mediCAL's first BLE project
Fork of nRF51822 by
nordic/nrf-sdk/app_common/app_util.h
- Committer:
- Rohit Grover
- Date:
- 2014-05-23
- Revision:
- 5:b11766b636aa
- Parent:
- 0:eff01767de02
- Child:
- 37:c29c330d942c
File content as of revision 5:b11766b636aa:
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ /** @file * * @defgroup app_util Utility Functions and Definitions * @{ * @ingroup app_common * * @brief Various types and definitions available to all applications. */ #ifndef APP_UTIL_H__ #define APP_UTIL_H__ #include <stdint.h> #include "nordic_global.h" #include "compiler_abstraction.h" #include "nrf51.h" #include "app_error.h" /**@brief The interrupt priorities available to the application while the softdevice is active. */ typedef enum { APP_IRQ_PRIORITY_HIGH = 1, APP_IRQ_PRIORITY_LOW = 3 } app_irq_priority_t; enum { UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */ UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */ UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */ }; #define NRF_APP_PRIORITY_THREAD 4 /**< "Interrupt level" when running in Thread Mode. */ /**@cond NO_DOXYGEN */ #define EXTERNAL_INT_VECTOR_OFFSET 16 /**@endcond */ /**@brief Macro for doing static (i.e. compile time) assertion. * * @note If the assertion fails when compiling using Keil, the compiler will report error message * "error: #94: the size of an array must be greater than zero" (while gcc will list the * symbol static_assert_failed, making the error message more readable). * If the supplied expression can not be evaluated at compile time, Keil will report * "error: #28: expression must have a constant value". * * @note The macro is intentionally implemented not using do while(0), allowing it to be used * outside function blocks (e.g. close to global type- and variable declarations). * If used in a code block, it must be used before any executable code in this block. * * @param[in] EXPR Constant expression to be verified. */ #define STATIC_ASSERT(EXPR) typedef char static_assert_failed[(EXPR) ? 1 : -1] /**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */ typedef uint8_t uint16_le_t[2]; /**@brief type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */ typedef uint8_t uint32_le_t[4]; /**@brief Byte array type. */ typedef struct { uint16_t size; /**< Number of array entries. */ uint8_t * p_data; /**< Pointer to array entries. */ } uint8_array_t; /**@brief Macro for entering a critical region. * * @note Due to implementation details, there must exist one and only one call to * CRITICAL_REGION_EXIT() for each call to CRITICAL_REGION_ENTER(), and they must be located * in the same scope. */ #define CRITICAL_REGION_ENTER() \ { \ uint8_t IS_NESTED_CRITICAL_REGION = 0; \ uint32_t CURRENT_INT_PRI = current_int_priority_get(); \ if (CURRENT_INT_PRI != APP_IRQ_PRIORITY_HIGH) \ { \ uint32_t ERR_CODE = sd_nvic_critical_region_enter(&IS_NESTED_CRITICAL_REGION); \ if (ERR_CODE == NRF_ERROR_SOFTDEVICE_NOT_ENABLED) \ { \ __disable_irq(); \ } \ else \ { \ APP_ERROR_CHECK(ERR_CODE); \ } \ } /**@brief Macro for leaving a critical region. * * @note Due to implementation details, there must exist one and only one call to * CRITICAL_REGION_EXIT() for each call to CRITICAL_REGION_ENTER(), and they must be located * in the same scope. */ #define CRITICAL_REGION_EXIT() \ if (CURRENT_INT_PRI != APP_IRQ_PRIORITY_HIGH) \ { \ uint32_t ERR_CODE; \ __enable_irq(); \ ERR_CODE = sd_nvic_critical_region_exit(IS_NESTED_CRITICAL_REGION); \ if (ERR_CODE != NRF_ERROR_SOFTDEVICE_NOT_ENABLED) \ { \ APP_ERROR_CHECK(ERR_CODE); \ } \ } \ } /**@brief Perform rounded integer division (as opposed to truncating the result). * * @param[in] A Numerator. * @param[in] B Denominator. * * @return Rounded (integer) result of dividing A by B. */ #define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B)) /**@brief Check if the integer provided is a power of two. * * @param[in] A Number to be tested. * * @return true if value is power of two. * @return false if value not power of two. */ #define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) ) /**@brief To convert ticks to millisecond * @param[in] time Number of millseconds that needs to be converted. * @param[in] resolution Units to be converted. */ #define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION)) /**@brief Perform integer division, making sure the result is rounded up. * * @details One typical use for this is to compute the number of objects with size B is needed to * hold A number of bytes. * * @param[in] A Numerator. * @param[in] B Denominator. * * @return Integer result of dividing A by B, rounded up. */ #define CEIL_DIV(A, B) \ /*lint -save -e573 */ \ ((((A) - 1) / (B)) + 1) \ /*lint -restore */ /**@brief Function for encoding a uint16 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8); return sizeof(uint16_t); } /**@brief Function for encoding a uint32 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8); p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16); p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24); return sizeof(uint32_t); } /**@brief Function for decoding a uint16 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data) { return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) | (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 )); } /**@brief Function for decoding a uint32 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data) { return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) | (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) | (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) | (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 )); } /**@brief Function for finding the current interrupt level. * * @return Current interrupt level. * @retval APP_IRQ_PRIORITY_HIGH We are running in Application High interrupt level. * @retval APP_IRQ_PRIORITY_LOW We are running in Application Low interrupt level. * @retval APP_IRQ_PRIORITY_THREAD We are running in Thread Mode. */ static __INLINE uint8_t current_int_priority_get(void) { uint32_t isr_vector_num = (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk); if (isr_vector_num > 0) { int32_t irq_type = ((int32_t)isr_vector_num - EXTERNAL_INT_VECTOR_OFFSET); return (NVIC_GetPriority((IRQn_Type)irq_type) & 0xFF); } else { return NRF_APP_PRIORITY_THREAD; } } /** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts. * * @details The calculation is based on a linearized version of the battery's discharge * curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and * is considered to be the lower boundary. * * The discharge curve for CR2032 is non-linear. In this model it is split into * 4 linear sections: * - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV) * - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV) * - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV) * - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV) * * These numbers are by no means accurate. Temperature and * load in the actual application is not accounted for! * * @param[in] mvolts The voltage in mV * * @return Battery level in percent. */ static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts) { uint8_t battery_level; if (mvolts >= 3000) { battery_level = 100; } else if (mvolts > 2900) { battery_level = 100 - ((3000 - mvolts) * 58) / 100; } else if (mvolts > 2740) { battery_level = 42 - ((2900 - mvolts) * 24) / 160; } else if (mvolts > 2440) { battery_level = 18 - ((2740 - mvolts) * 12) / 300; } else if (mvolts > 2100) { battery_level = 6 - ((2440 - mvolts) * 6) / 340; } else { battery_level = 0; } return battery_level; } /**@brief Function for checking if a pointer value is aligned to a 4 byte boundary. * * @param[in] p Pointer value to be checked. * * @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise. */ static __INLINE bool is_word_aligned(void * p) { return (((uint32_t)p & 0x00000003) == 0); } #endif // APP_UTIL_H__ /** @} */