensorplate_adc, 0x48); // i2c pins, i2c address. Adafruit_ADS1115 piezo_resistive_adc2(&i2c_sensorplate_adc, 0x49); // i2c pins, i2c address. Adafruit_ADS1115 piezo_electric_adc(&i2c_sensorplate_adc, 0x4B); // i2c pins, i2c address. Adafruit_ADS1115 adsAccu(&i2c_power_adc, 0x48); // i2c pins, i2c address. Serial usb_serial(USBTX, USBRX); // tx, rx Serial pi_serial(p13, p14); // tx, rx Ticker total_readout_cycle; // Polling cycle. // End of commentbox related to the serial configuration/ADC reading components. int boot_delay_ms = 500; int total_readout_cycle_time_us = 100000; // Cycle time in us. int i2c__frequency = 400000; // I2C Frequency. int baud_rate = 115200; // Baud rate. short piezo_resistive_array[8] = {0,0,0,0,0,0,0,0}; // 8 PR sensors 1 time per cycle. short piezo_electric_array[5] = {0,0,0,0,0}; // 1 PE sensor 5 times per cycle. int angle = 0; // Accelerometer Z-axis. float accelerometer_sensorplate[3] = {0.0, 0.0, 0.0}; // Raw accelerometer data. float gyroscope_sensorplate[3]; // Raw gyroscope data. float accelerometer_reference_belt[3]; // Raw accelerometer data from belt. float gyroscope_reference_belt[3]; // Raw gyroscope data from belt. char LED_colour = 'g'; // Variable to set LED colour (standard set to green, untill PI sends other character). Other possible colours: red ('r') & yellow ('y'). bool lock_state = false, lock_flag = 0, mute_state = 0, alarm = 0, calibration_flag = 0, intensity_select = 1; // Boolean variables for logging states. bool mute_flag = 0, new_patient_flag = 0, reposition_flag = 0; // Flag variables. bool speaker_state = 0, LED_red_state = 0, LED_yellow_state = 0, LED_green_state = 0, power_plug_state = 0; bool speaker_logged = 0, LED_red_logged = 0, LED_yellow_logged = 0, LED_green_logged = 0, power_plug_logged = 0; // is toevoegen int locktime_ms = 2000; // Waittime for lock user interface in ms. int calibrationtime_ms = 5000; // Time to press new_patient button for calibration system. int calibration_flash = 0; // Variable for flash LED's to indicate calibration. int buttondelay_ms = 750; // Button delay in ms. int delay_lock_interface = 3000*60; // Delay for non using interface locktime. int speaker_active_ms = 750; // Time to iterate speaker on and off when alarm occurs. int alarm_voltage = 2400; // Needed voltage for alarm expressed as a digital 15 bit value (= 20% of max battery voltage). int LED_red_intensity = 0, LED_blue_intensity = 0, LED_green_intensity = 0; // Variables to set LED intensity. short batteryvoltage_current = 0, batteryvoltage_last = 0, powervoltage_current, powervoltage_last; // Variables to manage batteryvoltage. Maybe change current to other? const int digital_value_ADC_powervoltage_unplugged = 15000; // Digital value to set the indicating LEDs to wall blue (should be set off later). const in hoofdletters int intensity_day = 40, intensity_night = 10; // Intensity settings for LED's to wall. double intensity = 0.0, control_LED_intensity = 0.0; // Variable between 0 and 1 to set the intensity of the LED's above the buttons. Intensity change to smart name! /*************************** TEST ********************************/ // Verify algoritm function: for belt activation, set test_belt 1 (connect pin p20 to 3.3V). Timer test_timer; DigitalIn test_pin(p30, PullDown); // Variable to set if belt is used to test algorithm: bool test_belt = 0; // Set test mode on (log functions to pc serial: interrupts, LED intensity and serial messages): bool test_mode = 0; // Variable for connection test (should be changed): int connection_test_sensorplate; /*************************** CODE ********************************/ void set_intensity_LEDs() // Function to set the intensity for the LED's. { if (intensity_select == 1) { intensity = intensity_day; } else { intensity = intensity_night; } control_LED_intensity = (intensity/100); if (test_mode == 1) { // If statement for test purposal LED_intensity values. if def gebruiken voor testmode usb_serial.printf("Intensity LED's shines to wall = %f\n", intensity); usb_serial.printf("Intensity LED's above buttons = %f\n", control_LED_intensity); } } void serial_read() // Function for serial read for select LED intensity and colour. { if (pi_serial.readable()) { // Function to check if pi is readable. char message[10]; pi_serial.scanf("%s", message); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Message = %s, Intensity_select = %d en LED_colour = %c\n", message, intensity_select, LED_colour); } if (intensity_select != (message[0]-'0')) { // Read intensity for LED's variable from PI. intensity_select = (message[0]-'0'); } if (LED_colour != message[1]) { // Read character from PI to set LED_colour. LED_colour = message[1]; } if (test_mode == 1) { usb_serial.printf("Message: %s\n", message); usb_serial.printf("Intensity_select = %d en LED_colour = %c\n", intensity_select, LED_colour); } } } void serial_log() // Function for serial logging. See link to table with code declarations above in code. { if (mute_flag == 1) { // If statement to control logging for mute button. pi_serial.printf(">01\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">01\n"); } mute_flag = 0; } if (new_patient_flag == 1) { // If statement to control logging for new patient button. pi_serial.printf(">03\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">03\n"); } new_patient_flag = 0; } if (reposition_flag == 1) { // If statement to control logging for reposition button. pi_serial.printf(">02\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">02\n"); } reposition_flag = 0; } if (batteryvoltage_current != batteryvoltage_last) { // If statement to control logging for batteryvoltage. pi_serial.printf("%%" "%d\n", batteryvoltage_current); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("%%" "%d\n", batteryvoltage_current); } batteryvoltage_last = batteryvoltage_current; } if (LED_red_logged != LED_red_state) { // If statement to control logging for LED_red. if (LED_red_state == 1) { pi_serial.printf("&04\n"); LED_red_logged = LED_red_state; if (test_mode == 1) { usb_serial.printf("&04\n"); } } if (LED_red_state == 0) { pi_serial.printf("&40\n"); LED_red_logged = LED_red_state; if (test_mode == 1) { usb_serial.printf("&40\n"); } } } if (LED_yellow_logged != LED_yellow_state) { // If statement to control logging for LED_yellow. if (LED_yellow_state == 1) { pi_serial.printf("&06\n"); LED_yellow_logged = LED_yellow_state; if (test_mode == 1) { usb_serial.printf("&06\n"); } } if (LED_yellow_state == 0) { pi_serial.printf("&60\n"); LED_yellow_logged = LED_yellow_state; if (test_mode == 1) { usb_serial.printf("&60\n"); } } } if (LED_green_logged != LED_green_state) { // If statement to control logging for LED_green. if (LED_green_state == 1) { pi_serial.printf("&05\n"); LED_green_logged = LED_green_state; if (test_mode == 1) { usb_serial.printf("&05\n"); } } if (LED_green_state == 0) { pi_serial.printf("&50\n"); LED_green_logged = LED_green_state; if (test_mode == 1) { usb_serial.printf("&50\n"); } } } if (speaker_logged != speaker_state) { // If statement to control logging for speaker. if (speaker_state == 1) { pi_serial.printf("&07\n"); speaker_logged = speaker_state; if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("&07\n"); } } if (speaker_state == 0) { pi_serial.printf("&70\n"); speaker_logged = speaker_state; if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("&70\n"); } } } if (power_plug_logged != power_plug_state) { // If statement to control the logging for the state of the power plug. if (power_plug_state == 1) { pi_serial.printf("#08\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("#08\n"); } power_plug_logged = power_plug_state; } if (power_plug_state == 0) { pi_serial.printf("#80\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("#80\n"); } power_plug_logged = power_plug_state; } } if (connection_test_sensorplate == 1) { // If statement for sending serial information sensorplate data when connection test is active. // Receiving order sensor information: 8 resistive sensors, 5 electric readings. Is splitted in two parts - part 1/2. pi_serial.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n", piezo_resistive_array[0], piezo_resistive_array[1], piezo_resistive_array[2], piezo_resistive_array[3], piezo_resistive_array[4], piezo_resistive_array[5], piezo_resistive_array[6], piezo_resistive_array[7], piezo_electric_array[0], piezo_electric_array[1], piezo_electric_array[2], piezo_electric_array[3], piezo_electric_array[4]); // print all to serial port if (test_mode == 1) { usb_serial.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n", piezo_resistive_array[0], piezo_resistive_array[1], piezo_resistive_array[2], piezo_resistive_array[3], piezo_resistive_array[4], piezo_resistive_array[5], piezo_resistive_array[6], piezo_resistive_array[7], piezo_electric_array[0], piezo_electric_array[1], piezo_electric_array[2], piezo_electric_array[3], piezo_electric_array[4]); // print all to serial port } } } void colour_select_indicating_LED_wall(char LED_colour) // Function to select the colour for LED's to wall (values comes from algorithm). { set_intensity_LEDs(); // Call function set_intensity_LEDs to set the intensity for LED's to wall and above buttons. if ((LED_colour == 'r') || (LED_colour == 'g') || (LED_colour == 'b') || (LED_colour == 'y')) { // If statement to prevent potential errors in communication. LED_red_intensity = 0; // Reset LED_green_intensity = 0; LED_blue_intensity = 0; if (LED_colour == 'r') { // Set LED_colour to red. LED_red_intensity = (2.55*intensity); // 255 / 100 = 2.55 (8 - bit digital value; 0-255 = 256 steps); intensity is a value between 0 and 100. LED_green_intensity = 0; LED_blue_intensity = 0; LED_red_state = 1; } else { LED_red_state = 0; } if (LED_colour == 'y') { // Set LED_colour to yellow. LED_red_intensity = (2.55*intensity); LED_green_intensity = (2.55*intensity); LED_blue_intensity = 0; LED_yellow_state = 1; } else { LED_green_state = 0; } if (LED_colour == 'g') { // Set LED_colour to green. LED_red_intensity = 0; LED_green_intensity = (2.55*intensity); LED_blue_intensity = 0; LED_green_state = 1; } else { LED_green_state = 0; } if (LED_colour == 'b') { // Set LED_colour to blue. LED_red_intensity = 0; LED_green_intensity = 0; LED_blue_intensity = (2.55*intensity); } } if (calibration_flash >= 1) { // If statement for flashing LED's (colour = white) when calibration is active. if ((calibration_flash % 2) == 0) { // If value can not be devided by two, set LED's on. LED_red_intensity = 255; LED_green_intensity = 255; LED_blue_intensity = 255; LED_on_dev_board4 = 1; } else { // Else set LED's off. LED_red_intensity = 0; LED_green_intensity = 0; LED_blue_intensity = 0; LED_on_dev_board4 = 0; } calibration_flash--; } } void trigger_lock() // If rising edge lock button is detected start locktimer. { if (test_mode == 1) { usb_serial.printf("Lock triggered.\n"); } button_lock_hold_timer.reset(); button_lock_hold_timer.start(); delay_between_button_pressed.reset(); delay_between_button_pressed.start(); } void end_timer_lock_button() // End timer lock. { if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Lock released.\n"); } lock_flag = 0; // Set lock_flag off. button_lock_hold_timer.stop(); // Stop and reset holdtimer button_lock_hold_timer.reset(); } void reposition_button_triggered() { if (lock_state == 1 | (delay_between_button_pressed.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time. } else { delay_between_button_pressed.reset(); delay_between_button_pressed.start(); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Reposition triggered.\n"); LED_on_dev_board1 = !LED_on_dev_board1; } reposition_flag = 1; reposition_feedback_LED = control_LED_intensity; } } void rise_reposition() // Interrupt for rising edge reposition function (deactivation; active low). { if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Reposition released.\n"); } reposition_feedback_LED = 0; } void mute_button_triggered() { if (lock_state == 1 | (delay_between_button_pressed.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time. } else { delay_between_button_pressed.reset(); delay_between_button_pressed.start(); mute_state = !mute_state; if (mute_state == 1) { // If statement for if mute_state is active, set mute feedback LED active. mute_feedback_LED = control_LED_intensity; } else { mute_feedback_LED = 0; } if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Mute triggered %d.\n",mute_state); LED_on_dev_board1 = !LED_on_dev_board1; } mute_flag = 1; } } void trigger_new_patient() // Function to trigger hold timer for new patient and calibration function. { if (lock_state == 1 | (delay_between_button_pressed.read_ms() < buttondelay_ms)) { } else { button_calibration_hold_timer.reset(); // inline ? button_calibration_hold_timer.start(); new_patient_feedback_LED = control_LED_intensity;; if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("New patient triggered.\n"); } } } void activate_new_patient_function() // Timer calibration function. { if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("New patient released.\n"); } new_patient_feedback_LED = 0; if (0 < button_calibration_hold_timer.read_ms() < calibrationtime_ms) { // If statement for new_patient function: holdtime for calibration is les then set time to calibrate algorithm. && toevoegen? -. als mogelijk mailtje naar Bart: bart@straightupalgorithms.com new_patient_flag = 1; } button_calibration_hold_timer.stop(); // Timer reset for calibration function of new patient button. button_calibration_hold_timer.reset(); if (lock_state == 1 | (delay_between_button_pressed.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time. } else { if (calibration_flag == 0) { if (LED_on_dev_board1 == 0) { // If statement for test purposal. LED_on_dev_board1 = 1; } else { LED_on_dev_board1 = 0; } } else { calibration_flag = 0; } } } void timer_functions() // Function which contains statements using timers. { if ((button_lock_hold_timer.read_ms() > locktime_ms) && lock_flag == 0 && button_lock == 0) { // If statement for lock function. lock_flag = 1; LED_on_dev_board2 = !LED_on_dev_board2; lock_state = !lock_state; if (lock_state == 0) { // If statement to control lock feedback LED above button. lock_feedback_LED = control_LED_intensity; } else { lock_feedback_LED = 0; } } if ((button_calibration_hold_timer.read_ms() > calibrationtime_ms) && calibration_flag == 0 && button_new_patient == 0 && lock_state == 0) { // If statement for calibration algorithm. calibration_flag = 1; calibration_flash = 11; if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Calibrate triggered.\n"); } pi_serial.printf(">30\n"); // Print statement for serial communication to inform algorithm to calibrate. } if (delay_between_button_pressed.read_ms() > delay_lock_interface) { // If buttons are not pressed for 3 minutes, set lock active. lock_state = 1; LED_on_dev_board2 = 1; lock_feedback_LED = 0; } } void generate(neopixel::Pixel * out, uint32_t index, uintptr_t val) // Generate LED colour function (library function PixelArray is used for this item). { out->red = LED_red_intensity; out->green = LED_green_intensity; out->blue = LED_blue_intensity; } void set_userinterface_LED() // Control functions for LED above buttons (added because of failures). { if (lock_state == 1) { } else { if (button_reposition == 0) { reposition_feedback_LED = control_LED_intensity; } else { reposition_feedback_LED = 0; } if (button_new_patient == 0) { new_patient_feedback_LED = control_LED_intensity; } else { new_patient_feedback_LED = 0; } } } void read_voltage() // Function for reading voltages from power and battery. { if (power_plug_state == 1) { // If supplyvoltage (readed from input) is greater then the setted alarmvoltage. alarm = 0; // Alarm is off. speaker_state = 0; } else { alarm = 1; // Else alarm is on. speaker_state = 1; } if (alarm == 1 && mute_state == 1 && (batteryvoltage_current > alarm_voltage)) {// Set speaker on for 750 ms. Use PWM? => Split in more functions. speaker1 = 0; // Set speaker. speaker2 = 0; } if ((alarm == 1 && mute_state == 0 && (speaker_timer.read_ms() < speaker_active_ms)) || ((batteryvoltage_current < alarm_voltage) && (speaker_timer.read_ms() < speaker_active_ms) && power_plug_state == 0)) { // Set speaker on for 750 ms. speaker1 = 1; // Set speaker. speaker2 = 1; speaker_timer.start(); // Set timer for speaker to iterate on and off. } if ((speaker_timer.read_ms() > speaker_active_ms) && (speaker_timer.read_ms() < (speaker_active_ms*2))) { speaker1 = 0; // Turn off speaker (use two outputs because of currentlimiting of one). speaker2 = 0; } if (speaker_timer.read_ms() > (speaker_active_ms*2)) { // speaker_timer.stop(); // Stop speaker timer. speaker_timer.reset(); } // Read channel 0 from external ADC (batteryvoltage); voltagedeviders are used, batteryvoltage_current = adsAccu.readADC_SingleEnded(0); // because of higher voltage then Vcc of ADC (5.3 V (= Vcc + 0.3 V) max possible at each analog input). powervoltage_current = adsAccu.readADC_SingleEnded(1); // Read channel 1 from external ADC (powervoltage). if (powervoltage_current < digital_value_ADC_powervoltage_unplugged) { // If statement to set LED's to blue. power_plug_state = 0; LED_colour = 'b'; } else { power_plug_state = 1; } } void read_adc() { piezo_electric_sample_timer.reset(); // Clock gebruiken o.i.d.? piezo_electric_sample_timer.start(); connection_test_sensorplate = angle_device_sensorplate.testConnection(); if (test_mode == 1) { usb_serial.printf("Connection test sensorplate = %d\n", connection_test_sensorplate); } /* if (connection_test_sensorplate == 0) { lock_state = 1; LED_on_dev_board2 = 1; lock_feedback_LED = 0; }*/ if (connection_test_sensorplate == 1) { piezo_electric_array[0] = piezo_electric_adc.readADC_SingleEnded(0); // First PE readout. for (uint8_t k = 0; k < 4; ++k) { piezo_resistive_array[k] = piezo_resistive_adc1.readADC_SingleEnded(k); // First 4 PR readout. } while(piezo_electric_sample_timer.read_us()<(1*(total_readout_cycle_time_us/5))) {} // Wait untill 20% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. piezo_electric_array[1] = piezo_electric_adc.readADC_SingleEnded(0); // Second PE readout. for (uint8_t k = 0; k < 4; ++k) { piezo_resistive_array[k+4] = piezo_resistive_adc2.readADC_SingleEnded(k); // Last 4 PR readout. } while(piezo_electric_sample_timer.read_us()<(2*(total_readout_cycle_time_us/5))) {} // Wait untill 40% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. piezo_electric_array[2] = piezo_electric_adc.readADC_SingleEnded(0); // Third PE readout. angle_device_sensorplate.getAccelero(accelerometer_sensorplate); // Get accelerometer data. angle = accelerometer_sensorplate[2]*100; if(angle == 0) { MPU6050 angle_device_sensorplate(p28,p27); angle_device_sensorplate.getAccelero(accelerometer_sensorplate); angle = accelerometer_sensorplate[2]*100; } angle_device_sensorplate.getGyro(gyroscope_sensorplate); // Get gyroscope data. if (test_belt == 1) { angle_device_reference_belt.getGyro(gyroscope_reference_belt); // Get gyroscope data from Belt. angle_device_reference_belt.getAccelero(accelerometer_reference_belt); // Get accelerometer data from belt. } if (connection_test_sensorplate == 1) { // If statement for sending serial information sensorplate data when connection test is active. // Receiving order sensor information: 3 accelero sensors & 3 gyroscope sensors from sensorplate; 3 accelero sensors & 3 gyroscope sensors from belt. Is splitted in two parts - part 2/2. pi_serial.printf("?,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n", accelerometer_sensorplate[0], accelerometer_sensorplate[1], accelerometer_sensorplate[2], gyroscope_sensorplate[0], gyroscope_sensorplate[1], gyroscope_sensorplate[2], accelerometer_reference_belt[0], accelerometer_reference_belt[1], accelerometer_reference_belt[2], gyroscope_reference_belt[0], gyroscope_reference_belt[1], gyroscope_reference_belt[2]); } // binair print and convert in pi while(piezo_electric_sample_timer.read_us()<(3*(total_readout_cycle_time_us/5))) {} // Wait untill 60% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. piezo_electric_array[3] = piezo_electric_adc.readADC_SingleEnded(0); // Fourth PE readout. } timer_functions(); batteryvoltage_current = batteryvoltage_last; powervoltage_current = powervoltage_last; read_voltage(); // Read_voltage function to control alarm. if (test_mode == 1) { usb_serial.printf("Voltage = %d , %d\n", batteryvoltage_current, powervoltage_current); } uint32_t val = 0; colour_select_indicating_LED_wall(LED_colour); // Function to select colour. indicator_LEDs.update(generate, NUMBER_LED_FRONT, val); // Function to set the LED's which shines to the wall (indicating change patient position). set_userinterface_LED(); // Set LED's of user interface (LED's above buttons). while(piezo_electric_sample_timer.read_us()<(4*(total_readout_cycle_time_us/5))) {} // Wait untill 80% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. if (test_mode == 1){ // If statement for test purposal. usb_serial.printf("Angle device sensorplate = %d\n",angle_device_sensorplate.testConnection()); } if (connection_test_sensorplate == 1) { piezo_electric_array[4] = piezo_electric_adc.readADC_SingleEnded(0); // Fifth PE readout. } while(piezo_electric_sample_timer.read_us()<(4.25*(total_readout_cycle_time_us/5))) {} // Wait untill 85% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. serial_read(); // Call function for reading information from PI by serial connection. serial_log(); // Call function for logging information to PI by serial connection. if (test_mode == 1) { // If statements for test purposal (untill * mark). usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } if (test_pin == 1) { test_mode = 1; usb_serial.printf("%d\n",test_mode); } if (test_pin == 0) { test_mode = 0; usb_serial.printf("%d\n",test_mode); } if (test_mode == 1) { usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } // * End of if statements for test purposal. } int main() { // Main function. inline function "Momo Init" bijvoorbeeld wait_ms(boot_delay_ms); // Wait to boot sensorplate first. i2c_sensorplate_adc.frequency(i2c__frequency); // Set frequency for i2c connection to sensorplate (variable is declared in config part). i2c_power_adc.frequency(i2c__frequency); // Same as line 695, but now for ADC to read battery- en powervoltage. usb_serial.baud(baud_rate); // Set serial USB connection baud rate (variable is declared in config part). pi_serial.baud(baud_rate); // Same as line 697, but now for serial PI connection. piezo_resistive_adc1.setGain(GAIN_TWOTHIRDS); // Set ranges of ADC to +/-6.144V (end is marked with #): piezo_resistive_adc2.setGain(GAIN_TWOTHIRDS); piezo_electric_adc.setGain(GAIN_TWOTHIRDS); adsAccu.setGain(GAIN_TWOTHIRDS); // #) End of configuration ADC ranges. pi_serial.format(8, SerialBase::None, 1); // Set serial communication line with PI. button_lock.fall(&trigger_lock); // Interrupt for rising edge lock button. button_lock.rise(&end_timer_lock_button); button_reposition.fall(&reposition_button_triggered); button_reposition.rise(&rise_reposition); button_mute.fall(&mute_button_triggered); button_new_patient.fall(&trigger_new_patient); // New patient/calibration button rising event. button_new_patient.rise(&activate_new_patient_function); // Falling edge for calibration algorithm option. delay_between_button_pressed.reset(); // Delaytimer reset en start. delay_between_button_pressed.start(); set_intensity_LEDs(); // Initialize intensity for user interface LED's and LED's shines to wall. lock_feedback_LED = control_LED_intensity; // Lock LED initialization. total_readout_cycle.attach_us(&read_adc, total_readout_cycle_time_us); // Call function to start reading sensorplate and other functionalities. while (1) { wait_us(total_readout_cycle_time_us+1); // Wait indefinitely. } }