This is a fork of mbed-os-example-ble-HeartRate maintained for Sequana compatibility. This application transmits a heart rate value using the Bluetooth SIG Heart Rate Profile. The heart rate value is provided by the application itself, not by a sensor, so that you don't have to get a sensor just to run the example. The canonical source for this example lives at https://github.com/ARMmbed/mbed-os-example-ble/tree/master/BLE_HeartRate

shields/TARGET_CORDIO_BLUENRG/BlueNrgHCIDriver.cpp

Committer:
lru
Date:
2019-02-12
Revision:
0:b283842072f8

File content as of revision 0:b283842072f8:

#include <stdio.h>
#include "CordioBLE.h"
#include "CordioHCIDriver.h"
#include "CordioHCITransportDriver.h"
#include "mbed.h"
#include "hci_api.h"
#include "hci_cmd.h"
#include "hci_core.h"
#include "dm_api.h"
#include "bstream.h"
#include "hci_mbed_os_adaptation.h"
#include "bluenrg_targets.h"
#include "Thread.h"
#include "Semaphore.h"
#include "Mutex.h"

#define HCI_RESET_RAND_CNT              4

#define VENDOR_SPECIFIC_EVENT           0xFF
#define EVT_BLUE_INITIALIZED            0x0001
#define ACI_READ_CONFIG_DATA_OPCODE     0xFC0D
#define ACI_WRITE_CONFIG_DATA_OPCODE    0xFC0C
#define ACI_GATT_INIT_OPCODE            0xFD01
#define ACI_GAP_INIT_OPCODE             0xFC8A

#define PUBLIC_ADDRESS_OFFSET           0x00
#define RANDOM_STATIC_ADDRESS_OFFSET    0x80
#define LL_WITHOUT_HOST_OFFSET          0x2C
#define ROLE_OFFSET                     0x2D

#define SPI_STACK_SIZE                  1024

namespace ble {
namespace vendor {
namespace bluenrg {

/**
 * BlueNRG HCI driver implementation.
 * @see cordio::CordioHCIDriver
 */
class HCIDriver : public cordio::CordioHCIDriver
{
public:
    /**
     * Construction of the BlueNRG HCIDriver.
     * @param transport: Transport of the HCI commands.
     * @param rst: Name of the reset pin
     */
    HCIDriver(cordio::CordioHCITransportDriver& transport_driver, PinName rst) :
        cordio::CordioHCIDriver(transport_driver), rst(rst) { }

    /**
     * @see CordioHCIDriver::do_initialize
     */
    virtual void do_initialize() {
        bluenrg_reset();
    }

    /**
     * @see CordioHCIDriver::get_buffer_pool_description
     */
    ble::vendor::cordio::buf_pool_desc_t get_buffer_pool_description()
    {
        // Use default buffer pool
        return ble::vendor::cordio::CordioHCIDriver::get_default_buffer_pool_description();
    }

    /**
     * @see CordioHCIDriver::start_reset_sequence
     */
    virtual void start_reset_sequence() {
        reset_received = false;
        bluenrg_initialized = false;
        enable_link_layer_mode_ongoing = false;
        /* send an HCI Reset command to start the sequence */
        HciResetCmd();
    }

    /**
     * @see CordioHCIDriver::do_terminate
     */
    virtual void do_terminate() {

    }

    /**
     * @see CordioHCIDriver::handle_reset_sequence
     */
    virtual void handle_reset_sequence(uint8_t *pMsg) {
        uint16_t       opcode;
        static uint8_t randCnt;
        //wait_ms(5);

        /* if event is a command complete event */
        if (*pMsg == HCI_CMD_CMPL_EVT)
        {
            /* parse parameters */
            pMsg += HCI_EVT_HDR_LEN;
            pMsg++;                   /* skip num packets */
            BSTREAM_TO_UINT16(opcode, pMsg);
            pMsg++;                   /* skip status */

            /* decode opcode */
            switch (opcode)
            {
            case HCI_OPCODE_RESET: {
                /* initialize rand command count */
                randCnt = 0;
                reset_received = true;
                // important, the bluenrg_initialized event come after the
                // hci reset event (not documented)
                bluenrg_initialized = false;
            } break;

            // ACL packet ...
            case ACI_WRITE_CONFIG_DATA_OPCODE:
                if (enable_link_layer_mode_ongoing) {
                    enable_link_layer_mode_ongoing = false;
                    aciSetRole();
                } else {
                    aciGattInit();
                }
                break;

            case ACI_GATT_INIT_OPCODE:
                aciGapInit();
                break;

            case ACI_GAP_INIT_OPCODE:
                aciReadConfigParameter(RANDOM_STATIC_ADDRESS_OFFSET);
                break;

            case ACI_READ_CONFIG_DATA_OPCODE:
                // note: will send the HCI command to send the random address
                cordio::BLE::deviceInstance().getGap().setAddress(
                    BLEProtocol::AddressType::RANDOM_STATIC,
                    pMsg
                );
                break;

            case HCI_OPCODE_LE_SET_RAND_ADDR:
                HciSetEventMaskCmd((uint8_t *) hciEventMask);
                break;

            case HCI_OPCODE_SET_EVENT_MASK:
                /* send next command in sequence */
                HciLeSetEventMaskCmd((uint8_t *) hciLeEventMask);
                break;

            case HCI_OPCODE_LE_SET_EVENT_MASK:
// Note: the public address is not read because there is no valid public address
// provisioned by default on the target
// Enable if the
#if MBED_CONF_CORDIO_BLUENRG_VALID_PUBLIC_BD_ADDRESS == 1
                /* send next command in sequence */
                HciReadBdAddrCmd();
                break;

            case HCI_OPCODE_READ_BD_ADDR:
                /* parse and store event parameters */
                BdaCpy(hciCoreCb.bdAddr, pMsg);

                /* send next command in sequence */
#endif
                HciLeReadBufSizeCmd();
                break;

            case HCI_OPCODE_LE_READ_BUF_SIZE:
                /* parse and store event parameters */
                BSTREAM_TO_UINT16(hciCoreCb.bufSize, pMsg);
                BSTREAM_TO_UINT8(hciCoreCb.numBufs, pMsg);

                /* initialize ACL buffer accounting */
                hciCoreCb.availBufs = hciCoreCb.numBufs;

                /* send next command in sequence */
                HciLeReadSupStatesCmd();
                break;

            case HCI_OPCODE_LE_READ_SUP_STATES:
                /* parse and store event parameters */
                memcpy(hciCoreCb.leStates, pMsg, HCI_LE_STATES_LEN);

                /* send next command in sequence */
                HciLeReadWhiteListSizeCmd();
                break;

            case HCI_OPCODE_LE_READ_WHITE_LIST_SIZE:
                /* parse and store event parameters */
                BSTREAM_TO_UINT8(hciCoreCb.whiteListSize, pMsg);

                /* send next command in sequence */
                HciLeReadLocalSupFeatCmd();
                break;

            case HCI_OPCODE_LE_READ_LOCAL_SUP_FEAT:
                /* parse and store event parameters */
                BSTREAM_TO_UINT16(hciCoreCb.leSupFeat, pMsg);

                /* send next command in sequence */
                hciCoreReadResolvingListSize();
                break;

            case HCI_OPCODE_LE_READ_RES_LIST_SIZE:
                /* parse and store event parameters */
                BSTREAM_TO_UINT8(hciCoreCb.resListSize, pMsg);

                /* send next command in sequence */
                hciCoreReadMaxDataLen();
                break;

            case HCI_OPCODE_LE_READ_MAX_DATA_LEN:
                {
                    uint16_t maxTxOctets;
                    uint16_t maxTxTime;

                    BSTREAM_TO_UINT16(maxTxOctets, pMsg);
                    BSTREAM_TO_UINT16(maxTxTime, pMsg);

                    /* use Controller's maximum supported payload octets and packet duration times
                    * for transmission as Host's suggested values for maximum transmission number
                    * of payload octets and maximum packet transmission time for new connections.
                    */
                    HciLeWriteDefDataLen(maxTxOctets, maxTxTime);
                }
                break;

            case HCI_OPCODE_LE_WRITE_DEF_DATA_LEN:
                if (hciCoreCb.extResetSeq)
                {
                    /* send first extended command */
                    (*hciCoreCb.extResetSeq)(pMsg, opcode);
                }
                else
                {
                    /* initialize extended parameters */
                    hciCoreCb.maxAdvDataLen = 0;
                    hciCoreCb.numSupAdvSets = 0;
                    hciCoreCb.perAdvListSize = 0;

                    /* send next command in sequence */
                    HciLeRandCmd();
                }
                break;

            case HCI_OPCODE_LE_READ_MAX_ADV_DATA_LEN:
            case HCI_OPCODE_LE_READ_NUM_SUP_ADV_SETS:
            case HCI_OPCODE_LE_READ_PER_ADV_LIST_SIZE:
                if (hciCoreCb.extResetSeq)
                {
                    /* send next extended command in sequence */
                    (*hciCoreCb.extResetSeq)(pMsg, opcode);
                }
                break;

            case HCI_OPCODE_LE_RAND:
                /* check if need to send second rand command */
                if (randCnt < (HCI_RESET_RAND_CNT-1))
                {
                    randCnt++;
                    HciLeRandCmd();
                }
                else
                {
                    signal_reset_sequence_done();
                }
                break;

            default:
                break;
            }
        } else {
            /**
             * vendor specific event
             */
            if (pMsg[0] == VENDOR_SPECIFIC_EVENT) {
                /* parse parameters */
                pMsg += HCI_EVT_HDR_LEN;
                BSTREAM_TO_UINT16(opcode, pMsg);

                if (opcode == EVT_BLUE_INITIALIZED) {
                    if (bluenrg_initialized) {
                        return;
                    }
                    bluenrg_initialized = true;
                    if (reset_received) {
                        aciEnableLinkLayerModeOnly();
                    }
                }

            }
        }
    }

private:
    void aciEnableLinkLayerModeOnly() {
        uint8_t data[1] = { 0x01 };
        enable_link_layer_mode_ongoing = true;
        aciWriteConfigData(LL_WITHOUT_HOST_OFFSET, data);
    }

    void aciSetRole() {
        // master and slave, simultaneous advertising and scanning
        // (up to 4 connections)
        uint8_t data[1] = { 0x04 };
        aciWriteConfigData(ROLE_OFFSET, data);
    }

    void aciGattInit() {
        uint8_t *pBuf = hciCmdAlloc(ACI_GATT_INIT_OPCODE, 0);
        if (!pBuf) {
            return;
        }
        hciCmdSend(pBuf);
    }

    void aciGapInit() {
        uint8_t *pBuf = hciCmdAlloc(ACI_GAP_INIT_OPCODE, 3);
        if (!pBuf) {
            return;
        }
        pBuf[3] = 0xF;
        pBuf[4] = 0;
        pBuf[5] = 0;
        hciCmdSend(pBuf);
    }

    void aciReadConfigParameter(uint8_t offset) {
        uint8_t *pBuf = hciCmdAlloc(ACI_READ_CONFIG_DATA_OPCODE, 1);
        if (!pBuf) {
            return;
        }

        pBuf[3] = offset;
        hciCmdSend(pBuf);
    }

    template<size_t N>
    void aciWriteConfigData(uint8_t offset, uint8_t (&buf)[N]) {
        uint8_t *pBuf = hciCmdAlloc(ACI_WRITE_CONFIG_DATA_OPCODE, 2 + N);
        if (!pBuf) {
            return;
        }

        pBuf[3] = offset;
        pBuf[4] = N;
        memcpy(pBuf + 5, buf, N);
        hciCmdSend(pBuf);
    }

    void hciCoreReadResolvingListSize(void)
    {
        /* if LL Privacy is supported by Controller and included */
        if ((hciCoreCb.leSupFeat & HCI_LE_SUP_FEAT_PRIVACY) &&
            (hciLeSupFeatCfg & HCI_LE_SUP_FEAT_PRIVACY))
        {
            /* send next command in sequence */
            HciLeReadResolvingListSize();
        }
        else
        {
            hciCoreCb.resListSize = 0;

            /* send next command in sequence */
            hciCoreReadMaxDataLen();
        }
    }

    void hciCoreReadMaxDataLen(void)
    {
    /* if LE Data Packet Length Extensions is supported by Controller and included */
        if ((hciCoreCb.leSupFeat & HCI_LE_SUP_FEAT_DATA_LEN_EXT) &&
            (hciLeSupFeatCfg & HCI_LE_SUP_FEAT_DATA_LEN_EXT))
        {
            /* send next command in sequence */
            HciLeReadMaxDataLen();
        }
        else
        {
            /* send next command in sequence */
            HciLeRandCmd();
        }
    }

    void bluenrg_reset() {
        /* Reset BlueNRG SPI interface. Hold reset line to 0 for 1500ms */
        rst = 0;
        wait_us(1500);
        rst = 1;

        /* Wait for the radio to come back up */
        wait_us(100000);
    }

    DigitalOut rst;
    bool reset_received;
    bool bluenrg_initialized;
    bool enable_link_layer_mode_ongoing;
};

/**
 * Transport driver of the ST BlueNRG shield.
 * @important: With that driver, it is assumed that the SPI bus used is not shared
 * with other SPI peripherals. The reasons behind this choice are simplicity and
 * performance:
 *   - Reading from the peripheral SPI can be challenging especially if other
 *     threads access the same SPI bus. Indeed it is common that the function
 *     spiRead yield nothings even if the chip has signaled data with the irq
 *     line. Sharing would make the situation worse and increase the risk of
 *     timeout of HCI commands / response.
 *   - This driver can be used even if the RTOS is disabled or not present it may
 *     may be usefull for some targets.
 *
 * If The SPI is shared with other peripherals then the best option would be to
 * handle SPI read in a real time thread woken up by an event flag.
 *
 * Other mechanisms might also be added in the future to handle data read as an
 * event from the stack. This might not be the best solution for all BLE chip;
 * especially this one.
 */
class TransportDriver : public cordio::CordioHCITransportDriver {
public:
    /**
     * Construct the transport driver required by a BlueNRG module.
     * @param mosi Pin of the SPI mosi
     * @param miso Pin of the SPI miso
     * @param sclk Pin of the SPI clock
     * @param irq Pin used by the module to signal data are available.
     */
    TransportDriver(PinName mosi, PinName miso, PinName sclk, PinName ncs, PinName irq)
        : spi(mosi, miso, sclk), nCS(ncs), irq(irq), _spi_thread(osPriorityNormal, SPI_STACK_SIZE, _spi_thread_stack) {
        _spi_thread.start(callback(this, &TransportDriver::spi_read_cb));
    }

    virtual ~TransportDriver() { }

    /**
     * @see CordioHCITransportDriver::initialize
     */
    virtual void initialize() {
        // Setup the spi for 8 bit data, low clock polarity,
        // 1-edge phase, with an 8MHz clock rate
        spi.format(8, 0);
        spi.frequency(8000000);

        // Deselect the BlueNRG chip by keeping its nCS signal high
        nCS = 1;

        wait_us(500);

        // Set the interrupt handler for the device
        irq.mode(PullDown); // set irq mode
        irq.rise(callback(this, &TransportDriver::HCI_Isr));
    }

    /**
     * @see CordioHCITransportDriver::terminate
     */
    virtual void terminate() { }

    /**
     * @see CordioHCITransportDriver::write
     */
    virtual uint16_t write(uint8_t type, uint16_t len, uint8_t *pData) {
        // repeat write until successfull. A number of attempt or timeout might
        // be useful
        while (spiWrite(type, pData, len) == 0) { }
        return len;
    }

private:
    uint16_t spiWrite(uint8_t type, const uint8_t* data, uint16_t data_length) {
        static const uint8_t header_master[] = {
            0x0A, 0x00, 0x00, 0x00, 0x00
        };
        uint8_t header_slave[]  = { 0xaa, 0x00, 0x00, 0x00, 0x00 };
        uint16_t data_written = 0;
        uint16_t write_buffer_size = 0;

        _spi_mutex.lock();

        /* CS reset */
        nCS = 0;

        /* Exchange header */
        for (uint8_t i = 0; i < sizeof(header_master); ++i) {
            header_slave[i] = spi.write(header_master[i]);
        }

        if (header_slave[0] != 0x02) {
            goto exit;
        }

        write_buffer_size = header_slave[2] << 8 | header_slave[1];

        if (write_buffer_size == 0 || write_buffer_size < (data_length + 1)) {
            goto exit;
        }

        spi.write(type);

        data_written = data_length;
        for (uint16_t i = 0; i < data_length; ++i) {
            spi.write(data[i]);
        }

    exit:
        nCS = 1;

        _spi_mutex.unlock();

        return data_written;
    }

    uint16_t spiRead(uint8_t* data_buffer, const uint16_t buffer_size)
    {
        static const uint8_t header_master[] = {0x0b, 0x00, 0x00, 0x00, 0x00};
        uint8_t header_slave[5] = { 0xaa, 0x00, 0x00, 0x00, 0x00};
        uint16_t read_length = 0;
        uint16_t data_available = 0;

        nCS = 0;

        /* Read the header */
        for (size_t i = 0; i < sizeof(header_master); i++) {
            header_slave[i] = spi.write(header_master[i]);
        }

        if (header_slave[0] != 0x02) {
            goto exit;
        }

        data_available = (header_slave[4] << 8) | header_slave[3];
        read_length = data_available > buffer_size ? buffer_size : data_available;

        for (uint16_t i = 0; i < read_length; ++i) {
            data_buffer[i] = spi.write(0xFF);
        }

    exit:
        nCS = 1;

        return read_length;
    }

    /*
     * might be split into two parts: the IRQ signaling a real time thread and
     * the real time thread reading data from the SPI.
     */
    void HCI_Isr(void)
    {
        _spi_read_sem.release();
    }

    void spi_read_cb() {
        uint8_t data_buffer[256];
        while(true) {
            _spi_read_sem.wait();

            _spi_mutex.lock();
            while(irq == 1) {
                uint16_t data_read = spiRead(data_buffer, sizeof(data_buffer));
                on_data_received(data_buffer, data_read);
            }
            _spi_mutex.unlock();
        }
    }

    /**
     * Unsafe SPI, does not lock when SPI access happens.
     */
    ::mbed::SPI spi;
    DigitalOut nCS;
    InterruptIn irq;
    rtos::Thread _spi_thread;
    uint8_t _spi_thread_stack[SPI_STACK_SIZE];
    rtos::Semaphore _spi_read_sem;
    rtos::Mutex _spi_mutex;
};

} // namespace bluenrg
} // namespace vendor
} // namespace ble

/**
 * Cordio HCI driver factory
 */
ble::vendor::cordio::CordioHCIDriver& ble_cordio_get_hci_driver() {
    static ble::vendor::bluenrg::TransportDriver transport_driver(
        BLUENRG_PIN_SPI_MOSI,
        BLUENRG_PIN_SPI_MISO,
        BLUENRG_PIN_SPI_SCK,
        BLUENRG_PIN_SPI_nCS,
        BLUENRG_PIN_SPI_IRQ
    );
    static ble::vendor::bluenrg::HCIDriver hci_driver(
        transport_driver,
        BLUENRG_PIN_SPI_RESET
    );
    return hci_driver;
}