Host software for the MAX30001 ECG, PACE, biopotential, bioimpedance, R-to-R peak sensor. Hosted on the MAX32630FTHR.
Dependencies: SDFileSystem USBDevice max32630fthr
Fork of MAX30001 SYS EvKit by
MAX30001-MAX32630FTHR ECG Evaluation System
The MAX30001 EVKIT SYS-MBED Evaluation System (EV System) is used to evaluates the MAX30001 sensor, which is an ECG (electrocardiogram), biopotential and bioimpedance analog front end solution for wearable applications. The full evaluation system consists of the MAX32630FTHR board, MAX30001 EVKIT sensor board and the evaluation software. The evaluation kit features ECG, PACE, R-to-R (R-peak timing) detection; bioimpedance (BioZ) AFE; and raw data logging.
The MAX30001 EVKIT evaluation system is assembled, tested and contains the necessary circuitry and connections to evaluate the MAX30001 ECG sensor.
When evaluated as an evaluation system, the MAX32630FTHR board provides the necessary logic rails, master clock, SPI, USB-to-Serial interfaces that are needed to evaluate the MAX30001 sensor board. MAX32630FTHR can be used as an independent development platform.
Communication between the PC and the MAX32630FTHR board is facilitated by a Windows 7, Windows 8 and Windows 10 compatible software that provides a simple and intuitive graphical user interface (GUI).
For more information, visit the wiki pages by clicking the wiki tab above and MAX30001EVSYS product page.
C++ source code, library for the MAX30001 ECG drivers are in the links at the bottom of this page. The sample code includes the ability to log data to the SD card of the MAX32630FTHR.
MAX30001 EVKIT Pinout Connections
Where to Buy
HSP/Devices/S25FS256/S25FS512.cpp
- Committer:
- Emre.Eken@IST-LT-35101.maxim-ic.internal
- Date:
- 2018-04-05
- Revision:
- 0:8e4630a71eb1
File content as of revision 0:8e4630a71eb1:
/******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. ******************************************************************************* */ // // Flash Non-Volatile Memory // U27 S25FS512 // Nimitz SPIM1 // #include "mbed.h" #include "S25FS512.h" #include "QuadSpiInterface.h" #define IOMUX_IO_ENABLE 1 #define S25FS512_SPI_PORT 1 #define S25FS512_CS_PIN 0 #define S25FS512_CS_POLARITY 0 #define S25FS512_CS_ACTIVITY_DELAY 0 #define S25FS512_CS_INACTIVITY_DELAY 0 #define S25FS512_CLK_HI 4 #define S25FS512_CLK_LOW 4 #define S25FS512_ALT_CLK 0 #define S25FS512_CLK_POLARITY 0 #define S25FS512_CLK_PHASE 0 #define S25FS512_WRITE 1 #define S25FS512_READ 0 #define INT_PORT_B 3 #define INT_PIN_B 6 uint8_t flashBuffer[257 + 10]; //****************************************************************************** S25FS512::S25FS512(QuadSpiInterface *_quadSpiInterface) { this->quadSpiInterface = _quadSpiInterface; } //****************************************************************************** S25FS512::~S25FS512(void) { } //****************************************************************************** int S25FS512::init(void) { setQuadMode(); return 0; } //****************************************************************************** int S25FS512::wren4Wire(void) { uint8_t cmdArray[8]; // Send WREN cmdArray[0] = 0x06; wait_1mS(); return reg_write_read_multiple_4Wire(cmdArray, 1, flashBuffer, 1); } //****************************************************************************** uint8_t S25FS512::wren(void) { uint8_t cmdArray[8]; // Send WREN cmdArray[0] = 0x06; wait_1mS(); return reg_write_read_multiple_quad(cmdArray, 1, flashBuffer, 0); } //****************************************************************************** int8_t S25FS512::reg_write_read_multiple_quad_last(uint8_t *bufferOut, uint8_t numberOut, uint8_t *bufferIn, uint8_t numberIn, uint8_t last) { int32_t success = 0; success = quadSpiInterface->SPI_Transmit( bufferOut, numberOut, bufferIn, numberIn, (int)last); if (success != 0) return -1; return 0; } //****************************************************************************** int8_t S25FS512::reg_write_read_multiple_4Wire(uint8_t *bufferOut, uint8_t numberOut, uint8_t *bufferIn, uint8_t numberIn) { int32_t success = 0; success = quadSpiInterface->SPI_Transmit4Wire(bufferOut, numberOut, bufferIn, numberIn, (int)1); if (success != 0) return -1; return 0; } //****************************************************************************** int8_t S25FS512::reg_write_read_multiple_quad(uint8_t *bufferOut, uint8_t numberOut, uint8_t *bufferIn, uint8_t numberIn) { int8_t ret; ret = reg_write_read_multiple_quad_last(bufferOut, numberOut, bufferIn, numberIn, 1); return ret; } //****************************************************************************** void S25FS512::readID(uint8_t *id) { uint8_t cmd = 0x9F; reg_write_read_multiple_quad(&cmd, 1, id, 4); } //****************************************************************************** int8_t S25FS512::writeAnyRegister(uint32_t address, uint8_t data) { uint8_t cmdArray[5]; cmdArray[0] = 0x71; cmdArray[1] = (address >> 16) & 0xFF; cmdArray[2] = (address >> 8) & 0xFF; cmdArray[3] = (address >> 0) & 0xFF; cmdArray[4] = data; return reg_write_read_multiple_quad(cmdArray, 5, flashBuffer, 0); } int8_t S25FS512::writeAnyRegister4Wire(uint32_t address, uint8_t data) { uint8_t cmdArray[5]; cmdArray[0] = 0x71; cmdArray[1] = (address >> 16) & 0xFF; cmdArray[2] = (address >> 8) & 0xFF; cmdArray[3] = (address >> 0) & 0xFF; cmdArray[4] = data; return reg_write_read_multiple_4Wire(cmdArray, 5, flashBuffer, 5); } //****************************************************************************** int8_t S25FS512::writeRegisters(void) { uint8_t cmdArray[3]; wait_1mS(); cmdArray[0] = 0x01; cmdArray[1] = 0x00; cmdArray[2] = 0x02; // set Quad to 1 reg_write_read_multiple_quad(cmdArray, 3, flashBuffer, 0); return 0; } //****************************************************************************** int8_t S25FS512::readAnyRegister(uint32_t address, uint8_t *data, uint32_t length) { uint8_t cmdArray[4]; cmdArray[0] = 0x65; cmdArray[1] = (address >> 16) & 0xFF; cmdArray[2] = (address >> 8) & 0xFF; cmdArray[3] = (address >> 0) & 0xFF; return reg_write_read_multiple_quad(cmdArray, 4, data, length); } //****************************************************************************** int8_t S25FS512::bulkErase(void) { uint8_t cmdArray[1]; cmdArray[0] = 0x60; return reg_write_read_multiple_quad(cmdArray, 1, flashBuffer, 0); } //****************************************************************************** int8_t S25FS512::pageProgram(uint32_t address, uint8_t *buffer) { uint32_t i; uint8_t cmdArray[5 + 256]; uint8_t *ptr; // for (i = 0; i < 256; i++) { // dataArray[i] = i; //} cmdArray[0] = 0x02; // 0x71; // cmdArray[1] = (address >> 24) & 0xFF; cmdArray[1] = (address >> 16) & 0xFF; cmdArray[2] = (address >> 8) & 0xFF; cmdArray[3] = (address >> 0) & 0xFF; for (i = 0; i < 256; i++) { cmdArray[4 + i] = buffer[i]; } // reg_write_read_multiple_quad(cmdArray,256 + 4,flashBuffer,256 + 4); ptr = cmdArray; reg_write_read_multiple_quad_last(ptr, 4 + 64, flashBuffer, 0, 0); wait_1mS(); ptr += (4 + 64); reg_write_read_multiple_quad_last(ptr, 64, flashBuffer, 0, 0); wait_1mS(); ptr += 64; reg_write_read_multiple_quad_last(ptr, 64, flashBuffer, 0, 0); wait_1mS(); ptr += 64; reg_write_read_multiple_quad_last(ptr, 64, flashBuffer, 0, 1); wait_1mS(); return 0; } //****************************************************************************** int8_t S25FS512::quadIoRead_Pages(uint32_t address, uint8_t *buffer, uint32_t numberOfPages) { uint8_t cmdArray[5]; uint8_t *ptr; uint8_t last; uint32_t i; cmdArray[0] = 0xEB; cmdArray[1] = (address >> 16) & 0xFF; cmdArray[2] = (address >> 8) & 0xFF; cmdArray[3] = (address >> 0) & 0xFF; ptr = buffer; last = 0; // only send the command reg_write_read_multiple_quad_last(cmdArray, 4, ptr, 0, 0); wait_1mS(); reg_write_read_multiple_quad_last(cmdArray, 0, ptr, 5, 0); wait_1mS(); for (i = 0; i < numberOfPages; i++) { reg_write_read_multiple_quad_last(cmdArray, 0, ptr, 64, 0); wait_1mS(); ptr += 64; reg_write_read_multiple_quad_last(cmdArray, 0, ptr, 64, 0); wait_1mS(); ptr += 64; reg_write_read_multiple_quad_last(cmdArray, 0, ptr, 64, 0); wait_1mS(); ptr += 64; // check if this is the last page if ((i + 1) == numberOfPages) { last = 1; } reg_write_read_multiple_quad_last(cmdArray, 0, ptr, 64, last); wait_1mS(); ptr += 64; } return 0; } //****************************************************************************** int8_t S25FS512::checkBusy(void) { uint8_t cmdArray[5]; cmdArray[0] = 0x05; reg_write_read_multiple_quad(cmdArray, 1, flashBuffer, 2); return flashBuffer[1] & 0x1; } //****************************************************************************** void S25FS512::waitTillNotBusy(void) { while (checkBusy() == 1) { } } //****************************************************************************** int8_t S25FS512::sectorErase(uint32_t address) { uint8_t cmdArray[5]; cmdArray[0] = 0xD8; cmdArray[1] = (address >> 16) & 0xFF; cmdArray[2] = (address >> 8) & 0xFF; cmdArray[3] = (address >> 0) & 0xFF; return reg_write_read_multiple_quad(cmdArray, 4, flashBuffer, 0); } //****************************************************************************** int8_t S25FS512::parameterSectorErase(uint32_t address) { uint8_t cmdArray[5]; cmdArray[0] = 0x20; cmdArray[1] = (address >> 16) & 0xFF; cmdArray[2] = (address >> 8) & 0xFF; cmdArray[3] = (address >> 0) & 0xFF; reg_write_read_multiple_quad(cmdArray, 4, flashBuffer, 0); return 0; } #define ONE_MS (32768 / 500) #define ONEHUNDRED_US (32768 / 1000) #define TEM_MS (32768 / 50) //****************************************************************************** void S25FS512::wait_1mS(void) { wait_ms(1); } //****************************************************************************** void S25FS512::wait_100uS(void) { wait_us(100); } //****************************************************************************** void S25FS512::wait_10mS(void) { wait_ms(10); } //****************************************************************************** int8_t S25FS512::readIdentification(uint8_t *dataArray, uint8_t length) { // 4QIOR = 0x9F uint8_t cmdArray[1]; cmdArray[0] = 0x9F; // read ID command return reg_write_read_multiple_quad(cmdArray, 1, dataArray, length); } //****************************************************************************** uint8_t S25FS512::reset(void) { uint8_t cmdArray[8]; wait_1mS(); cmdArray[0] = 0x66; reg_write_read_multiple_quad(cmdArray, 1, flashBuffer, 0); wait_1mS(); cmdArray[0] = 0x99; reg_write_read_multiple_quad(cmdArray, 1, flashBuffer, 0); return 0; } //****************************************************************************** uint8_t S25FS512::enableHWReset(void) { uint8_t data[8]; wait_1mS(); // CR2V Configuration Register-2 Volatile // bit 5 readAnyRegister(0x00800003, data, 8); writeAnyRegister(0x00800003, 0x64); return 0; } //****************************************************************************** uint8_t S25FS512::detect(void) { uint8_t array[8]; uint8_t array2[8]; // Send WREN wren(); // Send WREN wren(); // delay wait_1mS(); // Send WREN wren(); // delay wait_1mS(); // Send write any register cmd writeAnyRegister(0x0003, 0x48); // delay wait_1mS(); array[0] = 0x9F; // read ID command reg_write_read_multiple_quad(array, 1, array2, 7); return 0; } //****************************************************************************** int S25FS512::setQuadMode(void) { wait_1mS(); wren4Wire(); wait_1mS(); writeAnyRegister4Wire(0x800002, 0x02); // set Quad = 1 wait_1mS(); wren4Wire(); wait_1mS(); writeAnyRegister4Wire(0x800003, 0x48); // set 8 latency, set QPI 4-4-4 } //****************************************************************************** uint32_t S25FS512::isPageEmpty(uint8_t *ptr) { int i; for (i = 0; i < 256; i++) { if (ptr[i] != 0xFF) return 0; } return 1; } //****************************************************************************** int8_t S25FS512::parameterSectorErase_Helper(uint32_t address) { waitTillNotBusy(); wait_100uS(); wren(); wait_100uS(); parameterSectorErase(address); wait_100uS(); waitTillNotBusy(); wait_100uS(); return 0; } //****************************************************************************** int8_t S25FS512::sectorErase_Helper(uint32_t address) { waitTillNotBusy(); wait_100uS(); wren(); wait_100uS(); if (address < 0x8000) { parameterSectorErase(address); } else { sectorErase(address); } wait_100uS(); waitTillNotBusy(); wait_100uS(); return 0; } //****************************************************************************** int8_t S25FS512::bulkErase_Helper(void) { waitTillNotBusy(); wait_100uS(); wren(); wait_100uS(); bulkErase(); wait_100uS(); waitTillNotBusy(); wait_100uS(); return 0; } //****************************************************************************** // write a page worth of data (256 bytes) from buffer, offset defined where in // the buffer to begin write int8_t S25FS512::writePage_Helper(uint32_t pageNumber, uint8_t *buffer, uint32_t offset) { uint8_t *ptr; waitTillNotBusy(); wait_1mS(); wren(); ptr = &buffer[offset]; wait_1mS(); pageProgram(pageNumber << 8, ptr); wait_1mS(); return 0; } //****************************************************************************** // read pages from flash into buffer, offset defined where in the buffer use int8_t S25FS512::readPages_Helper(uint32_t startPageNumber, uint32_t endPageNumber, uint8_t *buffer, uint32_t offset) { uint8_t *ptr; uint32_t page; ptr = &buffer[offset]; for (page = startPageNumber; page <= endPageNumber; page++) { wait_100uS(); quadIoRead_Pages((uint32_t)(page << 8), (uint8_t *)ptr, 1); ptr += 0x100; } return 0; }