mediCAL's first BLE project

Dependents:   BLE_mediCAL

Fork of nRF51822 by Nordic Semiconductor

Committer:
antoniorohit
Date:
Sun Nov 02 20:43:14 2014 +0000
Revision:
69:d9f51b65a3c8
Parent:
37:c29c330d942c
First rev of BLE program for nRF51822 which provides BLE connectivity for team mediCAL's PILLar;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
bogdanm 0:eff01767de02 1 /* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
bogdanm 0:eff01767de02 2 *
bogdanm 0:eff01767de02 3 * The information contained herein is property of Nordic Semiconductor ASA.
bogdanm 0:eff01767de02 4 * Terms and conditions of usage are described in detail in NORDIC
bogdanm 0:eff01767de02 5 * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
bogdanm 0:eff01767de02 6 *
bogdanm 0:eff01767de02 7 * Licensees are granted free, non-transferable use of the information. NO
bogdanm 0:eff01767de02 8 * WARRANTY of ANY KIND is provided. This heading must NOT be removed from
bogdanm 0:eff01767de02 9 * the file.
bogdanm 0:eff01767de02 10 *
bogdanm 0:eff01767de02 11 */
bogdanm 0:eff01767de02 12
bogdanm 0:eff01767de02 13 /** @file
bogdanm 0:eff01767de02 14 *
bogdanm 0:eff01767de02 15 * @defgroup app_util Utility Functions and Definitions
bogdanm 0:eff01767de02 16 * @{
bogdanm 0:eff01767de02 17 * @ingroup app_common
bogdanm 0:eff01767de02 18 *
bogdanm 0:eff01767de02 19 * @brief Various types and definitions available to all applications.
bogdanm 0:eff01767de02 20 */
bogdanm 0:eff01767de02 21
bogdanm 0:eff01767de02 22 #ifndef APP_UTIL_H__
bogdanm 0:eff01767de02 23 #define APP_UTIL_H__
bogdanm 0:eff01767de02 24
bogdanm 0:eff01767de02 25 #include <stdint.h>
Rohit Grover 37:c29c330d942c 26 #include <stdbool.h>
bogdanm 0:eff01767de02 27 #include "compiler_abstraction.h"
bogdanm 0:eff01767de02 28
bogdanm 0:eff01767de02 29 enum
bogdanm 0:eff01767de02 30 {
bogdanm 0:eff01767de02 31 UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */
bogdanm 0:eff01767de02 32 UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */
bogdanm 0:eff01767de02 33 UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */
bogdanm 0:eff01767de02 34 };
bogdanm 0:eff01767de02 35
bogdanm 0:eff01767de02 36 /**@brief Macro for doing static (i.e. compile time) assertion.
bogdanm 0:eff01767de02 37 *
bogdanm 0:eff01767de02 38 * @note If the assertion fails when compiling using Keil, the compiler will report error message
bogdanm 0:eff01767de02 39 * "error: #94: the size of an array must be greater than zero" (while gcc will list the
bogdanm 0:eff01767de02 40 * symbol static_assert_failed, making the error message more readable).
bogdanm 0:eff01767de02 41 * If the supplied expression can not be evaluated at compile time, Keil will report
bogdanm 0:eff01767de02 42 * "error: #28: expression must have a constant value".
bogdanm 0:eff01767de02 43 *
bogdanm 0:eff01767de02 44 * @note The macro is intentionally implemented not using do while(0), allowing it to be used
bogdanm 0:eff01767de02 45 * outside function blocks (e.g. close to global type- and variable declarations).
bogdanm 0:eff01767de02 46 * If used in a code block, it must be used before any executable code in this block.
bogdanm 0:eff01767de02 47 *
bogdanm 0:eff01767de02 48 * @param[in] EXPR Constant expression to be verified.
bogdanm 0:eff01767de02 49 */
bogdanm 0:eff01767de02 50
Rohit Grover 37:c29c330d942c 51 #if defined(__GNUC__)
Rohit Grover 37:c29c330d942c 52 #define STATIC_ASSERT(EXPR) typedef char __attribute__((unused)) static_assert_failed[(EXPR) ? 1 : -1]
Rohit Grover 37:c29c330d942c 53 #else
bogdanm 0:eff01767de02 54 #define STATIC_ASSERT(EXPR) typedef char static_assert_failed[(EXPR) ? 1 : -1]
Rohit Grover 37:c29c330d942c 55 #endif
Rohit Grover 37:c29c330d942c 56
bogdanm 0:eff01767de02 57
bogdanm 0:eff01767de02 58 /**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */
bogdanm 0:eff01767de02 59 typedef uint8_t uint16_le_t[2];
bogdanm 0:eff01767de02 60
bogdanm 0:eff01767de02 61 /**@brief type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */
bogdanm 0:eff01767de02 62 typedef uint8_t uint32_le_t[4];
bogdanm 0:eff01767de02 63
bogdanm 0:eff01767de02 64 /**@brief Byte array type. */
bogdanm 0:eff01767de02 65 typedef struct
bogdanm 0:eff01767de02 66 {
bogdanm 0:eff01767de02 67 uint16_t size; /**< Number of array entries. */
bogdanm 0:eff01767de02 68 uint8_t * p_data; /**< Pointer to array entries. */
bogdanm 0:eff01767de02 69 } uint8_array_t;
bogdanm 0:eff01767de02 70
bogdanm 0:eff01767de02 71 /**@brief Perform rounded integer division (as opposed to truncating the result).
bogdanm 0:eff01767de02 72 *
bogdanm 0:eff01767de02 73 * @param[in] A Numerator.
bogdanm 0:eff01767de02 74 * @param[in] B Denominator.
bogdanm 0:eff01767de02 75 *
bogdanm 0:eff01767de02 76 * @return Rounded (integer) result of dividing A by B.
bogdanm 0:eff01767de02 77 */
bogdanm 0:eff01767de02 78 #define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B))
bogdanm 0:eff01767de02 79
bogdanm 0:eff01767de02 80 /**@brief Check if the integer provided is a power of two.
bogdanm 0:eff01767de02 81 *
bogdanm 0:eff01767de02 82 * @param[in] A Number to be tested.
bogdanm 0:eff01767de02 83 *
bogdanm 0:eff01767de02 84 * @return true if value is power of two.
bogdanm 0:eff01767de02 85 * @return false if value not power of two.
bogdanm 0:eff01767de02 86 */
bogdanm 0:eff01767de02 87 #define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) )
bogdanm 0:eff01767de02 88
bogdanm 0:eff01767de02 89 /**@brief To convert ticks to millisecond
bogdanm 0:eff01767de02 90 * @param[in] time Number of millseconds that needs to be converted.
bogdanm 0:eff01767de02 91 * @param[in] resolution Units to be converted.
bogdanm 0:eff01767de02 92 */
bogdanm 0:eff01767de02 93 #define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION))
bogdanm 0:eff01767de02 94
bogdanm 0:eff01767de02 95
bogdanm 0:eff01767de02 96 /**@brief Perform integer division, making sure the result is rounded up.
bogdanm 0:eff01767de02 97 *
bogdanm 0:eff01767de02 98 * @details One typical use for this is to compute the number of objects with size B is needed to
bogdanm 0:eff01767de02 99 * hold A number of bytes.
bogdanm 0:eff01767de02 100 *
bogdanm 0:eff01767de02 101 * @param[in] A Numerator.
bogdanm 0:eff01767de02 102 * @param[in] B Denominator.
bogdanm 0:eff01767de02 103 *
bogdanm 0:eff01767de02 104 * @return Integer result of dividing A by B, rounded up.
bogdanm 0:eff01767de02 105 */
bogdanm 0:eff01767de02 106 #define CEIL_DIV(A, B) \
bogdanm 0:eff01767de02 107 /*lint -save -e573 */ \
bogdanm 0:eff01767de02 108 ((((A) - 1) / (B)) + 1) \
bogdanm 0:eff01767de02 109 /*lint -restore */
bogdanm 0:eff01767de02 110
bogdanm 0:eff01767de02 111 /**@brief Function for encoding a uint16 value.
bogdanm 0:eff01767de02 112 *
bogdanm 0:eff01767de02 113 * @param[in] value Value to be encoded.
bogdanm 0:eff01767de02 114 * @param[out] p_encoded_data Buffer where the encoded data is to be written.
bogdanm 0:eff01767de02 115 *
bogdanm 0:eff01767de02 116 * @return Number of bytes written.
bogdanm 0:eff01767de02 117 */
bogdanm 0:eff01767de02 118 static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data)
bogdanm 0:eff01767de02 119 {
bogdanm 0:eff01767de02 120 p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0);
bogdanm 0:eff01767de02 121 p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8);
bogdanm 0:eff01767de02 122 return sizeof(uint16_t);
bogdanm 0:eff01767de02 123 }
bogdanm 0:eff01767de02 124
bogdanm 0:eff01767de02 125 /**@brief Function for encoding a uint32 value.
bogdanm 0:eff01767de02 126 *
bogdanm 0:eff01767de02 127 * @param[in] value Value to be encoded.
bogdanm 0:eff01767de02 128 * @param[out] p_encoded_data Buffer where the encoded data is to be written.
bogdanm 0:eff01767de02 129 *
bogdanm 0:eff01767de02 130 * @return Number of bytes written.
bogdanm 0:eff01767de02 131 */
bogdanm 0:eff01767de02 132 static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data)
bogdanm 0:eff01767de02 133 {
bogdanm 0:eff01767de02 134 p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
bogdanm 0:eff01767de02 135 p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
bogdanm 0:eff01767de02 136 p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
bogdanm 0:eff01767de02 137 p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24);
bogdanm 0:eff01767de02 138 return sizeof(uint32_t);
bogdanm 0:eff01767de02 139 }
bogdanm 0:eff01767de02 140
bogdanm 0:eff01767de02 141 /**@brief Function for decoding a uint16 value.
bogdanm 0:eff01767de02 142 *
bogdanm 0:eff01767de02 143 * @param[in] p_encoded_data Buffer where the encoded data is stored.
bogdanm 0:eff01767de02 144 *
bogdanm 0:eff01767de02 145 * @return Decoded value.
bogdanm 0:eff01767de02 146 */
bogdanm 0:eff01767de02 147 static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data)
bogdanm 0:eff01767de02 148 {
bogdanm 0:eff01767de02 149 return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) |
bogdanm 0:eff01767de02 150 (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 ));
bogdanm 0:eff01767de02 151 }
bogdanm 0:eff01767de02 152
bogdanm 0:eff01767de02 153 /**@brief Function for decoding a uint32 value.
bogdanm 0:eff01767de02 154 *
bogdanm 0:eff01767de02 155 * @param[in] p_encoded_data Buffer where the encoded data is stored.
bogdanm 0:eff01767de02 156 *
bogdanm 0:eff01767de02 157 * @return Decoded value.
bogdanm 0:eff01767de02 158 */
bogdanm 0:eff01767de02 159 static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data)
bogdanm 0:eff01767de02 160 {
bogdanm 0:eff01767de02 161 return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) |
bogdanm 0:eff01767de02 162 (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) |
bogdanm 0:eff01767de02 163 (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) |
bogdanm 0:eff01767de02 164 (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 ));
bogdanm 0:eff01767de02 165 }
bogdanm 0:eff01767de02 166
bogdanm 0:eff01767de02 167 /** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts.
bogdanm 0:eff01767de02 168 *
bogdanm 0:eff01767de02 169 * @details The calculation is based on a linearized version of the battery's discharge
bogdanm 0:eff01767de02 170 * curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and
bogdanm 0:eff01767de02 171 * is considered to be the lower boundary.
bogdanm 0:eff01767de02 172 *
bogdanm 0:eff01767de02 173 * The discharge curve for CR2032 is non-linear. In this model it is split into
bogdanm 0:eff01767de02 174 * 4 linear sections:
bogdanm 0:eff01767de02 175 * - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV)
bogdanm 0:eff01767de02 176 * - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV)
bogdanm 0:eff01767de02 177 * - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV)
bogdanm 0:eff01767de02 178 * - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV)
bogdanm 0:eff01767de02 179 *
bogdanm 0:eff01767de02 180 * These numbers are by no means accurate. Temperature and
bogdanm 0:eff01767de02 181 * load in the actual application is not accounted for!
bogdanm 0:eff01767de02 182 *
bogdanm 0:eff01767de02 183 * @param[in] mvolts The voltage in mV
bogdanm 0:eff01767de02 184 *
bogdanm 0:eff01767de02 185 * @return Battery level in percent.
bogdanm 0:eff01767de02 186 */
bogdanm 0:eff01767de02 187 static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts)
bogdanm 0:eff01767de02 188 {
bogdanm 0:eff01767de02 189 uint8_t battery_level;
bogdanm 0:eff01767de02 190
bogdanm 0:eff01767de02 191 if (mvolts >= 3000)
bogdanm 0:eff01767de02 192 {
bogdanm 0:eff01767de02 193 battery_level = 100;
bogdanm 0:eff01767de02 194 }
bogdanm 0:eff01767de02 195 else if (mvolts > 2900)
bogdanm 0:eff01767de02 196 {
bogdanm 0:eff01767de02 197 battery_level = 100 - ((3000 - mvolts) * 58) / 100;
bogdanm 0:eff01767de02 198 }
bogdanm 0:eff01767de02 199 else if (mvolts > 2740)
bogdanm 0:eff01767de02 200 {
bogdanm 0:eff01767de02 201 battery_level = 42 - ((2900 - mvolts) * 24) / 160;
bogdanm 0:eff01767de02 202 }
bogdanm 0:eff01767de02 203 else if (mvolts > 2440)
bogdanm 0:eff01767de02 204 {
bogdanm 0:eff01767de02 205 battery_level = 18 - ((2740 - mvolts) * 12) / 300;
bogdanm 0:eff01767de02 206 }
bogdanm 0:eff01767de02 207 else if (mvolts > 2100)
bogdanm 0:eff01767de02 208 {
bogdanm 0:eff01767de02 209 battery_level = 6 - ((2440 - mvolts) * 6) / 340;
bogdanm 0:eff01767de02 210 }
bogdanm 0:eff01767de02 211 else
bogdanm 0:eff01767de02 212 {
bogdanm 0:eff01767de02 213 battery_level = 0;
bogdanm 0:eff01767de02 214 }
bogdanm 0:eff01767de02 215
bogdanm 0:eff01767de02 216 return battery_level;
bogdanm 0:eff01767de02 217 }
bogdanm 0:eff01767de02 218
bogdanm 0:eff01767de02 219 /**@brief Function for checking if a pointer value is aligned to a 4 byte boundary.
bogdanm 0:eff01767de02 220 *
bogdanm 0:eff01767de02 221 * @param[in] p Pointer value to be checked.
bogdanm 0:eff01767de02 222 *
bogdanm 0:eff01767de02 223 * @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise.
bogdanm 0:eff01767de02 224 */
bogdanm 0:eff01767de02 225 static __INLINE bool is_word_aligned(void * p)
bogdanm 0:eff01767de02 226 {
Rohit Grover 37:c29c330d942c 227 return (((uintptr_t)p & 0x03) == 0);
bogdanm 0:eff01767de02 228 }
bogdanm 0:eff01767de02 229
bogdanm 0:eff01767de02 230 #endif // APP_UTIL_H__
bogdanm 0:eff01767de02 231
bogdanm 0:eff01767de02 232 /** @} */